
Composing Parts for Expressive Object Generation

Supplementary Material

Table of Contents
A. Additional Qualitative Results 1

B. Generalization to SDXL 1

C. Attribute Variations 1

D. Notations 5

E. Potential Negative Impact 5

F. Implementation Details 5

G. Analysis of PartComposer 6

H. Limitations of PartComposer Generations 8

A. Additional Qualitative Results

Comparison with Recent Baselines. We compare PartCom-
poser against existing baselines of StableDiffusion 3.5 [17]
and Inpainting through Stable Diffusion. For the StableDif-
fusion (SD) 3.5 model, we use the SD3.5 Large variant for
which the web-UI is available online at the following link1.
We provide the details of the PartComposer by adding those
meaningfully into the base prompt. For the swan example
in the last row of Fig. 8, we provide the following prompt to
the model ‘A photo of a white swan with a peacock crown,
8k, full hd’. We observe in Fig. 8 that although the model
tries to adhere to the prompt in ways, it fails to modify the
correct object part. Hence, it fails to capture the required
details of the part the user expects. For the Inpainting base-
line, we use the same StableDiffusion (SD) 2.1 model as a
base and use the SAM2 Hiera [39] model for obtaining the
segmentation masks. We use the following inpainting repo2

from GitHub to obtain the results. After obtaining the masks,
we provide an inpainting prompt to the SD model to gener-
ate the final result. We observe that the SD Inpaint models
sometimes, due to incorrect masks for the painting domain,
don’t produce results (third row in Fig. 8) and often can’t
follow the multiple-part instruction correctly as in Fig. 8
(first row). Further we would like to highlight that inpainting
still requires manual ground of masks to parts by user, which
makes it a different setting making the quantitative results

1https://huggingface.co/spaces/stabilityai/stable-diffusion-3.5-large
2https://github.com/Uminosachi/inpaint-anything

incomparable. In comparison, PartComposer can produce
correct and coherent results by producing the part attributes.
Comparison with Editing Methods. We provide a compar-
ison of our approach with SotA editing methods: PlugNPlay
(PnP) [47], TurboEdit [15], ZONE [26], MagicBrush [54] in
Fig. 9. We observe that approaches either do style edits (PnP)
or structure edits at full object level (ZONE, MagicBrush).
Only PartComposer (ours) can perform the specified local-
ized changes at the semantic part level, demonstrating its
novelty and value.
Additional Comparison of PartComposer to Baselines
(Fig. 1). In Fig. 11, we demonstrate a comparison of the Sta-
bleDiffusion, InstructPix2Pix, and Rich-Text on the prompts
demonstrated in the teaser figure. For Rich-Text, we add the
description in PartText to the part token if it’s present in the
base prompt; if not, we add the part description as a footnote
in the object token in the base prompt. For InstructPix2Pix,
we make instructions regarding part modification one by one
on the base generation. We find that the baselines signifi-
cantly change the entire composition of the object instead of
just specified parts.

We also provide additional results for comparison with
baselines in Fig. 12, where the Stable Diffusion baseline with
part details added often ignores them or generates artifacts.
In comparison, PartComposer can produce the desired details
for the parts as specified by the user. As in Merida’s example,
the Stable Diffusion method doesn’t produce the brown skirt
and over uses the green color specified for hair. The Stable
Diffusion ignores the desired part detail for the hornbill and
cardinal examples. The blue jay example produces an artifact
of the dual beak. In comparison, PartComposer generates
aesthetic compositions following the part prompt details
mentioned by the user.

B. Generalization to SDXL
We implement the PartComposer Method for SDXL, and
generate the results for prompts supplied in Fig. 1. Using the
SD-XL implementation from Rich-Text Gen [18] as our base
code, we implement PartComposer. We present our results in
Fig. 10, where we observe that PartComposer can generate
high-resolution images with specific attribute details.

