25% ETH HOTEL UNIV ZARA1 ZARA2 AVG

AutoBots [22] 0.942/1.886  0.333/0.662 0.563/1.156  0.446/0.958  0.409/0.904 0.539/1.113
+ Vanilla [38] 0.956/1.893  0.352/0.698  0.537/1.143  0.439/0.969  0.426/0.935 0.542/1.128
+ Augment [56]  0.942/1.867 0.359/0.722  0.544/1.152  0.441/0.971 0.409/0.922  0.539/1.127
+ Contrast (ours)  0.938/1.885  0.320/0.616  0.565/1.187  0.450/0.971  0.386/0.821  0.532/1.096
+ Ranking (ours)  0.906/1.814 0.307/0.582  0.556/1.157 0.435/0.942 0.376/0.819 0.516/1.063

Table 3. Quantitative results of sim-to-real transfer from ORCA simulations to 25% of the ETH-UCY dataset.

50% ETH HOTEL UNIV ZARA1 ZARA2 AVG

AutoBots [22] 0.940/1.883  0.326/0.612 0.566/1.197  0.434/0.945 0.358/0.787  0.525/1.085
+ Vanilla [38] 0.923/1.913  0.342/0.661  0.535/1.141 0.430/0.954 0.383/0.886  0.523/1.111
+ Augment [56]  0.937/1.885 0.340/0.660  0.535/1.146  0.424/0.938 0.377/0.878  0.523/1.101
+ Contrast (ours)  0.935/1.870 0.344/0.667  0.554/1.148  0.422/0.913  0.346/0.772  0.520/1.074
+ Ranking (ours)  0.903/1.810  0.300/0.566 0.543/1.146  0.420/0.911  0.331/0.725  0.499/1.029

Table 4. Quantitative results of sim-to-real transfer from ORCA simulations to 50% of the ETH-UCY dataset.

100% ETH HOTEL UNIV ZARAI ZARA2 AVG

AutoBots [22] 0.938/1.916  0.334/0.678  0.550/1.152  0.420/0.916  0.343/0.787 0.517/1.090
+ Vanilla [38] 0.923/1.913  0.331/0.638 0.527/1.133  0.410/0.907  0.346/0.783  0.507/1.075
+ Augment [56]  0.938/1.878  0.332/0.635 0.518/1.141  0.403/0.890  0.348/0.796  0.508/1.068
+ Contrast (ours)  0.930/1.896 0.321/0.605  0.538/1.154  0.412/0.899  0.345/0.791  0.509/1.069
+ Ranking (ours)  0.900/1.780  0.296/0.556  0.539/1.148  0.408/0.889  0.325/0.715  0.494/1.018

Table 5. Quantitative results of sim-to-real transfer from ORCA simulations to 100% of the ETH-UCY dataset.

A. Additional Results
A.0.1. AutoBots on ETH-UCY

In addition to the aggregated results presented in Fig. 8, we summarize an in-depth breakdown of the sim-to-real transfer
results in Tabs. 3 to 5. Across all evaluated settings, our ranking-based causal transfer consistently achieves superior prediction
accuracy compared to the AutoBots baseline. Notably, it outpaces the standard sim-to-real method [38] in four out of the
five subsets, with the sole exception in the UNIV subset. We conjecture that this exception might be attributed to the high
similarity between the ORCA simulation and UNIV dataset.

To assess the stability of the ranking-based method, we conducted experiments using three different random seeds, as
illustrated in Figs. 11 and 12. The results show that the ranking-based method consistently outperforms the vanilla model across
all subsets of the ETH-UCY dataset. Furthermore, the ranking-based method typically yields smaller standard deviations,
indicating more consistent performance.

Furthermore, as summarized in Tab. 6, AutoBots stands as one of the state-of-the-art models for multi-agent trajectory
forecasting, leaving only marginal room for improvement on the ETH-UCY dataset. In spite of this, our proposed causal transfer
method still offers notable improvements, resulting in more enhanced predictions. Please also note that this improvement is
achieved through ORCA, while ORCA’s performance on ETH-UCY dataset is very poor, as shown in Tab. 6. This marks the
effectiveness of our methodology in extracting and transferring causal knowledge from a simulator, despite its big gap to the
real world data.

Finally, we summarize the results of different methods in terms of Final Displacement Error (FDE) on the OOD test sets
in Fig. 9. Similar to Fig. 6, our ranking-based method leads to the lowest prediction errors compared to the other counterparts,
reaffirming its strength for boosting out-of-distribution robustness.



