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Supplementary Material

S1. Overview
In this supplementary, we begin by showcasing samples
from the GenDS dataset along with dataset statistics, fol-
lowed by comparing diffusion model conditioning with and
without µ and σ. Next, we examine the influence of struc-
ture correction, S, on the quality of the generated images.
We then provide more details about the dataset filtering
strategy discussed in Sec. 3.2, followed by examples show-
casing the effect of 3 × 3 convolutions in the decoder of
the Swin-model for suppressing patch-border artifacts dis-
cussed in Sec. 3.3. Subsequently, we provide implemen-
tation details and a comprehensive overview of the dataset
used for training and out-of-distribution (OoD) testing. We
then discuss related works on diffusion models and limita-
tions of our method. Finally, we present detailed quantita-
tive results and additional qualitative comparisons.
To summarize, the supplementary discusses the following:
1. Samples from the GenDS dataset
2. Conditioning with and without µ, σ
3. Impact of structure correction S
4. Dataset filtering thresholds
5. Comparison of 1x1 and 3x3 convolutions in the Swin

decoder
6. Implementation details
7. Training and OoD datasets
8. Related works on diffusion models
9. Limitations and scope for future work

10. Detailed quantitative results
11. Additional qualitative results

S2. Samples from the GenDS dataset
The GenDS dataset comprises a total of 783861 samples,
with 224580 samples from existing datasets and 559281
samples generated using the GenDeg model (Sec. 3.1).
Fig. S1 shows some generated examples from the GenDS
dataset, where the left image is the ground truth and the
right image is its degraded version synthesized by GenDeg.
For rain, snow and low-light, the ground truth is the clean
image reconstructed via the VAE encoding-decoding pro-
cess, as mentioned in Section 3.1.

S3. Conditioning with and without µ, σ
As discussed in Sec. 3, not conditioning on µ and σ for
degradation synthesis results in lack of diversity in the gen-
erated degradations. Fig. S2 illustrates examples of degra-
dations generated without conditioning on µ and σ. These

degradations lack the diversity seen in those generated with
µ and σ conditioning, as shown in Figure S1. Specifically,
the haze appears excessively thick, the rain is either too in-
tense or too light, and the snow is very faint.

S4. Impact of structure correction S

The structure correction module, S, discussed in Sec. 3.1
aims to reverse the structural distortions introduced during
the VAE encoding-decoding process. To illustrate its effec-
tiveness, Figure S3 shows examples of generated haze (row
1) and raindrop samples (row 2) before and after applying
S. The module corrects distortions in the text caused by the
VAE encoding-decoding process, thereby improving align-
ment between the degraded and clean images. The third row
in Fig. S3 demonstrates the impact of S on snowy samples.
While S successfully preserves structural details, it does not
maintain the fine details of the snow, resulting in a blurred
appearance of the snow. We observed similar effects for
rain and low-light. Hence, we apply S only to haze, motion
blur and raindrop samples, as mentioned in Sec. 3.1.

S5. Dataset filtering thresholds
After synthesizing samples using GenDeg, we filter out
poor quality samples based on a mean degradation inten-
sity based threshold. Specifically, we calculate the mean
intensity, µfilter, as the average absolute difference between
each generated sample and its corresponding clean image.
If µfilter exceeds a certain threshold, T , for a given degrada-
tion, the sample is discarded. The threshold values used
for each degradation are as follows: T = 0.3 for haze,
T = 0.23 for rain, T = 0.45 for snow, T = 0.07 for motion
blur, and T = 0.1 for raindrop. The thresholds were cho-
sen by visual inspection for each degradation. Using this
method, we filtered out approximately 50000 low-quality
samples.

S6. Comparison of 1×1 and 3×3 convolutions
in the Swin decoder

We observed that employing 3 × 3 convolutions in the de-
coder of the Swin based model significantly mitigates patch
border artifacts [24]. To validate this, we trained the Swin
model on the GenDS dataset using a decoder with 1 × 1
convolutions instead of the proposed 3 × 3 convolutions.
Evaluation on the O-Haze [2] dataset yielded LPIPS/FID
scores of 0.186/84.30, which are substantially worse than
the scores obtained with 3 × 3 convolutions in the decoder



Figure S1. Samples from the GenDS dataset for each degradation type generated using the GenDeg model. The left image is the input
clean image, and the right image is its synthesized degraded version.



