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1. Proof of Proposition 1
Let e ∈ RM denote the column vector of ones, and E ∈ RM×M the square matrix of ones.

Proposition 1. Consider a vector y = [y1, y2, . . . , yM ], for each linear denoiser defined by

Da(y) = a⊤y,

where a = [a1, a2, . . . , aM ]⊤ denotes it weights. its risk is defined by

Ra = E
µ,n,n0

[
∥Da(y)− x0∥22

]
.

Let a∗ be the optimal weights vector learned by minimizing the self-supervised loss:

f(a) := E
µ,n,n0

[
∥Da(y)− y0∥22

]
.

That is

a∗ ∈ argmin
a∈RM

f(a).

Then, the risk of the optimal linear denoiser is
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Lemma 1. Let k1 ≥ 0 and k2 > 0, then k1E+ k2I is a postive definite matrix and its inverse is given by (k1E+ k2I)
−1 =

− k1
(Mk1 + k2)k2

E+
1

k2
I.

Proof of Lemma 1. For all x = (x1, · · · , xM )T ̸= 0, we have

xT (k1E+ k2I)x = k1x
TEx+ k2x

Tx = k1

(
M∑
i=1

xi

)2

+ k2 ∥x∥22 > 0.
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Therefore, k1E+ k2I is positive definite. Note that E2 = ME, so

(k1E+ k2I)

(
− k1
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k2
I

)
=− k21
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Mk1 + k2
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k1
k2

E+ I = I.

As a result, (k1E+ k2I)
−1 = − k1

(Mk1 + k2)k2
E+

1

k2
I.

Proof of Proposition 1. Note that

f(a) = E
µ,n,n0

[∥∥Da({yj}Mj=1)− y0
∥∥2
2

]
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If σ = 0, then

f(a) = x2
0

(
aTEa− 2aTe+ 1

)
= x2

0

(
aTe− 1

)2 ≥ 0,

equality holds when a∗Te = 1. Note that when σ = 0, we have x0 = y0, so

Ra∗ = f(a∗) = 0,

which satifies the theorem.
If λv = 0 and λn = 1, then

f(a) = (x2
0 + σ2)(aTEa− 2aTe+ 1) = (x2

0 + σ2)
(
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)2 ≥ 0,

equality holds when a∗Te = 1. So, we have
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which satifies the theorem.
If λv = 0, λn = −1 and x2

0 + σ2 ̸= 0, then
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. So, we have
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which satifies the theorem.
Next, we assume (λ2
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From the lemma, we derive f ′′(a) is positive definite, so f(a) is convex. Therefore, f(a) has a minimum, and the minimum
archieved when f ′(a∗) = 0.
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Then, from the lemma, we have
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Then, we calculate the risk of the optimal linear denoiser and derive
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Thus, we finish the proof. We can observe that Ra∗ decreases when |λn| approaches 0. Additionally, if x2
0 ≥ λnσ

2, then
Ra∗ decreases when |λv| approaches 0.

2. Details of NN architecture
NN architecture of Fϕ: The neural network Fϕ is structured as a six-layer Multilayer Perceptron (MLP) with 32 feature
nodes, which processes input coordinates normalized to [−1, 1] and employs sinusoidal activation functions in each layer,
aligning with the principles of Sinusoidal Representation Networks (SIRENs) [10]. To mitigate the risk of overfitting, dropout
layers with incrementally increasing dropout rates (0.35, 0.45, 0.55, 0.65, 0.75) are strategically integrated between the MLP
layers. The final output layer utilizes a linear transformation to project the network’s output into RGB space. To efficiently
generate high-frequencies components, the input spatial coordinates are subjected to a higher dimensional space via a high-
frequency transformation function γ(·), which is sinusoidal in nature:

γ(p) =
(
p, sin

(
20πp

)
, · · · sin

(
2L−1πp

)
, cos

(
2L−1πp

))
Here, p denotes the normalized coordinate pair (i, j) within the range [−1, 1], and L is an positive integer.

NN architecture of Dθ: The NN architecture of Dθ used in this paper is based on Noise2Noise [7], which features an
encoder-decoder structure with skip connections, enhanced by dilated convolutions (dilation = 2) to increase the receptive
field efficiently. The encoder consists of five blocks (en block1 to en block5), each starting with a Conv2d layer using 48
filters of size 3×3, followed by LeakyReLU activations. Max pooling and dropout are employed for dimensionality reduction
and regularization. The decoder (de block1 to deblock5) upsamples feature maps, with each block increasing filter counts
(96 in de block1, 144 in de block2 to de block4) and applying similar Conv2d and LeakyReLU operations. The final block
(de block5) reduces filters to 3, corresponding to RGB output channels.

