UVGS: Reimagining Unstructured 3D Gaussian Splatting using UV Mapping

Supplementary Material

Our supplementary material contains a wide range of infor-
mation that cover implementation details for our networks
and training procedures, as well as a large variety of quali-
tative results.

Supplementary Video: We refer the interested reader to
the supplementary video where we provide an overview of
how our proposed approach works as well as a plethora of
qualitative results across different tasks.

1. Spherical Mapping

Spherical Mapping: Spherical mapping [43] is a fun-
damental technique in computer graphics that is used to
project 3D meshes onto a 2D map generally for texture map-
ping, where a 2D image is wrapped around a 3D object,
such as a cylinder or a sphere. However, cylindrical map-
ping fails to capture the top and bottom parts of the object
in the same UV map, and can introduce distortions for ob-
jects that extend far in the Z-direction. Hence we opted for
spherical mapping the process of which involves convert-
ing 3D Cartesian coordinates (z,y, z) into spherical coor-
dinates (p, 6, ¢) and then mapping these onto a 2D plane.
Algorithm [1] explains spherical unwrapping in detail for a
single layer(K=1). The same process can be repeated for
multiple layers, by keeping a track of opacity values.

Thresholding Opacity 3DGS use multiple points with
varying opacity values to represent an object from any spe-
cific viewpoint. However, it is oftentimes noticed that many
of these points have very low opacity values and do not con-
tribute to the object’s overall representation or appearance.
We filter these points using a threshold opacity value with
no impact on the object’s overall geometry and representa-
tion to reduce the number of tractable primitives.

Dynamic GS Selection and Multiple Layers When pro-
jecting 3DGS points to UV maps using spherical mapping,
multiple points may map to the same pixel in UV space as
shown in Fig. 3. The two 3DGS points (g;) and (g2) map to
the same pixel on UV map (P,) causing many-to-one map-
ping. However, the UV map can only hold a single 3DGS
primitive at any given pixel. To address this, we propose
a Dynamic Selection approach where each UV pixel retains
the 3DGS attributes with the highest opacity intersecting the
same ray from the centroid to the farthest 3DGS primitive
along the ray. Using the same example in Fig. 3, if opacity
o1 of Gaussian g is less than opacity o5 of g5. then only g
attributes will be stored in the UV map at pixel P,. Through
multiple testing, we observed that this method helps retain

Algorithm 1 Spherical Unwrapping for UVGS map (K=1).

Require: 3DGS € R™, (M,N)€Z, K =1

Ensure: position(c), color(c), scale(s) € R™"*3

Ensure: rotation(r) € R"**, opacity(o) € R™*1
1: Extract zyz(o), opac(o) from 3DGS

Spherical radius, 7 < /22 + y2 + 22

Azimuthal Angle, § + tan™!(y, )

Polar Angle, ¢ < cos™1(z,7)

(60, @) « (deg(0) + 180, deg(¢))

Oy < round((0/360) x M)

¢uv < round((¢/180) x N)

Initialize UV};,qp < zeros(M, N, 14)

Initialize UV, pq. < zeros(height, width)

for all (¢, P, xyz,0) in (Byv, puv,3DGS, opac) do

if 0 < P < height and 0 < t < width then

R A BN A o

—_ =
_= o

12: if UViap P, t] is O then

13: UVinap| P, t] < 3DGS|ind]

14: UVopac|Pit] < o

15: else

16: if 0 > UV,pqac[ P, t] then

17: UVinap| P, t] < 3DGS]ind]
18: end if

19: end if

20: end if

21: end for

22: return UV,

the overall geometry and appearance of the 3DGS object
while resolving many-to-one mapping issues with minimal
quality loss.

This method with single layer is applicable to most of the
objects in our dataset. However, this might fail in the case
of more complex objects or real-world scene representation.
There could be multiple layers of Gaussians holding higher
opacity and contributing to the overall scene’s appearance
or geometry, and even partial or full occlusions. To better
represent such objects and scenes and to prove the effec-
tiveness of UVGS, we stack multiple layers of UV maps,
where each UVGS layer holds the 3DGS primitives of the
top-K'" opacity value intersecting the same ray. This can
be accomplished by inscribing the 3DGS object inside mul-
tiple spheres where each sphere maps the 3DGS attribute
corresponding to the top-K*"* opacity value along the same
ray. To show the effectiveness of proposed UVGS maps in
capturing the intricacies of a complex real-world scene, we
use a 12 layer UVGS map to reconstruct the real-world 3D
scenes. The results are presented in Fig. 8. We also com-
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Figure 1. In this figure, we show the qualitative results of reconstructing 3DGS object using pretrained Image Autoencoder (A) via Super
UVGS. We obtain UVGS maps (U) through spherical projection of 3DGS objects, followed by using forward mapping network to get
Super UVGS (S). A pretrained AE is used to reconstruct Super UVGS (S’), which can be converted to UVGS maps (U’) through inverse
mapping network. At last, through inverse spherical mapping, we can get predicted 3DGS object which has the same appearance and

geometry as the input object with minimal loss.