Figure S2. Samples generated by the diffusion model trained without conditioning on µ and σ. Samples exhibit limited diversity with
degradations having either very high intensity or being very faint.

Clean image Without S With S

Figure S3. Effect of S on haze, raindrop and snow samples. S corrects the structural distortions introduced by the VAE encoding-decoding
process.

(0.165/74.6). Fig. S4 highlights the presence of patch bor- der artifacts when 1×1 convolutions are used. The artifacts



are effectively removed with 3 × 3 convolutions, as shown
in the zoomed-in patches. Furthermore, the decoder with
3× 3 convolutions delivers superior dehazing performance,
demonstrating its effectiveness.

S7. Implementation details
In this section, we provide various implementation details
for training GenDeg and the restoration networks.

GenDeg. We use the InstructPix2pix [5] codebase to
train our GenDeg framework, closely following their train-
ing strategies. The diffusion model is trained for a total of
60 epochs with a batch size of 512, while the structure cor-
rection module (S) is trained for 8 epochs with a batch size
of 8, after training the diffusion model. For degradation
generation, we use an image guidance scale of sI = 1.5
and a text guidance scale of sT = 7.5. The guidance scales
correspond to those used in InstructPix2pix.

Restoration models. All restoration networks are
trained for a total of 50 epochs using the AdamW optimizer
with an initial learning rate of 2×10−4 and a Cosine anneal-
ing learning rate scheduler with linear warmup for 1 epoch.
PromptIR and NAFNet are trained with batch sizes of 64
while the Swin model is trained with a batch size of 48. All
models were optimized using L1 loss.

S8. Training and OoD datasets
We now describe the datasets used to train our degrada-
tion generator, GenDeg, and the image restoration mod-
els. We also detail the out-of-distribution (OoD) test sets
employed for evaluating model generalization. Within-
distribution testing is conducted on the test splits of the
training datasets unless specified otherwise. For each type
of degradation—haze, rain, snow, motion blur, low-light,
and raindrops—we utilize both existing datasets and our
synthesized data to train the restoration models. Dataset
details are given below where R (in brackets ()) indicates
real dataset while S indicates synthetic dataset.
1. Haze

Training Datasets - DenseHaze [3] (R) comprising 55
images of which we use 45 for training and 10 for test-
ing, NH-Haze [4] (R) comprising 55 images of which
we use 45 for training and 10 for testing, I-Haze [1] (R)
comprising 30 images of which we use 25 for training
and 5 for testing, RESIDE [20] (S) comprising 72135
images for training and 500 images from the SOTS [20]
dataset for testing, and FoggyCityscapes [16] (S) com-
prising 8925 images for training and 4575 images for
testing, totaling 81175 training samples. We further
augment these with 113748 hazy images synthesized by
GenDeg .
OoD Test Sets - O-Haze [2] (R) comprising 45 images
and REVIDE [50] (R) comprising 284 test images.

2. Rain
Training Datasets - Real rain split of RainDS [33] (R)
comprising 150 images for training and 98 images for
testing, RealRain1K [23] (R) comprising 2100 images
for training and 300 images for testing, ORD [22] (S)
comprising 8250 images for training and 750 for testing,
Rain13K [47] (S) comprising 13711 images for training
and 4298 for testing, Rain1400 [14] (S) with 12600 im-
ages for training and 1400 for testing, and SPAC [9] (S)
comprising 3124 images for training and 1690 images
for testing, totaling 39935 training samples. The im-
ages in the ORD dataset are degraded by a mix of haze
and rain. These are augmented with an additional 99753
rainy images synthesized by GenDeg.
OoD Test Sets - We evaluate on LHP-Rain [15] (R) com-
prising 1000 test images and the synthetic rain split of
RainDS (S) with 200 test images.

