
EffiDec3D: An Optimized Decoder for High-Performance and Efficient 3D
Medical Image Segmentation

Supplementary Material

Figure S1. Diagram of Channel Reduction Residual Block de-
scribed in Section 3.2.

7. Channel Reduction Residual Block Diagram

Figure S1 presents the block diagram of our
ChannelReductionResidualBlock described
in Section 3.2 of our main paper. As shown,
ChannelReductionResidualBlock consists of two
consecutive Conv3D layers, each followed by an Instance
Norm (IN) and ReLU activation. A residual connection is
also used to enable direct information flow from the given
input to the output of this layer.

8. Experimental Details

This section extends our Section 4 in the original paper by
describing the datasets, implementation details, evaluation
metrics, additional experimental results, and qualitative re-
sults, followed by comparisons of different computational
metrics (#Params, #FLOPs, Inference Time, Throughput).

8.1. Datasets
To evaluate the performance of our EffiDec3D decoder, we
carry out experimental analyses across 12 datasets, as de-
scribed next:

• FeTA 2021: The MICCAI 2021 FeTA Challenge dataset
(FeTA2021) [17] comprises 80 T2-weighted infant brain

MRIs acquired using 1.5T and 3T clinical whole-body
scanners at the University Children’s Hospital. The
dataset focuses on fetal infant brain tissue segmentation,
with detailed annotations for seven distinct tissue types
(main Table 1). We randomly divide the dataset into 80%
training (64 scans), 10% validation (8 scans), and 10%
test (8 scans) sets. More details including pre-processing
steps are provided in Supplementary Table S1.

• BTCV: The Beyond the Cranial Vault (BTCV) abdomi-
nal dataset2 [11] includes 30 abdominal CT scans with an-
notations for 13 organs, performed by interpreters under
the guidance of radiologists from Vanderbilt University
Medical Center. Each scan was acquired during the por-
tal venous contrast phase, containing between 80 and 225
slices with a resolution of 512×512 pixels and slice thick-
ness varying from 1 to 6 mm. Following TransUNet [3],
we use the same 18 scans for training and 12 scans for
validation. Our multi-organ segmentation task involves
both 13 (main Table 2) and 8 classes (supplementary Ta-
ble S3). The pre-processing and other details are in the
supplementary Table S1.

• MSD: The Medical Segmentation Decathlon (MSD)
dataset [1] consists of 10 segmentation tasks (i.e., Brain
Tumor, Heart, Liver Tumor, Hippocampus, Prostate,
Lung, Pancreas, Hepatic Vessel, Spleen, and Colon seg-
mentation) involving various organs and imaging modal-
ities (i.e., CT and MRI). These tasks are specifically
designed to encompass a range of challenges in medi-
cal imaging, including limited training data, class im-
balance, multi-modality inputs, and the segmentation of
small structures. Consequently, the MSD dataset pro-
vides a thorough benchmark for assessing the generaliz-
ability of medical image segmentation techniques. Spe-
cific details with pre-processing pipeline used for these
10 datasets are provided in the supplementary Table S1.

8.2. Implementation Details

We optimize three architectures (3D UX-Net, Swin-
UNETR, and SwinUNETRv2) incorporating our decoder
by replacing their original decoder. All architectures em-
ploy a four-stage encoder design, with 3D UX-Net utilizing
progressively increasing channel sizes (48, 96, 192, 384),
while SwinUNETR and SwinUNETRv2 use the initial fea-
ture size of 48 and increase exponentially with the #stages.
We set the reduced number of decoder channels Creduced =
48 which is the minimum number of channels in the original

2https://www.synapse.org/#!Synapse:syn3193805/wiki/217789

Dataset Anatomical Region Modality #Samples Data Splits Pre-processing

FeTA 2021 [17] Infant Brain MRI 80
Train: 64
Validation: 8
Test: 8

1. Interpolate scans to isotropic voxel spacing of [0.43mm− 0.70mm]
2. Clip brain volumes to [0, 1000] and normalize to [0, 1]
3. Random sampling of 96× 96× 96 voxels (1:1 positive-to-negative ratio)
4. Augmentations: random intensity shifting (0.5), affine transformations with
scale factor (0.1) and rotation range (0,0,π/15)
5. Labels: External Cerebrospinal Fluid (ECF), Grey Matter (GM), White
Matter (WM), Ventricles, Cerebellum, Deep Grey Matter (DGM), Brainstem