C. Attribute Variations
We provide further results for attribute variations for prompts
of natural domain in Fig. 13.

https://huggingface.co/spaces/stabilityai/stable-diffusion-3.5-large
https://github.com/Uminosachi/inpaint-anything

Prompt: A photo of a yellow warbler
PartComposer: beak → a hens beak

a full body portrait photo of a person wearing a dress with long hair and glasses
 PartComposer: hair, glasses, dress

A young woman sits at a table in a beautiful, lush garden, painting by claude monet
PartComposer: dress → a dress in Ukiyo-e style

St
ab

le
 D

iff
us

io
n

Pa
rt

Co
m

po
se

r

a photo of a white swan, 8k, full hd
PartComposer: crown → a crown of a peacock

Pa
rt

Co
m

po
se

r

St
ab

le
 D

iff
us

io
n

Pa
rt

Co
m

po
se

r

St
ab

le
 D

iff
us

io
n

St
ab

le
 D

iff
us

io
n

Pa
rt

Co
m

po
se

r

a full body portrait photo of a person wearing a
dress with long hair and glasses

 PartComposer: hair, glasses, dress

SD
 In

pa
in

t

SD
 3

.5

A photo of a yellow warbler

PartComposer: beak → a hens beak

SD
 3

.5

 S
D

 In
pa

in
t

A young woman sits at a table in a beautiful,
lush garden, painting by claude monet

PartComposer: dress → a dress in Ukiyo-e style

SD
 3

.5

 S
D

 In
pa

in
t

 S
D

 In
pa

in
t

SD
 3

.5

Figure 8. Qualitative Comparison of our proposed method with recent baselines of Stable Diffusion (SD) 3.5 and Stable Diffusion 2.1
Inpainting with SAM2 masks (top right). PartComposer leads to coherent part modification in comparison to advanced baselines.

Base Generation TurboEdit (SIGAsia’24) ZONE (CVPR’24) MagicBrush (NeurIPS’23) PartComposer (Ours)

warbler PartComposer :

swan PartComposer :

person PartComposer :

woman PartComposer: dresn Ukiyǐ-ǂ

PlugNPlay (CVPR’23)

Figure 9. Qualitative Comparison of PartComposer with SotA editing methods applied on the generated base prompt image.

a full body portrait photo of a person wearing a dress with
long hair and glasses

PartComposer: hair, glasses, dress

 A photo of a yellow warbler

PartComposer: beak → a hens beak

 a photo of a white swan, 8k, full hd

PartComposer: crown → a crown of a peacock

Figure 10. High-Resolution PartComposer results using SD-XL as base model, demonstrating its generalization.

PartComposer (Ours)

PartComposer (Ours)

PartComposer (Ours)

PartComposer (Ours)

Figure 11. Comparison of PartComposer to Other Approaches, for generating using the prompts specified in Fig. 1 of paper. The
PartComposer approach can modify base generations in the specified parts and generate aesthetic images compared to the state-of-the-art.

a photo of a blue jay bird, ultra hd, high realism

PartComposer: head

portrait of disney merida, intricate, elegant,
highly detailed, my rendition, digital painting,

 PartComposer: hair, skirt

a photo of a red cardinal bird

PartComposer: wings -> black wings

St
ab

le
 D

iff
us

io
n

Pa
rt

Co
m

po
se

r

a hornbill comes to life perched on a tree branch

PartComposer: beak

Pa
rt

Co
m

po
se

r

St
ab

le
 D

iff
us

io
n

Pa
rt

Co
m

po
se

r

St
ab

le
 D

iff
us

io
n

St
ab

le
 D

iff
us

io
n

Pa
rt

Co
m

po
se

r

Figure 12. Qualitative Results. We provide a qualitative comparison of additional prompts with Stable Diffusion. We add the part attribute
details to the prompt during generation for Stable Diffusion baseline. The PartComposer can generate the image following the specified part
attribute details with better coherence and fewer artifacts compared to the baseline.

Base Generation

PartComposer: hair dress glasses PartComposer: hair dress glasses PartComposer: hair dress glasses

PartComposer: beak PartComposer: beak (a short beak) PartComposer: beak (a long beak)

Base Generation

Figure 13. Attribute Variations for the base generated images are
provided for the person portrait, where we change color of hair and
eyeglasses, increase weight of eye glasses to change its shape. In
the bird example, we generate various colors of beaks and generate
its part variations by specifying part description in bracket.

D. Notations

We provide notations used in the paper in Table 3.

E. Potential Negative Impact
Text-to-image generative models have shown great promise
in image generation and can be utilized in content and media
creation. However, ensuring the created content is unbi-
ased, harmless, and free of misinformation is essential. Our
work gives users more control over text-to-image generation,
which should be used responsibly to avoid misinformation.