3. Snow
Training Datasets - SnowCityscapes [48] (S) compris-
ing 6000 images for both training and testing, CSD [12]
(S) containing 8000 images for training 2000 for testing,
and Snow100K [26] (S) with 50000 images for training
and 16801 images from the Snow100k-L set for testing,
totaling 64000 training samples. The images in the CSD
dataset are degraded by a mix of haze and snow. These
datasets are augmented with an additional 60516 snowy
images synthesized by GenDeg.
OoD Test Sets - RSVD [8] (S) with 3558 test samples.
The images in the RSVD dataset are degraded by a
mix of haze and snow. We could not acquire the Re-
alSnow [52] dataset due to technical difficulties.

4. Motion Blur
Training Datasets - HIDE [39] (R) with 6397 images fro
training and 2025 for testing, RealBlur [35] (R) com-
prising 3758 images for training and 980 for testing, and
REDS [29] (R) with 24000 training images and 3000 test
images, totaling 34155 samples for training. We aug-
ment these with an additional 79256 blurry images syn-
thesized by GenDeg.
OoD Test Sets - GoPro [28] (R) dataset with 1111 test
images.

5. Low-Light
Training Datasets - LOLv2 [42] (R, S) with 1589 train-
ing images and 200 testing images and SID [7] (R)
comprising 1865 images for training and 598 for test-
ing (Sony images only), totaling 3454 training samples.
These are augmented with an additional 114053 low-
light images synthesized by GenDeg.
OoD Test Sets - LOLv1 [41] (R) with 15 testing samples
and SICE [6] (R) with 925 testing samples of which we
only use the low-light images (images with index less
than 4).

6. Raindrop
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Figure S4. Impact of using 1× 1 convolutions in the decoder of the Swin-based model instead of 3× 3 convolutions. 3× 3 convolutions
in the decoder effectively mitigate the patch border artifacts, as shown by the zoomed-in patches.

Training Datasets - Raindrop dataset [32] (R) with 861
training images and 58 testing images, and the synthetic
raindrop split of RainDS [33] (S) with 1000 training
and 200 testing samples, totaling 1861 training samples.
These are augmented with an additional 91955 raindrop
images synthesized by GenDeg.
OoD Test Sets - Real raindrop split of RainDS [33] (R)
with 98 samples for testing.

S9. Related works on diffusion models
Diffusion models have gained significant attention as gen-
erative models, with them being the current state-of-the-art
data generators [17, 40]. In the diffusion process, two pro-
cesses are learnt. The forward process iteratively adds noise
to the data while the denoising (backward) process learns to
model the reverse process and gradually denoises the data.
Based on this principle, Denoising Diffusion Probabilistic
Models (DDPMs) [17] were proposed that could generate
high fidelity images from noise. Various recent advances in
diffusion models have extended DDPMs to complex tasks
like text-to-image synthesis [36], conditional synthesis [5]
and audio generation [11], among others.

S10. Limitations and scope for future work
Despite our generated data significantly enhancing the
out-of-distribution (OoD) performance of restoration mod-
els, we acknowledge some limitations with our data and
pipeline. Our approach relies on the Stable Diffusion
1.5 [36] while more recent versions, such as Stable Diffu-
sion 2.0, 3.0 and SDXL [30], have since emerged. An in-

teresting research direction would be to explore the domain
gap effects and performance improvements offered by these
newer versions. Additionally, our structure correction mod-
ule, S, does not perform optimally for snow, rain and low-
light (as discussed in Secs. S4 and 3.1). Future research
could focus on developing improved correction modules to
handle these specific degradations more effectively, to miti-
gate the structural distortions in the generated degraded im-
ages. Furthermore, scaling the synthetic data further and an-
alyzing its impact could be beneficial, as our dataset is still
relatively small compared to those used to train foundation
models for low-level vision tasks, such as SAM [19] and
Depth Anything [43]. Overall, leveraging diffusion mod-
els to generate large-scale synthetically degraded images to
improve the generalization of image restoration models is a
promising research direction.