BTCV [11] Abdomen CT 30
Train: 18
Validation: 12

1. Interpolate scans to isotropic voxel spacing of [1.5× 1.5× 2.0] mm
2. Clip intensities using soft tissue window [-125, 275], normalize to [0, 1]
3. Random sampling of 96× 96× 96 voxels (1:1 positive-to-negative ratio)
4. Augmentations: random flip (0.1), rotation (0.1), intensity shifting (0.5),
affine transformations with scale factor (0.1) and rotation range (0,0,π/30)
5. Labels: Spleen, Right kidney, Left kidney, Gallbladder, Esophagus, Liver,
Stomach, Aorta, IVC, Veins, Pancreas, Right adrenal glands, Left adrenal glands

Task01 [1] Brain Tumor MRI 484
Train: 388
Validation: 96

1. Use all 4 MRI modalities as 4 input channels
2. Normalize non-zero MRI intensities channel-wise
3. Crop sub-volumes of 96× 96× 96
4. Augmentations: random flips (0.5), intensity scaling (0.1), shifting (0.1)
5. Labels: Tumor Core (TC), Whole Tumor (WT), Non-enhancing Tumor (NET)

Task02 [1] Heart MRI 20
Train: 16
Validation: 4

1. Interpolate to isotropic voxel spacing 1.0mm
2. Normalize non-zero intensities channel-wise
3. Sample 96× 96× 96 training sub-volumes (2:1 positive-to-negative ratio)
4. Augmentations: random flip (0.5), rotation (0.1), intensity scaling (0.2),
shifting (0.5), affine w/ scale factor (0.1) and rotation range (0,0,π/15)
5. Labels: Left Artium

Task03 [1] Liver CT 131
Train: 105
Validation: 26

1. Interpolate scans to isotropic voxel spacing of 1.0mm
2. Scale intensities to [−21, 189], normalize to [0, 1]
3. Extract 96× 96× 96 patches with 1:1 positive-to-negative sampling ratio
4. Augmentations: random flip (0.2), rotation (0.2), intensity scaling (0.1),
shifting (0.1), affine w/ scale factor (0.1) and rotation range (0,0,π/30)
5. Labels: Liver, Cancer

Task04 [1] Hippocampus MRI 260
Train: 208
Validation: 52

1. Interpolate voxel spacing to 0.2mm× 0.2mm× 0.2mm
2. Random spatial sampling of 96× 96× 96 (1:1 positive-to-negative ratio)
3. Normalize non-zero intensities channel-wise
4. Augmentations: random flip (0.1), rotation (0.1), intensity scaling (0.1),
shifting (0.1), affine w/ scale factor (0.1) and rotation range (0,0,π/15)
5. Labels: Anterior, Posterior

Task05 [1] Prostate MRI 32
Train: 26
Validation: 6

1. Use both MRI modalities as two input channels
2. Resample voxel spacing to 0.5mm, normalize non-zero intensities channel-wise
3. Pad or crop spatial samples of 96× 96× 96 (1:1 positive-to-negative ratio)
4. Augmentations: random flip (0.5), rotation (0.5), intensity scaling (0.5),
shifting (0.5), affine w/ scale factor (−0.3, 0.3), rotation range (0, 0, π) in each axis
5. Labels: Peripheral Zone (PZ), Transition Zone (TZ)

Task06 [1] Lung CT 63
Train: 51
Validation: 12

1. Interpolate each scan to isotropic voxel spacing 1.0mm
2. Normalize intensities to [0, 1] after clipping HU range [−1000, 1000]
3. Extract 96× 96× 96 patches (2:1 positive-to-negative sampling ratio)
4. Data augmentation: random flip (0.5), rotation (0.3), intensity scaling (0.1),
shifting (0.1), affine w/ scale factor (0.1), rotation range (0, 0, π/15)
5. Labels: Cancer

Task07 [1] Pancreas CT 281
Train: 225
Validation: 56

1. Clip intensities to [−87, 199], normalize to [0, 1]
2. Sample patches of 96× 96× 96 w/ 1:1 positive-to-negative ratio
3. Augmentations: random flip (0.5), rotation (0.25), intensity scaling, shifting (0.5)
4. Labels: Pancreas, Cancer

Task08 [1] Hepatic Vessel CT 303
Train: 243
Validation: 60

1. Clip intensities to [0, 230] and normalize to [0, 1]
2. Sample patches of 96× 96× 96 w/ 1:1 positive-to-negative ratio
3. Augmentations: random flip (0.5), rotation (0.25), intensity scaling, shifting (0.5)
4. Labels: Vessel, Tumor

Task09 [1] Spleen CT 41
Train: 33
Validation: 8

1. Interpolate voxel spacing to 1.0mm on all axes
2. Clip intensities to HU range [−125, 275], normalize to [0, 1]
3. Sample patches of 96× 96× 96 w/ 1:1 positive-to-negative ratio
4. Augmentations: random flip (0.1), rotation (0.1), intensity shifting (0.5),
affine w/ scale factor (0.1), rotation range (0, 0, π/30)
5. Labels: Spleen