3. More Ablation Study
Comparison to MASH with similar inference time: We conducted the experiments with our method trained for 50 fewer
iterations, resulting in an inference time of 24.89 seconds (vs. MASH’s 25.11 seconds). As shown in Table 1, our method
still outperforms MASH across all datasets.

4. Evaluation on AWGN denoising
In this study, we examine the effectiveness of proposed method on removing synthesized i.i.d. AWGN noise from images.
Two datasets are used for the performance evaluation in the case of, including Set9 [11] with 9 color images and BSD68 [5]
with 68 gray-scale images. The noise level is set to σ = 25. The quantitative results of synthetic image denoising are shown
in Table 2.



Table 1. Quantitative comparison with fair inference time.

Method SIDD Validation SIDD Benchmark FMDD PolyU CC

MASH 35.06/0.851 34.78/0.900 33.71/0.882 37.62/0.932 36.87/0.93
Ours (faster) 35.29/0.868 35.02/0.921 33.91/0.885 37.86/0.957 37.20/0.946

Table 2. Quantitative comparisons of different denoising methods on synthetic denoising with σ = 25.

Method Set9 BSD68
PSNR( dB) SSIM PSNR( dB) SSIM

BM3D [4] 31.67 0.955 28.56 0.801
DIP [11] 30.77 0.942 27.96 0.774
Self2Self [9] 31.74 0.956 28.70 0.803
APBSN-single [6] 26.41 0.862 24.14 0.572
ScoreDVI [2] 29.33 0.925 26.78 0.671
MASH [3] 29.54 0.921 26.53 0.666
Ours 29.73 0.926 26.81 0.677

It can be seen that the original mask-based blind-spot method, Self2Self [9], achieves the best performance on AWGN
denoising. In contrast, its extensions designed for real-world denoising, including MASH [3] and our method, perform,
less effectively in this context. This decrease in performance is expected because these extensions are tailored to address
the spatial correlation of noise in real-world data. While they effectively reduce noise correlation, they inevitably also
diminish the intensity value correlation among pixels used to predict invisible pixels. In the absence of noise correlation, the
plain blind-spot scheme inherently maintains the highest intensity value correlation, explaining why the original mask-based
methods outperform the extensions on removing synthesized AWGN from images.

5. Visualization of the denoising process
We visualize the output of the INR to further illustrate the trade-off between noise correlation and intensity value correlation.
As shown in Fig. 1, the INR output provides complementary information to the original noisy images, exhibiting a stronger
intensity value correlation with the ground truth.

Input Noisy Image Output of INR Output of Denoising NN Ground Truth
18.68 dB/0.239 27.68 dB/0.844 32.31 dB/0.875 ∞ dB/1

Figure 1. Output visualization of INR.

6. Limitations
Local-shuffle-based MASH [3] struggles with long-range noise correlations Our method leverages more distant noisy pixels,
whose resulting loss of pixel dependencies is handled by INR estimates. The sub-pixel consistency loss from INR further
boosts performance. However, in extremely low-brightness regions, our approach may lose some details, where MASH did
slightly better, as shown in Fig 2.



Noisy Ours MASH Ground Truth

Figure 2. Unsatisfactory cases of our method

7. Additional qualitative comparison
The additional visual comparison on PolyU [12], CC [8] SIDD-Validation [1] and SIDD-Benchmark [1], are provided in
Fig. 3, 4, 5, 6.

Noisy DIP [11] ScoreDVI [2] MASH [3] Ours Ground Truth

Figure 3. Qualitative comparison of the results from different methods on some samples from PolyU.

Noisy DIP [11] ScoreDVI [2] MASH [3] Ours Ground Truth

Figure 4. Qualitative comparison of the results from different methods on some samples from CC.



Noisy DIP [11] ScoreDVI [2] MASH [3] Ours Ground Truth

Figure 5. Qualitative comparison of the results from different methods on some samples from SIDD-Validation.



Noisy BM3D [4] DIP [11] ScoreDVI [2] MASH [3] Ours

Figure 6. Qualitative comparison of the results from different methods on some samples from SIDD-Benchmark.
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