S11. Detailed quantitative results

In the main paper, we provided out-of-distribution (OoD)
performance of methods in terms of LPIPS and FID met-
rics in Table 2. Subsequently, we provided the mean
within-distribution performance of methods for each degra-
dation with LPIPS and FID metrics (Table. 3). This sec-
tion presents more detailed quantitative evaluations us-
ing PSNR, SSIM, LPIPS and FID metrics for within-
distribution comparisons, and PSNR and SSIM metrics for
OoD comparisons.

The within-distribution comparisons are provided in
detail for each test set described in Sec. S8. Ta-
bles S1, S2, S3, S4, S5, S6 summarize the within-



distribution performances for haze, rain, snow, motion blur,
low-light and raindrop degradations, respectively. Compar-
isons with state-of-the-art (SOTA) methods are included if
the method is trained for that degradation. From the ta-
bles, substantial improvements can be observed for most
cases when training with the GenDS dataset for haze,
low-light, and raindrop degradations, while competitive
performance is maintained for other degradations. Note
that some within-distribution datasets might be OoD for
SOTA approaches as they were not retrained on all within-
distribution datasets. The specific within-distribution
datasets for each SOTA approach are given in Table S8.

Table S7 reports PSNR and SSIM metrics for the OoD
test sets (LPIPS and FID were provided in Table 2 of the
main paper). Observe that training with the GenDS dat-
set yields substantial improvements in most cases, particu-
larly in the SSIM scores. However, PSNR is more sensitive
to color shifts, which can lower its values despite overall
enhancements, as explained in Sec. 4.1. Furthermore, the
SSIM improvement for NAFNet and NAFNet GenDS for
the real raindrop split of RainDS dataset is marginal. How-
ever, the LPIPS and FID scores in Table 2 of the main paper
reveal more pronounced improvements. The improvement
in LPIPS and FID scores aligns well with the qualitative re-
sults for this dataset as shown in Fig. 5 of the main paper
and Fig. S6. As LPIPS and FID metrics better correlate
with perceptual quality, they are more reliable indicators
than PSNR and SSIM [25, 36, 38, 49] for assessing OoD
performance.

We also provide quantitative results for both within-
distribution and OoD test sets in the form of radar plots in
Fig. S5 for ease of viewing.

S12. Additional qualitative results
In this section, we provide additional qualitative results.
Fig. S6 presents qualitative comparisons of three top-
performing image restoration models- PromptIR [31], Swin
model (Sec. 3.3) and NAFNet [10], evaluated on OoD test
sets when trained with and without the GenDS dataset. It
can be observed that training with the GenDS dataset results
in improved performance. Figure S7 illustrates the within-
distribution performance of the same models, showing that
training with the GenDS dataset yields significant improve-
ments for haze, low-light, and raindrop degradations, while
performance remains nearly identical for other degradation
types. This indicates that the GenDS dataset does not de-
grade within-distribution performance.

Finally, Figs. S8, S9 and S10 provide qualitative com-
parisons of top-performing approaches PromptIR, the Swin
model, and NAFNet trained with the GenDS dataset against
several SOTA approaches, namely, DiffUIR [51], Diff-
Plugin [25], InstructIR [13], and AutoDIR [18]. Diff-Plugin
used for qualitative comparisons is the publicly available

pre-trained model. Fig. S8 shows comparisons for haze,
low-light, rain and motion blur, Fig. S9 for snow and
Fig. S10 for raindrop removal. These comparisons are split
across multiple figures because not all SOTA methods are
trained for every degradation task. The models trained on
GenDS dataset deliver consistently good OoD performance
across all degradations whereas each SOTA approach tends
to perform well only for specific degradation types. It is im-
portant to note that the primary aim of our approach is not
to compete directly with SOTA models, but rather demon-
strate the performance differences observed for OoD test-
ing when models are trained with and without the proposed
GenDS dataset. Furthermore, training SOTA models on our
GenDS dataset may also boost their OoD performance.
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Figure S6. Additional qualitative comparisons of image restoration models (PromptIR, NAFNet and the Swin model) trained with and
without our GenDS dataset. The suffix GD represents training with the GenDS dataset. Comparisons are on OoD test sets (Haze: REV-
IDE [50], Raindrop: RainDS [33], Low-light: LOLv1 [41], Motion blur: GoPro [28], Rain: LHP [15] and Snow: RSVD [8]). Training
with the GenDS dataset improves OoD performance. Zoomed-in patches are provided for viewing fine details.