Task10 [1] Colon CT 126
Train: 101
Validation: 25

1. Interpolate voxel spacing to 1.0mm on all axes
2. Clip intensities to [−57, 175] and normalize to [0, 1]
3. Sample training sub-volumes with positive-to-negative ratio of 1:1
4. Augmentations: random flip (0.5), rotation (0.25), intensity scaling (0.2),
shifting (0.5), affine w/ scale factor (0.1), rotation range (0, 0, π/15)
5. Labels: Colon cancer primaries

Table S1. Details of each dataset in our experiments, including BTCV [11], FeTA 2021 [17], and 10 MSD [1] datasets. Center crop of the
foreground is applied in all datasets.

Hyperparameters 3D UX-Net SwinUNETR SwinUNETRv2
Encoder Stage 4 4 4
Layer-wise #Channel / Feature Size 48, 96, 192, 384 48 48
Patch Size 96× 96× 96 96× 96× 96 96× 96× 96
No. of Sub-volumes Cropped 2 2 2
Training Steps+ 45000 45000 45000
Batch Size 1 1 1
AdamW ϵ 1× 10−8 1× 10−8 1× 10−8

AdamW β (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Learning Rate∗ 1× 10−4 1× 10−4 1× 10−4

Weight Decay 0.08 0.08 0.08
Loss Function DICE + CrossEntropy DICE + CrossEntropy DICE + CrossEntropy

Table S2. Hyperparameters for different architectures in our experiments. ∗We use a learning rate of 1 × 10−3 for BTCV, Task01 Heart,
Task05 Prostate, and Task06 Lung datasets based on dataset-specific optimization for all architectures; in addition, we use 1 × 10−3

learning rate for Task04 HippoCampus and Task07 Pancreas with 3D UX-Net architecture. + For Task01 BrainTumour dataset, we use
training steps of 60000. We use the same hyperparameters for the optimized architectures incorporating our EffiDec3D.

decoder across stages. We also remove the high-resolution
stage (D,H,W) and output at (D/2, H/2,W/2) resolution
from our decoder for all three optimized architectures. We
apply Softmax activation followed by Argmax to the output
from the decoder, except the Task01 BrainTumor segmen-
tation (where we use Sigmoid activation followed by a 0.5
threshold for multi-level classification).

The input patch size is set to 96 × 96 × 96, with 2
cropped sub-volumes from each dataset except BTCV. All
our models are trained 45,000 steps for most tasks, with an
extended 60,000 steps used for Task01 BrainTumour due to
its complexity. We saved the best model based on validation
DICE scores. A learning rate of 1 × 10−4 is used for most
datasets except BTCV, Task01 Heart, Task05 Prostate, and
Task06 Lung (learning rate of 1×10−3). The AdamW [14]
optimizer with ϵ = 1 × 10−8, (β1, β2) = (0.9, 0.999), and
a weight decay of 0.08 is utilized for optimization. For loss
calculation, a combination of DICE and CrossEntropy func-
tions (Eq. 10) is utilized to balance segmentation overlap
and accuracy:

L = LDICE + LCE (10)

where LDICE is used to optimize the segmentation overlap,
and LCE is used to handle the pixel-wise classification.

Detailed training hyperparameters can be found in the
supplementary Table S2. Notably, these hyperparame-
ters are consistent across both original and EffiDec3D-
optimized decoders. We have implemented our models in
PyTorch and MONAI3. All models are trained on a NVIDIA
RTX 6000 (Ada generation) or A6000 server with 48GB of
GPU memory.

8.3. Evaluation metrics

To evaluate the segmentation performance across all
datasets, we primarily utilize the DICE score, while in-
corporating the 95% Hausdorff Distance (HD95) as an ad-

3https://monai.io/

ditional metric for the BTCV 8-organ segmentation. The
DICE score, denoted as DICE(Y, Ŷ), quantifies the over-
lap between the predicted segmentation Ŷ and the ground
truth Y , whereas HD95 measures the boundary alignment
by computing the 95th percentile of distances between the
points on the predicted and ground truth boundaries.

The DICE score DICE(Y, Ŷ), and HD95 distance
HD(Y, Ŷ) are defined in Eqs. 11 and 12, respectively:

DICE(Y, Ŷ) =
2× |Y ∩ Ŷ |
|Y |+ |Ŷ |

× 100 (11)

HD(Y, Ŷ) = max
{
max
y∈Y

min
ŷ∈Ŷ

d(y, ŷ),max
ŷ∈Ŷ

min
y∈Y

d(y, ŷ)
}

(12)

where, Y and Ŷ denote the ground truth and predicted seg-
mentation maps, respectively, and d(y, ŷ) represents the Eu-
clidean distance between the boundary points. The DICE
score provides a measure of overlap, while HD95 captures
the accuracy of boundary alignment, thus offering comple-
mentary insights into the segmentation performance.