Deterministic ETH HOTEL UNIV ZARA1 ZARA2 AVG

ORCA [65] 2.27/3.44 1.03/1.54 1.29/2.079 0.97/1.60 0.87/1.45 1.28/2.02
S-LSTM [2] 1.09/2.35 0.79/1.76  0.67/1.40  0.47/1.00 0.56/1.17  0.72/1.54
D-LSTM [32] 1.05/2.10 0.46/0.93  0.57/1.25  0.40/0.90 0.37/0.89 0.57/1.21
Trajectron++ [61] 1.02/2.00 0.33/0.62  0.53/1.19  0.44/0.99 0.32/0.73  0.53/1.11
Social-Transmotion[59] 0.93/1.81 0.32/0.60  0.54/1.16  0.42/0.90 0.32/0.70  0.51/1.03
AutoBots [22] 0.93/1.87 0.32/0.65 0.54/1.15  0.42/091 0.34/0.77 0.51/1.07

AutoBots + Ranking (ours) 0.90/1.78 0.30/0.56  0.53/1.12  0.41/0.89 0.32/0.70  0.49/1.01

Table 6. Comparison between different multi-agent forecasting models on the ETH-UCY dataset. Boosted by our proposed ranking-based
causal transfer, the best result of AutoBots across three random seeds reaches comparable performance to the current state-of-the-art.

Dataset ETH-UCY NBA
AutoBots + Intervention [17] 0.53 0.58
AutoBots + Ranking (ours) 0.49 0.54

Table 7. Comparison with causal intervention using AutoBot. The ADE on ETH-UCY and NBA verify our causal transfer is robust under
domain shifts across different datasets.

Model K=l K=5

Multi-Transmotion 0.379 0.272
Multi-Transmotion + Ranking (ours) 0.342  0.264

Table 8. ADE of causal transfer from ORCA simulations to the JRDB dataset. We outperform the Muti-Transmotion baseline by
integrating our causal regularizers, showing the effectiveness of our approach in deterministic (K=1) and multimodal (K=5) setups. The
numbers are in meters.

A.0.2. Comparison with other robust representations

We compare our ranking regularizer with causal intervention [9]. The results, detailed in Tab. 7, demonstrate that our method
effectively mitigates the domain shift between simulated and real environments and better enhances performance compared to
the proposed causal intervention.

A.0.3. Muti-Transmotion on JRDB

We further verify our causal transfer on a new model and dataset. We adopt Multi-Transmotion [18], a SOTA human motion
prediction model, on JRDB[19], a social navigation dataset. We split an indoor and an outdoor scene as the testing set, and the
other as the training set. The results in Tab. 8 validate the effectiveness of our causal regularize, which consistently improves
the model, to demonstrate the proposed ranking regularizer can be implemented in various baseline scene representations and
has the potential to improve them in many settings. In addition, the second column in Tab. 8 shares our improvement in the
multimodal setup. In this multi-task approach, we learn the multimodal trajectory prediction task on the real-world dataset,
while at the same time we regularize the representation learned by the encoder using our causal ranking regularizer, on the
synthetic data.

B. Implementation Details

Experiment details. Our experiments are largely built upon the public code of prior work, with as few modifications as
possible made for the implementations of our proposed regularizers. Concretely, in the robustness analysis reported in Tab. 1,
we train each model on our constructed dataset using the default hyperparameters of the corresponding baseline. To understand
the performance of our proposed methods in Sec. 5.2, we fine-tune the pre-trained checkpoint for 10 epochs, and evaluate the
obtained model on the hold-out test set. The main hyperparameters used for training our baseline model AutoBots [22] and the
causal regularizers are listed in Tab. 9.
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Figure 9. Additional quantitative results of our method on the out-of-distribution test sets, as a supplement to Fig. 6. Models trained by our
method yield lower FDE. Results are averaged over five random seeds.

Simulation details. Our diagnostic dataset is generated using a customized version of the Reciprocal Velocity Obstacle
simulator that employs Optimal Reciprocal Collision Avoidance (ORCA) [66]. To simulate realistic causal relationships
between agents, we imposed a visibility constraint where an agent only observes other neighbors within their proximity and its
210° field of view. This visibility plays a significant role in determining the influence of one agent on another. Specifically,
we define a neighbor ¢ as having a direct influence on the ego agent at time step ¢ if it is visible to the ego in that time step,
i.e., 1t = 1. Additionally, we introduce a visibility window that records agents that were previously visible, facilitating the
modeling of a richer spectrum of direct and indirect inter-agent influences. To encourage the presence of non-causal agents in
dense spaces, we explicitly directed specific agents to follow others, thereby making them non-causal or indirect causal.

Dataset details. Tab. 10 summarize the key statistics of our diagnostic datasets, including both the in-distribution (ID)
training set and the out-of-distribution (OOD) test set. Specifically, we consider two distinct types of OOD datasets, each
deviating from the ID dataset in specific aspects, such as agent density and/or scene context.