foggy scenes with purely synthetic data. In 2019 IEEE In- telligent Transportation Systems Conference (ITSC), pages



Haze Raindrop Low-light Motion blur Rain Snow
In

pu
t

Pr
om

pt
IR

Pr
om

pt
IR

G
D

Sw
in

Sw
in

G
D

N
A

FN
et

N
A

FN
et

G
D

G
T

Figure S7. Qualitative comparisons of image restoration models on within-distribution test sets when trained with and without our GenDS
dataset. The suffix GD represents training with the GenDS dataset. Images are from the following test sets - Haze: NH-Haze [4], Raindrop:
Raindrop [32], Low-light: LOLv2 [42], Motion blur: HIDE [39] and Snow: SnowyCityscapes [48]. Zoomed-in patches are provided for
viewing fine details.
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Figure S8. Qualitative comparisons for OoD performance of image restoration models (PromptIR, NAFNet and the Swin model) trained
with our GenDS dataset, and SOTA AIOR approaches, namely, DiffUIR [51], Diff-Plugin [25], InstructIR [13] and AutoDIR [18]. Images
are from the following datasets- Haze: O-Haze [2], Low-light: SICE [6], Rain: LHP [15] and Motion Blur: Go Pro [28].



Input DiffUIR Diff-Plugin PromptIR GD Swin GD NAFNet GD GT

Figure S9. Qualitative comparisons of OoD performance of image restoration models (PromptIR, NAFNet and the Swin model) trained
with our GenDS dataset, and SOTA AIOR approaches, namely, DiffUIR [51], Diff-Plugin [25] for the task of desnowing on the RSVD [8]
dataset.
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Figure S10. Qualitative comparisons for OoD performance of image restoration models (PromptIR, NAFNet and the Swin model) trained
with our GenDS dataset, and AutoDIR, a SOTA AIOR approach, for the task of raindrop removal on the RainDS [33] dataset.
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Table S3. Quantitative comparisons of various models using PSNR (↑), SSIM (↑), LPIPS (↓) and FID (↓) metrics on within-distribution
snow datasets. The format of metrics is PSNR/SSIM/LPIPS/FID. PromptIR [31], NAFNet [10], the Swin model, DA-CLIP [27] and Diff-
Plugin [25] are trained with and without the GenDS dataset. The table also includes the performance of existing state-of-the-art (SOTA)
AIOR approaches, namely, DiffUIR [51] and Diff-Plugin [25]. (R) indicates real image dataset and (S) indicates synthetic image dataset.
Diff-Plugin# is the publicly available pre-trained model.

Method SnowCityscapes [48] (S) CSD [12] (S) Snow100k [26] (S)

DiffUIR 12.42/0.330/0.583/20.16 17.57/0.790/0.196/43.81 28.76/0.869/0.138/7.05
Diff-Plugin# 22.25/0.694/0.242/35.35 15.61/0.635/0.243/41.14 21.02/0.611/0.196/4.10
PromptIR 30.16/0.918/0.109/26.31 27.62/0.919/0.071/23.34 27.86/0.863/0.120/5.39
PromptIR
GenDS

31.44/0.934/0.089/19.73 28.03/0.920/0.070/23.92 28.51/0.874/0.115/4.92

NAFNet 33.67/0.953/0.063/7.23 31.92/0.947/0.044/14.13 30.01/0.893/0.096/3.25
NAFNet
GenDS

33.02/0.950/0.061/6.96 31.39/0.942/0.048/15.36 29.78/0.891/0.100/3.38

Swin 32.38/0.934/0.081/9.41 32.01/0.935/0.058/19.13 29.34/0.880/0.104/3.87
Swin GenDS 32.17/0.929/0.085/9.46 31.95/0.933/0.059/20.52 29.23/0.881/0.107/4.34
DA-CLIP 25.42/0.849/0.1574/53.67 22.72/0.872/0.092/32.25 24.31/0.803/0.1350/44.92
DA-CLIP
GenDS