8.4. Qualitative Results

Figure S2 presents qualitative segmentation results on two
different CT slices from the BTCV dataset for various meth-
ods, including our optimized EffiDec3D decoders. Figure
S2a shows an example where 12 different organs are seg-
mented, excluding the esophagus, while Figure S2b con-
tains an example where 6 organs including the esophagus
are segmented.

In general, UNETR, nnFormer, and TransBTS exhibit
comparatively worse performance, missing critical regions
and showing less accurate segmentation boundaries. For in-
stance, in Figure S2a, most methods, including these three,
fail to accurately segment parts of the veins, which are par-
ticularly challenging due to their small size and heteroge-
neous presence. Furthermore, UNETR, SwinUNETR, and

Figure S2. Qualitative results of 13-organ segmentation on BTCV dataset, (a) 12 different organs segmented except Esophagus, (b) 6
different organs segmented including Esophagus. The dashed rectangular blue box highlights the region of interest having different organs.
As shown, our optimized EffiDec3D-based models produce competitive segmentation results to the original decoders with substantially
lower #Params and #FLOPs. For example, SwinUNETR completely misses the Esophagus, whereas our SwinUNETR with EffiDec3D
successfully segments parts of it. Note: Spl: spleen, RKid: right kidney, LKid: left kidney, Gall: gallbladder, Eso: esophagus, Sto:
stomach, IVC: inferior vena cava, Veins: portal and splenic veins, Pan: pancreas, Lad: left adrenal glands, Rad: right adrenal glands.

optimized SwinUNETR demonstrate mis-segmentation for
the right adrenal gland (Rad) in the same figure.

In Figure S2b, SwinUNETR completely misses the
esophagus, a small, rarely seen (in the whole volume), and
difficult-to-detect organ, whereas our EffiDec3D optimized
SwinUNETR successfully segments parts of it. This im-
provement highlights the advantages of EffiDec3D’s opti-
mization in preserving segmentation accuracy for challeng-
ing anatomical structures.

Overall, our EffiDec3D decoder-based optimized mod-
els consistently outperform the original models (Figure S2)
and other methods in capturing both large and small struc-
tures, even with significant computational savings. This
demonstrates the capability of EffiDec3D to improve seg-
mentation performance while maintaining efficiency across
diverse and challenging clinical tasks, even with substantial
reductions in #Params and #FLOPs.

8.5. BTCV 8-organ Segmentation Results

Table S3 presents a comprehensive evaluation of DICE
scores (%) across various 2D and 3D architectures for the
BTCV 8-organ segmentation task. The methods in the top
six rows represent 2D architectures, such as UNet and At-
tUNet, which process slice-by-slice inputs at resolutions of

224 × 224. Among these, PVT-EMCAD-B2 achieves the
highest average DICE score (83.63%), using transformer-
based feature extraction. However, due to their inability to
capture volumetric context, 2D models generally underper-
form compared to 3D models, especially for organs with
complex 3D structures like the pancreas and gallbladder.

The remaining rows in Table S3 showcase 3D architec-
tures, which use volumetric inputs (96×96×96) to capture
the spatial context more effectively. Among the original 3D
models, MedNeXt M K3 and 3D UX-Net achieve average
DICE scores of 86.22% and 85.33%, respectively. How-
ever, the computational cost of MedNeXt M K3 (110.65
GFLOPs and 17.55M Params) and 3D UX-Net (631.97
GFLOPs and 53M Params) is extremely high, which makes
them impractical for resource-constrained settings. Sim-
ilarly, SwinUNETR and SwinUNETRv2 demonstrate the
strengths of self-attention mechanisms by achieving com-
petitive DICE scores of 84.64% and 85.67%, respectively,
with substantial computational requirements.

Our proposed EffiDec3D decoder applied to these 3D
architectures offers substantial computational savings with
minimal performance loss. For instance, the integration of
EffiDec3D with 3D UX-Net reduces #Params and #FLOPs
by 94.0% and 91.9%, respectively, while only slightly re-