Figure 2. Complex object reconstructions (K=4) using pretrained image-based autoencoder.

pare the effect of increasing the number of UVGS layers in
representing a real-world 3D scene in Fig. 3 In future work,
we want to extend this ability for potentially many applica-
tions in 3D dynamic scene reconstructions using video dif-
fusion models, and the segmentation or tracking of objects
in 3DGS scenes as the features in the UVGS maps can be

easily processed with the neural networks and tracked over
time.

2. Mapping Networks

Forward Mapping Details: This process is defined as:

Fhap = L[05(0)] [#7(Ir, s)] [¢ [0, ] ] 3)
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Figure 3. Reconstruction of a real-world scene for different K values. Smaller K results in many-to-one issue, hence lacking details.

The central branch (qﬁé) is composed of 2L hidden Con-
volution layers. The first L hidden convolution layers in-
crease the feature dimension at each step, while the last L
layers does the inverse and squeezes the high-dimensional

feature maps to 3 channels to output Super UVGS image
S e ]RM XN ><3.

S = tanh( ¢L[fl.,) ) € REWS @)
Each CNN layer is followed by a batch normalization
layer and ReLU activation both in multi-branch and central
branch modules. The last layer of central branch is acti-
vated using tanh to ensure the Super UVGS doesn’t take
any ambiguous value resulting in gradient explosion or un-
desired artifacts. The obtained Super UVGS S representa-
tion squeezes all the 3DGS attributes to a 3 dimensional im-
age while also maintaining local and global structural cor-
respondence among them.
Inverse Mapping: The first L layers in the Central branch
increases the feature dimension and the last L layers re-
duces them to obtain a combined feature map.

7 —

map

$o(S)

The final layer is a set of 3 branches projecting the fea-
tures to position, translation, and appearance attributes, re-
spectively.

fo =05 (fnap)]
rs = (07 (frap)]
foe = [0 (fmap)]

Similar to the forward mapping network, each layer in
the central branch and attribute specific branches is fol-
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lowed by batch normalization and Relu(.) activation. The
last set of branch layers are activated using tanh(.) to pre-
vent ambiguous values resulting in gradient explosion or re-
construction artifacts.

U = tanh( [[f] [} [£s.]])

Losses Details: We used MSE to focus on pixel-wise dif-
ference during the training. We solely used MSE for a few
iterations to make the mapping networks learn the overall
structural representation of the UVGS map using:

1 & .
Emse = E z;(Uz - Uz)2
1=

After training the model for few iterations using MSE, we
introduce the LPIPS loss giving same weight to both MSE
and LPIPS over a few iterations. We observed that increas-
ing the weight value of LPIPS over the iterations resulted in
better and faster convergence results.

»Clpips = Zwl ”¢l(w> - ¢l<y)”2’
l

(&)

(6)

where ¢;(z) and ¢;(y) are feature maps extracted from pre-
trained layers of AlexNet[64].

Mapping Training Details: Before training the models,
we normalized the different attributes in UVGS to [—1, 1]
using the same normalization functions as used in 3DGS
paper[19]. The normalized UVGS maps are used to train
the multi-branch forward and reverse mapping networks us-
ing MSE and LPIPS loss. We trained the mapping networks
on 8 x A100 (80G'B) GPUs with a Batch Size of 96 for 120
hours using Adam optimizer with a learning rate of 6e — 5
and set 51 = 0.5 and B3 = 0.9 with weight decay of 0.01.
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Figure 4. Forward Mapping Network for UVGS to Super UVGS mapping. The inverse mapping network follows just the inverse of this
architecture with each attribute-specific branch now followed by tanh() at the end.

We set the A for LPIPS loss to be 0 for the first 24 hours
of training and gradually increased it from 1 to 10 for the
remaining training in a step of 1.

2.1. Interpolation with UVGS

We show that the proposed SuperUVGS representation can
be used to perform local editing and interpolation directly
in the UV domain. We can perform edits like swapping the
parts of one object from the other, cropping the 3D object,
or merging two objects together simply with the SuperU-
VGS images without any learning based method. The re-
sults are demonstrated in Fig 5.

3. LDM - Unconditional and Conditional Gen-
eration

Caption Generation To generate the relevant text captions
for the objects in our dataset for conditional generation, we
leverage CLIP [37], BLIP2 [21], and GPT4 [1] very similar
to [25]. Specifically, we use BLIP2 to generate IV different
captions for randomly selected 20 views from the 88 ren-
dered views for each object in the dataset. CLIP encoders
are used to encode and calculate the cosine similarity be-
tween the N generated caption per view and the correspond-

ing 20 views. The caption with max similarity is assigned to
that particular view, resulting in 20 different captions for the
same object. We now use GPT4 to extract a single caption
distilling all the given 20 descriptions. We found that the re-
sulting captions were very appropriate to the input objects,
and thus we directly used them for conditional generation.

-,
—

.

Figure 5. Linear interpolation between two 3DGS objects using
SuperUVGS representation.