31.51/0.937/0.057/22.88 27.15/0.916/0.057/21.92 27.16/0.853/0.1037/34.65

Diff-Plugin 23.05/0.718/0.1932/15.63 20.21/0.699/0.1559/30.66 21.38/0.617/0.1855/7.95
Diff-Plugin
GenDS

22.19/0.716/0.1823/13.45 19.08/0.691/0.1606/31.69 20.43/0.613/0.1866/7.96

Table S4. Quantitative comparisons of various models using PSNR (↑), SSIM (↑), LPIPS (↓) and FID (↓) metrics on within-distribution
motion blur datasets. The format of metrics is PSNR/SSIM/LPIPS/FID. PromptIR [31], NAFNet [10], the Swin model, DA-CLIP [27]
and Diff-Plugin [25] are trained with and without the GenDS dataset. The table also includes the performance of existing state-of-the-art
(SOTA) AIOR approaches, namely, DiffUIR [51], Diff-Plugin [25], InstructIR [13] and AutoDIR [18]. (R) indicates real image dataset
and (S) indicates synthetic image dataset. Diff-Plugin# is the publicly available pre-trained model.

Method HIDE [39] (R) RealBlur [35] (R) REDS [29] (R)

DiffUIR 27.17/0.854/0.174/26.23 26.15/0.721/0.188/44.80 26.84/0.825/0.185/57.64
Diff-Plugin# 21.40/0.658/0.247/39.68 23.62/0.728/0.192/43.65 21.47/0.628/0.216/68.40
InstructIR 27.50/0.859/0.165/21.37 27.09/0.845/0.127/25.39 26.93/0.831/0.154/48.82
AutoDIR 27.03/0.862/0.170/21.67 24.77/0.770/0.149/28.58 27.23/0.846/0.167/49.77
PromptIR 26.55/0.837/0.190/30.07 28.13/0.845/0.168/35.78 29.45/0.867/0.133/41.52
PromptIR
GenDS

26.70/0.845/0.204/30.29 28.44/0.857/0.165/32.81 29.58/0.871/0.146/41.70

NAFNet 27.40/0.864/0.164/25.66 28.93/0.876/0.140/27.41 30.94/0.898/0.105/33.10
NAFNet
GenDS

27.53/0.866/0.163/26.68 29.03/0.879/0.138/27.68 30.82/0.896/0.110/33.59

Swin 25.91/0.829/0.226/34.35 28.15/0.851/0.182/39.60 29.23/0.866/0.176/48.14
Swin GenDS 25.89/0.830/0.196/34.24 28.44/0.854/0.228/48.39 29.01/0.866/0.145/43.88
DA-CLIP 22.03/0.743/0.2139/49.65 24.50/0.719/0.1928/45.40 24.37/0.779/0.1884/55.06
DA-CLIP
GenDS

23.95/0.778/0.1620/39.37 27.52/0.825/0.1236/31.36 27.04/0.805/0.1342/42.74

Diff-Plugin 22.18/0.694/0.1673/27.61 25.40/0.764/0.1302/28.89 22.80/0.647/0.1445/56.56
Diff-Plugin
GenDS

22.68/0.706/0.1599/25.74 25.81/0.772/0.1248/26.61 22.78/0.649/0.1414/55.62



Table S5. Quantitative comparisons of various models using PSNR (↑), SSIM (↑), LPIPS (↓) and FID (↓) metrics on within-distribution
low-light datasets. The format of metrics is PSNR/SSIM/LPIPS/FID. PromptIR [31], NAFNet [10], the Swin model, DA-CLIP [27] and
Diff-Plugin [25] are trained with and without the GenDS dataset. The table also includes the performance of existing state-of-the-art
(SOTA) AIOR approaches, namely, DiffUIR [51], Diff-Plugin [25], InstructIR [13] and AutoDIR [18]. (R) indicates real image dataset
and (S) indicates synthetic image dataset. Diff-Plugin# is the publicly available pre-trained model.