Architecture Inp. Res. MParams↓ GFLOPs↓ Spl. RKid LKid Gall Pan. Liver Sto. Aorta Avg (%)↑ HD95↓
UNet [23] 224× 224 34.53 65.53 81.48 62.64 72.41 56.70 48.73 86.98 67.96 84.00 70.11 44.69
AttUNet [15] 224× 224 34.88 66.64 80.67 70.42 76.07 61.94 46.70 87.54 67.66 82.61 71.70 34.47
TransUNet [3] 224× 224 105.32 38.52 87.06 78.53 80.54 60.43 58.47 94.33 75.00 86.56 77.61 26.90
SwinUNet [2] 224× 224 27.17 6.20 88.04 79.22 82.32 65.95 53.81 93.73 75.79 81.76 77.58 27.32
PVT-CASCADE [19] 224× 224 34.12 7.62 90.10 80.37 82.23 70.59 64.43 94.08 83.69 83.01 81.06 20.23
PVT-EMCAD-B2 [22] 224× 224 26.76 5.60 92.17 84.10 88.08 68.87 68.51 95.26 83.92 88.14 83.63 15.68
SlimUNETR [16] 96× 96× 96 1.79 20.17 85.90 82.85 86.15 73.33 58.38 95.68 73.79 87.31 80.42 10.12
SegFormer3D [18] 96× 96× 96 4.50 5.03 89.28 83.43 85.48 70.12 64.10 94.76 77.50 88.63 81.66 9.23
UNETR [8] 96× 96× 96 92.78 82.60 89.80 83.12 86.68 71.58 62.33 95.80 77.23 89.25 81.97 10.03
nnUNet [7] 96× 96× 96 31.78 417.96 91.13 84.35 84.67 70.76 63.73 96.09 74.85 91.32 82.11 11.49
nnFormer [31] 96× 96× 96 149.25 213.60 93.49 85.01 85.71 76.43 66.85 95.67 82.87 90.45 84.56 9.08
TransBTS [27] 96× 96× 96 31.58 110.34 90.38 84.94 86.10 71.53 68.91 96.53 80.90 90.05 83.67 9.77
UNETR++ [25] 96× 96× 96 42.62 53.99 85.26 84.88 86.31 76.08 68.19 95.87 72.57 90.06 82.40 8.82
MedNeXt M K3 [24] 96× 96× 96 17.55 110.65 91.26 85.14 87.11 75.59 78.31 96.81 83.61 91.96 86.22 6.62
MedNeXt M K3 w/ EffiDec3D (Ours) 96× 96× 96 5.77 49.73 89.80 86.34 87.21 79.25 73.64 96.18 82.89 92.10 85.93 7.83
3D UXNet [12] 96× 96× 96 53.00 631.97 90.34 85.48 86.60 79.74 73.46 96.55 78.88 91.62 85.33 8.82
3D UXNet w/ EffiDec3D (Ours) 96× 96× 96 3.16 51.47 87.32 85.57 86.71 75.87 71.07 96.02 79.48 91.31 84.17 9.42
SwinUNETR [26] 96× 96× 96 69.19 337.61 87.53 85.37 85.98 77.49 73.36 95.72 78.57 91.33 84.42 9.93
SwinUNETR w/ EffiDec3D (Ours) 96× 96× 96 11.21 57.29 90.79 84.94 86.91 75.72 71.50 96.45 79.08 91.75 84.64 9.21
SwinUNETRv2 [9] 96× 96× 96 83.19 353.61 89.65 86.80 86.51 78.06 74.51 96.58 81.57 91.71 85.67 8.39
SwinUNETRv2 w/ EffiDec3D (Ours) 96× 96× 96 18.21 63.29 88.47 85.97 87.60 78.70 71.88 96.35 80.89 91.51 85.17 5.93

Table S3. BTCV 8-organ segmentation DICE scores (%) and HD95 distances using TransUNet’s 60:40 train-validation split. The #FLOPs
are reported for a one-channel input of resolution 224×224 (2D) and 96×96×96 (3D) and 9 output classes. The original MedNeXt M K3,
3D UX-Net, SwinUNETR, and SwinUNETRv2 are compared side by side with our optimized versions. We report the results of different
2D methods such as UNet, AttUNet, TransUNet, SwinUNet, PVT-CASCADE, and PVT-EMCAD-B2 from the EMCAD [22] paper. We
reproduce the results of different 3D methods such as UNETR, nnUNet, nnFormer, TransBTS, UNETR++, SlimUNETR, SegFormer3D,
MedNeXt M K3 (kernel=3), 3D UX-Net, SwinUNETR, and SwinUNETRv2. Bold and underlined are the best and second-best values in
each column. Note: Inp. Res.: Input Resolution, Spl: spleen, RKid: right kidney, LKid: left kidney, Gall: gallbladder, Sto: stomach, Pan:
pancreas. Only DICE scores (%) are reported for individual organs.