LDMs [17, 41] use pretrained VAEs [12] to convert the
original image x € RH¥*"W*3 into a compact latent rep-
resentation z € RP*%X¢ where the forward and reverse
diffusion processes are applied [41]. The VAE decoder then
converts the compact latent representation back to pixels.
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Table 4. We compare the FID and KID of unconditional gener-
ation using the current SOTA methods on 20K randomly gener-
ated samples from each method and ours. We also compare our
method against SOTA text-conditioned generation frameworks on
CLIP Score for 10K generated objects from each method.

Unconditional Generation Text-Conditioned Generation

Method [FID | KID ||| Method CLIP Score 1
Get3D [14] 53.17 4.19 |||DreamGaussian [48] 28.51
DiffTF [3] 84.57 8.73 |||Shap. E [7] 30.53
EG3D [4] 74.51 6.62 |||[LGM [50] 30.74
GaussianCube |34.67 3.72 |||GaussianCube [61] 30.34
UVGS (Ours)|[26.20 3.24 ||[UVGS (Ours) 32.62

The objective function in latent diffusion model can be writ-
ten as:

Lrom = Eega)enno,1),e]]l€ — €0 (26, 8)|[3] (N

where, N(0, 1) is the Normal distribution, and ¢ is the

number of time steps and z; is the noisy sample after ¢ time
steps.

Training was done using AdamW optimizer with a learn-
ing rate of 1e —4 for 75 epochs on 8 x A100 (80G B) GPUs.

Once trained, we can randomly sample new high-quality
3DGS assets from the learned generative model.

To allow generation of objects from text, we also
trained a conditional LDM, where we use Stable Diffusion
(SD) [41] pipeline as it can use text prompt conditioning to
guide the image generation through cross-attention. Sim-
ilar to unconditional LDM, we use pretrained SD’s VAE
for mapping the Super UVGS image to a latent space and
back to the reconstructed Super UVGS. The text prompts
are given to a pretrained CLIP [37] text encoder to generate
a text embedding c; € R77*7%8 which is then passed to the
UNet encoder of SD for cross-attention. We used a set of
CLIP encoder and BLIP2 [21], and GPT4 [1] to generate
captions for our dataset. The overall objective function for
conditional LDM now becomes:

LEDM = Ee(m),ENN(O,l),t,ct [”6 — €p (Zt, ta Ct)H%] (8)

where, €4(+,t) is a time-conditional U-Net [42] model,
N(0,1) is the Normal distribution, z; is the latent code,
and c¢; is the text embedding. Training was done using
AdamW optimizer with a learning rate of le — 4 for 50
epochs on 8 x A100 (80GB) GPUs. Once trained, this
conditional LDM can use used to generate text-conditioned
Super UVGS images, which can later be mapped to high-
quality 3DGS objects.

4. Comparison with Baselines

We compare the generational capabilities of our method
against various conditional and unconditional SOTA 3D ob-
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ject generation method on ShapeNet-cars dataset. Specif-
ically, we used the methods using multiview rendering for
optimization, like DiffTF [3] and Get3D [14]. We also com-
pared our approach again the current SOTA methods try-
ing to give structural representation to Gaussians, includ-
ing GaussianCube [61] and TriplaneGaussian [69]. We also
compared against general purpose SOTA large 3D content
generation models like DreamGaussian [48], LGM [50],
and EG3D [4].

To compare the quality of our generation results, as a
standard practice, we use FID and KID for unconditional
generation, and Clip Score for text-conditioned genera-
tion. Table 2 quantitatively compares the unconditional and
conditional generation results of our method again various
SOTA methods. From this table, it can be seen that our
method performs a good job in unconditional generation of
good quality 3D assets. The main reason behind this is the
learned Super UVGS representation which not only main-
tains the appearance of the 3DGS object, but also serves as
a proxy for geometrical shape by encoding all the 3DGS at-
tributes into the same coherent feature space. Table 4 com-
pares the CLIP Score of our text-conditioned generation re-
sults and the current SOTA methods. The unconditional and
conditional qualitative comparison results are presented in
Fig. 7 and Fig. 6, respectively.
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Figure 6. Here we show more comparison of unconditional 3D asset generation on the cars category with SOTA methods. Figure shows
that DiffTF [3] produces low-quality, low-resolution cars lacking detail. While Get3D [14] achieve higher resolution, it suffers from 3D
inconsistency, numerous artifacts, and lack richness in 3D detail. Similar issues are found in GaussianCube [61] along with symmetric
inconsistency in the results. In contrast, our method generates high-quality, high-resolution objects that are 3D consistent with sharp,

well-defined edges. The top three rows show the unconditional generation results of our method using ShapeNet dataset, while the bottom
3 show from Objaverse dataset.
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Figure 7. Text-conditioned generation results on various baselines and the proposed method. Our method not only generates high-quality
assets for simpler objects, but also for complicated objects with intricate geometries like the wheel or the airplane.
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Figure 8. To show the effectiveness of proposed UVGS maps in capturing the intricacies of a complex real-world scene, we used a 12 layer
UV map to reconstruct the 3D scenes.
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