F. Implementation Details
We discuss implementing the two parts of the PartComposer
process, the Part Localization and Part Generation steps.
Part Localization. In Part Localization, we first discuss the
implementation on StableDiffusion 2.1, where we use 50
steps of DDIM Scheduler [43] for denoising. As we aim to
evaluate our method on CUB-200 and DeepFashion datasets,
we first perform inversion using Null-Text Inversion [32]
with a guidance scale of 0.05 (other hyper-parameters are
kept default). We keep the α value linearly scaled with time
steps from 0 to 0.5 (Eq. 1). To obtain the mask for each
segment, we keep a low ϵ = 0.05 threshold (Eq. 3), as here,
we want to segment the region in all possible parts as the

Table 3. Notation Table for the paper.

Symbol Meaning

Mo Mask of Object o
b̂, b̂ Set of Base Prompt Tokens
p̂ Set of Part Prompt Tokens
Tth Threshold After Which The Part Diffu-

sion Starts
M̂j Self Attention Map (jth index)
m̂k Cross Attention Maps (for kth token)
x · y Dot Product Between x and y, viewed

as vectors
A⊙B Elementwise (Hadamard) product be-

tween A and B
Mpi Part Mask for the part pi

ai Attribute Description of part pi

f(pi,ai)Text Description of part pi with at-
tributes ai

xt Partial Denoised Image at time t
ϵt Noise output for estimated noise at time

t
D Denoising U-Net
Mb Background (Other) Token Mask
α Hyperparameter for the Part Diffusion

Contribution
δ Hyperparameter for Part Selection
ϵ Hyperparameter for the Object Catego-

rization to Background

DeepFashion and CUB-200 generate localization masks for
the 14 part regions. However, for comparison with baselines
producing segments in 4 parts, we perform the following
clustering of parts in the four cluster regions (Table 4). We
use (K=9) to cluster the different regions into 4 clusters. We
use the foreground masks for objects provided by Choudhury
et al. [12]3 for evaluating the FG-NMI and FG-ARI metrics
in Table 4.

We use StableDiffusion (SD) 1.5 to compare the gener-
ation results to the Rich-Text [18]4 baseline. In this case,
we want to start the localization process at a later stage of
denoising, as we aimed the part diffusion not to alter the
base generation too much; hence, start part denoising from
step Tth = 24. We do merging of base with initial diffusion
process for 0.5 number of steps (Eq. 5) and δ = 0.3 for max
part localization (in Eq. 2) respectively. We use a PNDM

3https://github.com/subhc/unsup-parts
4https://github.com/SongweiGe/rich-text-to-image

scheduler with 41 steps and an 8.5 guidance scale, as done
by default in Rich-Text [18] generation.

Part Generation. We use the same scheduler and guidance
scale for the part generation. We blend the base xbase

t and
part generations xt for 0.2 fraction of the time steps in the
denoising process.

Baselines. For the Rich-Text baseline, we use the attribute
properties ai for the part token and add it to the base token if
it is in the base prompt. In other cases, we add the Part infor-
mation as the footnote of the object token in the base prompt.
For the InstructPix2Pix [8] baseline, we iteratively add the
instructions for each part on the base generation through.
For the StableDiffusion baseline, we add the PartComposer
instructions as the object’s description in the prompt. We use
the same StableDiffusion model with the same seed and guid-
ance scale across baselines. We run it on the same Nvidia
A100 40GB to ensure the sanity of comparison across meth-
ods. PartCraft [33], a recent method, also aims to generate
objects based on part composition. However, if the text-to-
image model is PartCraft trained for CUB-200, it can only
generate variations of CUB-200. Further, it also requires
annotations of the parts regarding key points, etc. Hence,
it cannot generate parts based on text descriptions like our
work. Hence, due to additional supervision and focus on
particular datasets, it cannot be used as a general baseline
for comparison with our work.

G. Analysis of PartComposer

In this section, we provide additional analysis regarding the
design choices made in PartComposer. In particular, we ab-
late the components we have introduced in the PartDiffusion
process of PartComposer (Sec. 3.2). We provide an analysis
of the effect of using a) independent text embeddings, b)
usage of dot product-based protocol in the part assignment,
and c) the visualization of attention maps for the localized
and unlocalized parts. We have used a subset of CUB-200
images to perform all evaluations, which is kept fixed across
ablations. We tabulate the ablations in Table 5 (also includ-
ing ablations from the main text Table 2) and provide visual
results in Fig. 14. We observe that all components intro-
duced in PartComposer significantly contribute to the overall
segmentation performance of the part localization module.
Further, in Fig. 14, we find that normalizing parts that do
not satisfy localization conditions (forehead and back) leads
to high attention values in most regions. This demonstrates
the effectiveness of the max-value-based selection (Eq. 4) of
parts proposed in PartComposer.