* [D: The training dataset is characterized by an average of 12 pedestrians per scene, each interacting with a few others to
navigate towards their goals. All the scenes are set in an open area context, allowing unrestricted movements and serving as
the base environment in our experiments.

* OOD Density: In our first OOD set, we retain the same context setting as the ID dataset but increase agent density.
Specifically, we introduce more agents in proximity to the ego agent to intensify agent interactions. Additionally, we add
agents behind the ego agent, which results in more non-causal agents. This dataset aims to test the robustness of the model
in handling increased agent density.

* 00D Context: The second OOD set alters the scene context from an open area to a narrow street, where pedestrians walk
from one end to the other. Given that agents walking in the same direction generally do not interact, we double the number
of agents in the scene, thus ensuring a similar degree of interaction complexity to the ID dataset.

Exemplary animations for each data split can be found in our public repository.

Baseline details. To the best of our knowledge, few prior work studies causally-aware representation learning in the
multi-agent context. To examine the efficacy of our proposed methods, we consider the following three existing methods as
comparative baselines.

* Baseline: the baseline method trains the model on the data in the target domain only, i.e., the AutoBots baseline trained on
the in-distribution dataset in Sec. 5.2 or the real-world ETH-UCY dataset in Sec. 5.3.

e Vanilla: the vanilla sim-to-real method combines simulated and real-world data in the training process. It adheres to a
standard prediction task, with an equal mix of data from each domain in every training batch [38].

* Augment: the causal augmentation method is built upon the Baseline for the experiment in Sec. 5.2 or the Vanilla for
the experiment in Sec. 5.3. It augments training data by randomly dropping non-causal agents based on the provided
annotations [56].
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Figure 10. Additional quantitative results of our method on causal effect estimates, as a supplement to Fig. 6. Models trained by our method
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Figure 11. Additional results of our ranking-based causal transfer on the ETH-UCY dataset, as a supplement to Fig. 8. The results of ADE
are averaged on each subset over three random seeds.
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Figure 12. Additional results of our ranking-based causal transfer on the ETH-UCY dataset, as a supplement to Fig. 8. The results of FDE
are averaged on each subset over three random seeds.



C. Additional Discussions

Counterfactual simulation. Our diagnostic dataset, enabled by counterfactual simulations, offers clean annotations of
causal relationships, serving as a crucial step in understanding causally-aware representation of multi-agent interactions.
However, the realism of these simulated causal effects is still subject to some inherent limitations. For example, we have
enforced a stringent constraint on the field of view for each agent, considering that the ego agent is usually unaffected by
trailing neighbors. Such constraints could compromise the optimality of the ORCA algorithm, potentially resulting in unnatural
trajectories. We believe that integrating more advanced simulators, e.g., CausalCity [47], can address these challenges and we
anticipate promising outcomes along this line for future research.

Multi-agent causal effects. Our annotation and evaluation have been focused on the causal effect at an individual agent
level, namely we remove only one agent at a time. This aligns with the notion of Causal Agents [56], i.e., a neighboring agent
has a certain causal relationship with the ego agent. Through this lens, we observe that while recent representations are already
partially robust to non-causal agent removal, they tend to underestimate the effects of causal agents. However, it is important
to note that this is still a rather simplified and restricted setting compared to the group-level causal effects, where the collective
behavior of multiple agents may have a more complex influence on the ego agent. Understanding and addressing this challenge
can be another exciting avenue for future research.

name value

batch size 16

pre-training learning rate 7.5 x107*

fine-tuning learning rate 2.34375 x 107°

contTastlve 'Welght « 1000 Dataset Number of scenes Number of agents per scene

ranking weight o 1000 train test | non-causal direct causal indirect causal  total

ranking margin m 0.001 D 20k 2k 1.31 8.35 0.48 13.03

non-causal threshold e 0.02 00D Context 2k 6.13 9.92 1.47 21.39

causal threshold 7 0.1 OOD Density 2%k 9.47 12.27 2.55 29.98
Table 9. Key hyper-parameters in our experiments. Table 10. Key statistics of our diagnostic datasets.

D. Qualitative Examples of Synthetic Data

In this section we share some qualitative examples of our synthetic dataset, with the non-causal, directly causal, and indirect
causal labels in them. Some scenarios are depicted in Fig. 13, where the points on the lines represent the position of agents in
the last time step before the prediction horizon. Lonely dots without any lines on them represent static agents that do not move
in the scene.
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Figure 13. Visualizations of our synthetic dataset with causal labels, generated using ORCA simulator. The dots indicate the position
of the agent in the last timestep before the prediction horizon, and single dots without any lines associated with them represent static agents
who do not move in the scene.
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