Method LOLv2 [42] (R, S) SID [7] (R )

DiffUIR 20.27/0.826/0.204/64.17 9.86/0.061/0.899/456.35
Diff-Plugin# 18.00/0.644/0.226/62.83 12.47/0.365/0.703/298.52
InstructIR 23.99/0.857/0.156/46.28 12.84/0.377/0.649/269.21
AutoDIR 19.94/0.800/0.176/48.02 13.45/0.457/0.665/262.27
PromptIR 17.25/0.710/0.264/76.65 17.67/0.517/0.579/303.10
PromptIR
GenDS

21.90/0.868/0.142/51.75 18.31/0.550/0.566/285.43

NAFNet 22.54/0.866/0.140/49.89 18.13/0.557/0.558/294.83
NAFNet
GenDS

22.87/0.887/0.120/38.55 18.64/0.586/0.514/258.75

Swin 21.97/0.844/0.195/70.92 17.12/0.517/0.647/304.38
Swin GenDS 22.32/0.869/0.146/49.53 16.18/0.483/0.591/282.73
DA-CLIP 12.29/0.601/0.2635/76.16 11.21/0.131/0.814/340.79
DA-CLIP
GenDS

16.31/0.692/0.235/63.16 10.84/0.146/0.633/301.16

Diff-Plugin 16.80/0.594/0.2906/85.27 13.02/0.288/0.6424/250.00
Diff-Plugin
GenDS

17.96/0.630/0.246/77.87 12.69/0.291/0.666/234.50

Table S6. Quantitative comparisons of various models using PSNR (↑), SSIM (↑), LPIPS (↓) and FID (↓) metrics on within-distribution
raindrop datasets. The format of metrics is PSNR/SSIM/LPIPS/FID. PromptIR [31], NAFNet [10] the Swin model, DA-CLIP [27] and
Diff-Plugin [25] are trained with and without the GenDS dataset. The table also includes the performance of an existing state-of-the-art
(SOTA) AIOR approach, namely, AutoDIR [18]. (R) indicates real image dataset and (S) indicates synthetic image dataset.

Method Raindrop [32] (R) RainDS [33] (S)

AutoDIR 30.10/0.924/0.058/25.53 20.22/0.795/0.333/110.66
PromptIR 27.04/0.885/0.120/80.07 21.76/0.852/0.259/88.90
PromptIR
GenDS

29.15/0.908/0.071/45.40 20.91/0.829/0.305/103.91

NAFNet 29.61/0.914/0.083/48.30 28.23/0.924/0.088/31.52
NAFNet
GenDS

30.33/0.922/0.056/30.42 28.26/0.927/0.084/29.43

Swin 28.74/0.903/0.089/53.30 26.98/0.893/0.105/40.88
Swin GenDS 28.89/0.901/0.081/42.54 26.87/0.893/0.104/36.72
DA-CLIP 25.35/0.861/0.086/43.79 23.98/0.888/0.1175/37.86
DA-CLIP
GenDS

28.44/0.891/0.0658/32.36 25.23/0.907/0.1212/39.70

Diff-Plugin 21.95/0.675/0.1716/71.91 21.21/0.635/0.1990/49.38
Diff-Plugin
GenDS

25.03/0.733/0.1117/46.76 22.48/0.683/0.1550/38.29



Table S7. Quantitative comparisons of NAFNet [10], PromptIR [31], the Swin-transformer, DA-CLIP [27] and Diff-Plugin [25] models
using PSNR and SSIM metrics (higher is better), trained with and without our GenDS dataset. Performance is evaluated on OoD test sets.
The table also includes the performance of existing state-of-the-art (SOTA) AIOR approaches, namely, DiffUIR [51], Diff-Plugin [25],
InstructIR [13] and AutoDIR [18]. (R) indicates real images and (S) indicates synthetic images. ’-’ indicates that the method was not
trained for that degradation. Diff-Plugin# is the publicly available pre-trained model.