Architecture Params↓ FLOPs↓ Infer. Time (ms)↓ M. (GB)↓ Thrgh. (/s)↑ Avg. DICE (%)↑

(M) (G) GPU CPU GPU GPU CPU BTCV13 BTCV8 FeTA BraT Lung Heart

SlimUNETR [16] 1.79 20.17 8.90 184.14 0.115 112.37 5.43 72.56 80.42 82.70 72.66 67.66 90.42
SegFormer3D [18] 4.50 5.03 3.93 107.85 0.165 254.42 9.27 74.34 81.66 86.57 73.85 55.07 91.64
UNETR 92.78 82.70 11.56 515.65 0.772 86.49 1.94 74.96 81.97 84.19 75.69 65.38 91.42
nnUNet4[7] 31.78 417.96 23.97 829.09 1.290 41.72 1.21 77.82 82.11 84.57 74.37 53.14 91.89
nnFormer 149.32 273.41 20.17 723.63 0.935 49.58 1.38 78.28 84.56 87.03 74.79 69.79 92.21
TransBTS 31.58 110.66 14.49 687.19 0.514 69.01 1.46 78.87 83.67 87.18 77.82 63.57 90.12
UNETR++ [25] 42.62 53.99 26.69 592.42 0.499 37.47 1.69 80.49 82.40 86.72 77.16 76.09 92.39

MedNeXt M K3 [24] 17.55 110.65 49.07 3417.44 1.250 20.38 0.29 82.98 86.22 87.74 78.71 74.38 92.82
MedNeXt M K3 w/ EffiDec3D (Ours) 5.77 49.73 20.32 1629.59 0.763 49.21 0.62 82.55 85.93 87.54 77.81 76.12 92.57

3D UX-Net 53.01 632.25 48.11 1643.39 1.441 20.79 0.61 79.74 85.33 87.28 78.58 71.46 92.03
3D UX-Net w/ EffiDec3D (Ours) 3.16 51.53 10.72 205.10 0.215 93.25 4.88 79.25 84.17 87.97 78.06 74.14 92.63

SwinUNETR 62.19 329.20 47.98 1985.09 1.512 20.84 0.50 80.13 84.42 86.71 79.06 65.12 91.92
SwinUNETR w/ EffiDec3D (Ours) 11.21 57.88 24.77 1092.01 1.323 40.37 0.92 79.82 84.64 87.50 78.79 73.19 91.98

SwinUNETRv2 80.73 356.74 49.60 2116.74 1.585 20.16 0.47 81.26 85.67 87.29 78.78 73.52 91.96
SwinUNETRv2 w/ EffiDec3D (Ours) 21.79 83.70 26.07 1170.65 1.362 38.36 0.85 80.52 85.17 87.91 78.55 75.19 92.29

Table S4. Computational complexity comparison of SOTA methods with performance: Params (M), FLOPs (G), Inference Time (Infer.
Time (ms)), GPU Memory (M. (GB)), and Throughput (Thrgh. (/s)) on BTCV13, BTCV8, FeTA, MSD Task01 Brain Tumour (BraT),
MSD Task06 Lung (Lung), and MSD Task02 Heart (Heart) datasets. All the results are produced following the experimental setup in 3D
UX-Net for fair comparison. The Infer. Time and Thrgh. are reported for only the forward pass of a 963 input averaging over 200 iterations
on a NVIDIA RTX 6000 (Ada) GPU with 48GB memory and an AMD EPYC 9554 (Zen 4) CPU with 128 cores (256 threads), 1.5–3.76
GHz, and 512 MB total L3 cache. M. is the allocated peak GPU memory by Pytorch during the forward pass. Best and second-best values
are in bold and underlined, respectively.

ducing the DICE score from 85.33% to 84.17%. Similarly,
EffiDec3D reduces SwinUNETRv2’s #Params and #FLOPs
by 78.1% and 82.1%, respectively, however, achieves a
competitive average DICE score of 85.17% with mini-
mal reduction (0.5%). Notably, the optimized models ex-
hibit improved boundary precision, as reflected by lower
Hausdorff distances (e.g., SwinUNETRv2 w/ EffiDec3D
achieves the best Avg. HD of 5.93), which further under-

scores the effectiveness of EffiDec3D.
The results highlight the trade-offs between computa-

tional efficiency and segmentation performance. While Ef-
fiDec3D maintains comparable performance across most
organs, slight reductions are observed in high-resolution-

4The performance of nnUNet [7] is reproduced with similar experi-
mental setups as ours (avoiding pre- and post-processing used in nnUNet
framework) for fair comparisons of architectures.

Figure S3. Resolution-wise computational complexity comparison between original and optimized decoders (as described in main paper
Section 3.2) for the 3D UX-Net [12] architecture. #Params (left) and #FLOPs (right) for different resolution outputs. As shown, our
optimized decoder significantly reduces #FLOPs and #Params for each output resolution.

dependent structures such as the pancreas and gallbladder.
Nevertheless, these losses are offset by superior bound-
ary precision and significant computational savings which
make EffiDec3D a robust and efficient solution for deploy-
ment in resource-constrained environments.