For comparison to the Stable Diffusion baseline, in addi-
tion to the results provided in Table 4, we provide a quali-
tative comparison in Fig. 15 and 16. The Stable Diffusion
baseline assigns arbitrary masks to the wrong parts. On the
contrary, if PartComposer localizes parts, they are often cor-

Table 4. Part Names in Clusters for CUB and DeepFashion Datasets

Cluster CUB Part Names DeepFashion Part Names
0 background background
1 beak, forehead, left eye, right eye cap, hair
2 breast, crown, nape, throat dress, shirt (top) , accessories, outer
3 belly, left leg, right leg, tail glasses, face, body
4 back, left wing, right wing pants, footwear, leggings

Table 5. Ablation Analysis of PartComposer for Part Localization.

PartComposer (Ablations)

Method FG-NMI FG-ARI

PartComposer 35.4 11.0
w/o Null-Text Inversion 23.1 5.2
w/o Max Localization 21.3 2.8
w/o Dot Product Localization 23.7 5.0
w/o Independent Text 31.2 8.9

PartComposer (Clustering)

PartComposer (K = 9) 35.4 11.0
PartComposer (K = 4) 20.4 2.8
PartComposer (K = 14) 35.2 10.3

Figure 14. Normalized Attention Maps for parts which are
localized (left) and non-localized (right).

Stable Diffusion

PartComposer

Figure 15. Qualitative Comparison of part masks (on DeepFashion) generated from the Stable Diffusion Baseline to PartComposer (Ours).
The Stable Diffusion Baseline assigns arbitrary part masks to segments, whereas our part marks are consistent to part.

rectly associated with the right region of the object. This
shows the advantage of using part diffusion rather than induc-
ing additional tokens in the base prompt of StableDiffusion.

Robustnes of PartComposer w.r.t. Masks. PartComposer
uses masked diffusion process to generate and compose the
object parts. Hence, we first see the effect of the mask
region, where we observe (Fig. 17) that in cases where the
mask occupies more region than the desired part, the part

diffusion process mostly modifies the requested part. This
demonstrates that PartComposer can still generate desired
aesthetic outputs in case the masks are not very accurate.

Stable Diffusion

PartComposer

Figure 16. Qualitative Comparison of part masks (on CUB200)
generated from the Stable Diffusion Baseline to PartComposer
(Ours). The Stable Diffusion Baseline assigns arbitrary part masks
to segments, whereas our part marks are consistent to part.

a photo of a black bird

PartComposer: head -> a red head

a photo of a yellow warbler

PartComposer: beak -> a hens beak

Base Generation PartComposer (Ours)

Figure 17. PartComposer is robust when the masks don’t ex-
actly fit the specified parts. This is because the text description for
the masked region contains a description only of specified parts
(e.g. beak and head above). Hence, the other regions, despite being
in the masked region, remain similar to the base generation.

child

PartComposer: shirt

Figure 18. Limiting Case. When only color is specified in Part-
Composer, and the masks cover extraneous regions. In such cases,
when only color guidance is applied, it might leak to some other
parts instead of the specified part (‘shirt’). As color is added through
gradient guidance in the entire masked region.

H. Limitations of PartComposer Generations

We find that the color guidance applies to the entire masked
region. Hence, in some cases, the font color specification ac,
can alter other areas in minor ways besides the specified part.
This is due to color gradient loss, also used in Rich-Text [18]
to specify the specific color of the region. We highlight that
in the example in Fig. 18, where some part of the orange lines
appear in the shorts worn by the child as it was also the part
of the mask. We find that mask localization is the bottleneck
for performance. Hence, improving the part understanding
and segmentation capability of the Text-to-Image models is
an important direction to be pursued across future works,
including explorations on new models like Flux and SD3.5.

	Introduction
	Related Works
	Method
	Problem Setup
	Part Localization
	Part Generation

	Experimental Analysis
	Evaluation of Part Localization
	PartComposer Image Generation Evaluation

	Analysis and Discussion
	Conclusion
	
	
	Additional Qualitative Results
	Generalization to SDXL
	Attribute Variations
	Notations
	Potential Negative Impact
	Implementation Details
	Analysis of PartComposer
	Limitations of PartComposer Generations