Method REVIDE
[50]

O-Haze
[2]

RainDS
[33]

LHP
[15]

RSVD
[8]

GoPro
[28]

LOLv1
[41]

SICE [6] RainDS
[33]

Degradation Type Haze (R) Haze (R) Rain (S) Rain (R) Snow (S) Motion
Blur (R)

Low-
light (R)

Low-
light (R)

Raindrop
(R)

DiffUIR 17.26/0.792 16.59/0.705 30.85/0.897 26.71/0.832 21.60/0.823 29.17/0.864 21.65/0.836 10.00/0.367 -
Diff-Plugin# 17.45/0.728 15.79/0.471 22.04/0.635 26.02/0.735 18.92/0.662 21.76/0.633 19.38/0.713 17.59/0.611 -
InstructIR 16.51/0.831 16.56/0.709 30.24/0.879 28.93/0.871 - 28.26/0.870 22.81/0.836 17.58/0.750 -
AutoDIR 16.31/0.782 17.57/0.731 29.14/0.858 28.44/0.841 - 27.07/0.828 20.53/0.850 15.37/0.685 23.33/0.754

PromptIR 17.56/0.786 16.46/0.701 29.70/0.871 25.85/0.835 20.08/0.838 26.98/0.828 20.53/0.768 12.42/0.438 20.94/0.709
PromptIR GenDS 19.20/0.827 22.40/0.849 30.00/0.884 26.15/0.840 21.77/0.858 27.28/0.843 21.38/0.812 11.41/0.466 22.04/0.718
Swin 18.44/0.812 20.12/0.802 28.50/0.863 28.97/0.863 22.05/0.838 26.79/0.843 20.07/0.784 15.27/0.667 22.34/0.726
Swin GenDS 18.69/0.831 20.60/0.843 29.34/0.868 29.30/0.869 23.07/0.863 26.09/0.830 24.27/0.842 16.05/0.678 22.87/0.740
NAFNet 18.71/0.819 19.85/0.814 28.49/0.887 27.41/0.835 21.32/0.848 28.14/0.868 22.37/0.826 14.03/0.592 22.91/0.745
NAFNet GenDS 20.96/0.871 20.51/0.849 30.40/0.891 27.53/0.848 22.81/0.873 27.80/0.864 22.82/0.838 14.65/0.614 23.31/0.747
DA-CLIP 16.98/0.758 16.04/0.609 24.74/0.764 25.64/0.838 20.72/0.788 22.87/0.763 10.94/0.474 12.04/0.499 20.99/0.622
DA-CLIP GenDS 17.78/0.810 19.94/0.700 25.50/0.758 28.74/0.851 21.42/0.802 25.55/0.795 11.21/0.481 12.02/0.506 21.39/0.621
Diff-Plugin 17.84/0.748 16.36/0.464 22.00/0.637 25.10/0.723 19.12/0.663 22.23/0.654 17.77/0.651 18.60/0.588 18.47/0.453
Diff-plugin GenDS 17.14/0.765 16.54/0.460 21.89/0.636 26.05/0.739 19.39/0.674 22.84/0.674 18.29/0.676 19.47/0.623 19.54/0.489

Table S8. Within-distribution datasets of SOTA AIOR approaches.

Method Within-distribution Datasets

DiffUIR [51] RESIDE [20] (Haze), Rain13K [47] and Rain1400 [14] (Rain), Snow100k [26] (Snow), GoPro [28] (Motion
blur), LOLv1 [41] (low-light)

Diff-Plugin [25] RESIDE [20] (Haze), Rain13K [47] and Rain1400 [14] (Rain), Snow100k [26] (Snow), GoPro [28] (Motion
blur), LOLv1 [41] (low-light)

InstructIR [13] RESIDE [20] (Haze), Rain13K [47] and Rain1400 [14] (Rain), GoPro [28] (Motion blur), LOLv1 [41]
(low-light)

AutoDIR [18] RESIDE [20] (Haze), Rain13K [47] and Rain1400 [14] (Rain), GoPro [28] (Motion blur), LOLv1 [41]
(low-light) and Raindrop [32] (Raindrop)
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