8.6. Computational Complexity Comparison

We show detailed comparisons of GPU and CPU inference
time, throughput, and GPU memory usage in Table S4. No-
tably, when incorporating EffiDec3D into 3D UX-Net, the
GPU inference time is reduced from 48.11 ms to 10.72 ms
(4.5× faster), and the CPU inference time decreases from
1643.39 ms to 205.10 ms (8× faster). The significant re-
duction in inference time and increase in throughput can
also be observed in the case of our EffiDec3D-optimized
MedNeXt M, SwinUNETR, and SwinUNETRv2.

9. Additional Ablation Study

This section further elaborates on Section 5 by detailing
four additional ablation studies related to our architectural
design and experimental setup.

9.1. Resolution-wise Complexity Comparison

Figure S3 shows the resolution-wise computational com-
plexity reductions achieved by our optimized decoder for
different output resolutions in the 3D UX-Net architecture.
The left plot shows the dramatic reduction in #Params,
with reductions ranging between 92.2% and 100% across
most resolutions. At the highest resolution (D,H,W),
our optimized decoder eliminates the high-resolution lay-
ers, thus achieving a 100% reduction in #Params compared
to the original decoder. Even at intermediate resolutions
(D/8, H/8,W/8 and D/16, H/16,W/16), the reduction
remains substantial (exceeding 97%) due to using a reduced
number of decoder channels.

Similarly, the right plot highlights the #FLOPs reduc-
tion, following a comparable trend. Reductions range pre-
dominantly between 92.2% and 100%, with the optimized

decoder eliminating the highest computational costs associ-
ated with full-resolution operations. Notably, only at res-
olution (D/2, H/2,W/2), the reduction is slightly lower
(74.1%), but this remains an outlier compared to the signif-
icant reductions achieved at other resolutions due to using a
reduced number of decoder channels.

These results underscore the profound impact of our op-
timization strategy on computational efficiency. The consis-
tent removal of high-resolution layers and reduction of de-
coder channel counts enables significant savings in compu-
tational complexity, with most reductions exceeding 90%.
This efficiency makes the optimized decoder eminently
suitable for deployment in resource-constrained environ-
ments, such as those with limited GPU memory or com-
putational power, without requiring high-resolution opera-
tions that contribute minimally to segmentation quality. The
trends highlighted in Figure S3 strongly support the practi-
cality and scalability of the proposed optimization strategy
for efficient 3D medical image segmentation tasks.

9.2. Effect of Skip Aggregation

Table S5 evaluates the impact of skip aggregation strategies,
namely Addition and Concatenation, on computational ef-
ficiency and segmentation performance across three archi-
tectures (3D UX-Net with EffiDec3D, SwinUNETR with
EffiDec3D, and SwinUNETRv2 with EffiDec3D) on four
tasks: BTCV 13-organ, BTCV 8-organ, FeTA, and MSD
Task01 Brain Tumour.

While Addition aggregation consistently achieves lower
computational complexity, with reductions in both #Params
and #FLOPs (e.g., from 51.47G to 43.04G #FLOPs in 3D
UX-Net), Concatenation aggregation generally delivers bet-
ter segmentation accuracy. For example, in optimized Swi-
nUNETRv2, Concatenation aggregation achieves a DICE
score of 85.17% on BTCV 8-organ segmentation, slightly
outperforming Addition (85.12%).

Similarly, for MSD Task01 Brain Tumour segmentation
with optimized 3D UX-Net, Concatenation aggregation im-
proves the DICE score from 77.65% (Addition aggregation)

Architecture Aggregation #Params (M) ↓ #FLOPs (G) ↓ BTCV13 BTCV8 FeTA Task01 BrainTumour
3D UX-Net w/ EffiDec3D Addition 2.95 43.04 79.25 84.17 87.91 77.65
3D UX-Net w/ EffiDec3D Concatenation 3.15 51.47 79.10 83.93 87.97 78.06
SwinUNETR w/ EffiDec3D Addition 10.73 48.84 79.28 84.02 87.50 78.60
SwinUNETR w/ EffiDec3D Concatenation 10.99 57.29 79.82 84.52 87.38 78.79
SwinUNETRv2 w/ EffiDec3D Addition 21.32 74.84 80.36 85.12 87.93 78.50
SwinUNETRv2 w/ EffiDec3D Concatenation 21.59 83.26 80.52 85.17 87.91 78.55

Table S5. Comparison of Skip Aggregation (Addition vs. Concatenation) on BTCV 13-organ, BTCV 8-organ, FeTA and MSD Task01
Brain Tumour segmentation tasks. The average DICE scores (%) are reported for each segmentation task. The #FLOPs are reported for a
one-channel input of resolution 96× 96× 96 and 14 output classes. Bold are the best values for an aggregation in each architecture.

Configurations CR HRR #Params (M) #FLOPs (G) BTCV13 FeTA
3D UX-Net (Original decoder) No No 51.69 624.16 79.74 87.28
No CR but with HRR No Yes 51.28 (-0.7%) 255.45 (-59.1%) 79.40 (-0.34) 87.72 (+0.44)
With CR but No HRR Yes No 3.55 (-93.1%) 404.40 (-35.2%) 79.65 (-0.09) 87.91 (+0.63)
3D UX-Net w/ EffiDec3D (Ours) Yes Yes 1.84 (-96.4%) 43.66 (-93.0%) 79.25 (-0.49) 87.97 (+0.69)

Table S6. Effect of Channel Reduction (CR) and High-resolution Removal (HRR) strategy on #Params, #FLOPs, and DICE scores on
BTCV 13-organ and FeTA segmentation. We use the 3D UX-Net as our base network and report only the decoder #Params and #FLOPs.
The percentage (%) reduction (-) in #Params and #FLOPs compared to the original decoder of 3D UX-Net is presented inside parentheses.
The reduction (-) and increase (+) in DICE scores is reported also inside parentheses. Bold highlights the lowest #Params and #FLOPs.

Decoder MParams ↓ GFLOPs ↓
SwinUNETR Decoder [26] 62.09 316.78
EffiDec3D (SwinUNETR) 3.15 (-94.9%) 43.74 (-86.2%)
SwinUNETRv2 Decoder [9] 62.09 316.78
EffiDec3D (SwinUNETRv2) 3.15 (-94.9%) 43.74 (-86.2%)
3D UX-Net Decoder [12] 51.69 624.16
EffiDec3D (3D UX-Net) 1.84 (-96.4%) 43.66 (-93.0%)

Table S7. Comparison of decoder computational complexity (re-
ductions in red) between original and our optimized models. Bold
highlights results of our EffiDec3D optimized models.

to 78.06%. Although the accuracy gains with Concatena-
tion are modest, they underscore the importance of prioritiz-
ing segmentation performance, especially in clinical appli-
cations where accuracy is critical. These results suggest that
Concatenation aggregation may be preferred when compu-
tational resources are available, as it delivers consistent im-
provements in segmentation accuracy, albeit at the expense
of comparatively higher computational complexity.

9.3. Effect of Optimization Strategies on #Params,
#FLOPs, and Segmentation Performance

Table S6 highlights the effects of our two optimization
strategies (Channel Reduction (CR) and High-Resolution
Removal (HRR)) on the computational complexity and seg-
mentation accuracy of the 3D UX-Net decoder across the
BTCV 13-organ and FeTA datasets. The original decoder,
with neither CR nor HRR, exhibits the highest computa-
tional demands, requiring 51.69M #Params and 624.16G
#FLOPs, with DICE scores of 79.74% and 87.28% for
BTCV 13-organ and FeTA, respectively.

Incorporating HRR alone reduces #FLOPs by 59.1% (to
255.45G) and #Params by only 0.7% (to 51.28M), with mi-

nor accuracy trade-offs (-0.34% on BTCV and +0.44% on
FeTA). When CR is applied without HRR, #Params are re-
duced significantly by 93.1% (to 3.55M), and #FLOPs drop
by 35.2% (to 404.4G), while maintaining competitive DICE
scores (-0.09% for BTCV and +0.63% for FeTA).

Finally, applying both CR and HRR in the EffiDec3D de-
coder achieves the largest reductions, with #Params reduced
by 96.4% (to 1.84M) and #FLOPs by 93.0% (to 43.66G).
Despite these dramatic reductions, EffiDec3D maintains
comparable segmentation performance (-0.49% on BTCV
and +0.69% on FeTA), which demonstrates its effectiveness
in significantly lowering the computational demands while
sustaining high accuracy.

9.4. Decoder Complexity Comparisons

Table S7 compares the computational complexity of the
original and EffiDec3D-optimized decoders for Swin-
UNETR, SwinUNETRv2, and 3D UX-Net. EffiDec3D
achieves substantial reductions across all models: a 94.9%
decrease in parameters (from 62.09M to 3.15M) and an
86.2% drop in FLOPs (from 316.78 to 43.74 GFLOPs) for
SwinUNETR and SwinUNETRv2.

For 3D UX-Net, #Params are reduced by 96.4% (from
51.69M to 1.84M) and #FLOPs by 93.0% (from 624.16
to 43.66 GFLOPs). These reductions enhance model effi-
ciency, making these architectures more suitable for real-
time and resource-constrained settings.

