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A. Further Implementation Details
A.1. Datasets

To evaluate our model for molecular property prediction,
we utilized the ChEMBL2K and Broad6K datasets, follow-
ing the benchmark settings in InfoAlign [21]. ChEMBL2K
Dataset: ChEMBL2K is a curated subset of the ChEMBL
dataset, overlapping with the JUMP CP datasets. Activity
annotations are derived from the ”activity comment” field in
ChEMBL. To prevent data leakage, molecules included in
the pretraining set are excluded. This dataset encompasses
41 tasks related to protein binding affinity, where activity la-
bels are converted to binary values. To ensure sufficient data
for each task, we retain only those with at least one positive
example and five negative examples. Broad6K Dataset:
The Broad6K dataset, originally compiled by Moshkov et
al., consists of 16,170 molecules assessed across 270 as-
says, producing a total of 585,439 readouts. However, the
dataset contains a substantial number of missing values,
with 153 assays having more than 99% missing data. To
minimize bias, we focus our analysis on subsets where the
proportion of missing values is below 50%.

For molecule-phenotype retrieval, we followed the eval-
uation strategy used in InfoCORE [41]. We utilize two
high-content drug screening datasets for our study: L1000
gene expression profiles (GE) and cell imaging profiles
from the Cell Painting assay (CP). For the GE dataset,
we focus on data from nine core cell lines, encompassing
17,753 drugs and 82,914 drug-cell line pairs. In the CP
dataset, 30,204 small molecules are screened using a single
cell line (U2OS). Hand-crafted image features are extracted
using the widely adopted CellProfiler method, while chem-
ical structures are represented using Mol2vec embeddings.

Table S1. Dataset Statistics of Molecular Property Predictions

Dataset Task Molecules Gene Expression Cell Morphology

ChEMBL2K 32 2,355 581 2354
Broad6K 41 6567 3261 6495

A.2. Baselines

• AttrMask [15] is a self-supervised pre-training method
for Graph Neural Networks designed to learn both lo-
cal and global representations of graphs. By introduc-
ing a self-supervised pre-training strategy that simulta-
neously learns both local (node-level) and global (graph-
level) representations, AttrMask can effectively capture

structural and semantic information to provide a generic
feature representation for downstream tasks.

• EdgePred [11] is a generalization framework designed to
efficiently generate node embeddings, especially for dy-
namic or unseen node scenarios. GraphSAGE achieves
the ability to generalize to unseen nodes by learning an
aggregation function based on the local neighborhood of
a node, rather than training embeddings for each node in-
dividually.

• GROVER [35] learns rich structural and semantic in-
formation from a large amount of unlabeled molecular
data at node-level, edge-level, and graph-level, aiming to
solve the problems of insufficient molecular data annota-
tion and poor generalization ability to newly synthesized
molecules.

• GraphLoG [46] is a unified framework for whole-graph
self-supervised representation learning, aiming to solve
the problem that existing methods fail to capture the
global semantic structure of datasets. By introducing hi-
erarchical prototypes, GraphLoG identifies global seman-
tic clusters while maintaining local similarities.

• JOAO [48] address the challenge of manual selection
for different datasets by automatically and adaptively se-
lecting the appropriate augmentations for specific graph
data, significantly enhancing the general applicability of
GraphCL, a fairness by minimizing correlation with spu-
rious features or removing sensitive attributes.

• CLOOME [36] creates a unified embedding space that
allows both bioimages and molecular structures to be en-
coded together by a multi-modal contrastive learning ap-
proach, which enables querying bioimaging databases us-
ing chemical structures that can reveal different pheno-
typic effects.

• MIGA [52] is designed to enhance molecular represen-
tation learning by leveraging perturbed high-content cell
microscopy images at the phenotypic level, utilizing var-
ious contrastive loss functions to capture meaningful fea-
tures.

• InfoCORE [41] aims to deal with batch effects and
obtain refined molecular representations by adaptively
reweighing samples to equalize their implied batch dis-
tribution. It has two versions, InfoCORE-CP and
InfoCORE-GE, which align molecular graph representa-
tion with cell imaging and gene expression, respectively.
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Figure S1. Additional Examples of image retrieval tasks. The query molecules and the top-ranked images being retrieved from different
methods and the ground-truth images are shown.

A.3. More Implementation Details

All the experiments were performed five times on an
NVIDIA GeForce RTX 4090 GPU. The corresponding Py-
torch version and CUDA version are 2.2.2 and 12.1 respec-
tively. Some key parameters are listed as follows:

Table S2. Detailed setting of the hyper-parameter of MINER

Item ChEMBL2K Broad6K GE CP

λ1 0.05 0.1 0.001 0.1
λ2 0.05 0.1 1.0 1.0
λ3 0.05 0.05 0 0
λ4 0.05 0.01 0.01 0.01

Beta1 0.85 0.9 0.5 0.5
Beta2 0.85 0.999 0.5 0.5
Epoch 120 150 500 500

Dropout 0.5 0.3 0.3 0.25
Batch size 1024 1024 1024 1024

Initial learning rate 0.005 0.0005 0.0005 0.0005

Molecular Property Predictions. We conducted experi-
ments on two molecular property datasets, ChEMBL2K and
Broad6K. We employ scaffold splitting for both datasets
with a 0.6:0.15:0.25 ratio for training, validation, and
test sets. In both datasets, we employ a 3-layer GNNs
model to encode molecular graphs, two 5-layer fully con-
nected neural networks to encode the cellular image and
gene expression data, and two 5-layer fully connected neu-
ral networks to generate corresponding missing data. In
ChEMBL2K and Broad6K, we set the hyperparameter λ =
{λ1, λ2, λ3, λ4} as {0.05, 0.05, 0.05, 0.05} and {0.1, 0.1,

0.05, 0.01}, respectively. Besides, temperature coefficient τ
is set as 0.07 for contrastive learning. In the training phase,
we utilize Adam [7]as the optimizer and the corresponding
betas as shown in S2. For the final result, we report means
and standard deviations across five runs to ensure consis-
tency.

Molecule-Phenotype Retrieval. In this task, we followed
the evaluation strategy used in InfoCORE [41]. Both
datasets in molecule-gene(GE) and molecule-cell Paint-
ing(CP) were randomly split into a training set with 80% of
the molecules and the remaining 20% were held out for test-
ing. As the setup in molecular property predictions, we also
use the 3-layer GNNs model and 5-layer fully connected
neural networks to encode molecular graphs and gene ex-
pression or cellular images. train the classifier to predict
the batch number of the sample. Since the dataset does not
contain missing modality, we set hyperparameter λ3 as 0 in
both retrieval tasks. The complete λ = {λ1, λ2, λ3, λ4} are
set as {0.001, 1.0, 0, 0.01} and {0.1, 1.0, 0, 0.01} in GE
and CP, respectively. We perform 500 training iterations to
update the model parameters with Adam [7] as optimizer.

B. Additional Experimental Results
B.1. Image Retrieval

Additional examples for image retrieval tasks, are shown in
Fig. S1. The images retrieved by our method and baseline
are shown. Our method accurately captures the critical flu-
orescent areas in images for the first and second molecules.
Even for the third and fourth molecules, where MINER



didn’t perfectly retrieve the corresponding images, the re-
trieved images were highly similar to the ground truth. In
contrast, the images retrieved by InfoCORE were signifi-
cantly different from the ground truth, further demonstrat-
ing the superior retrieval capability of MINER.
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Figure S2. t-SNE projection of features pre-fusion and post-
fusion.

B.2. Visualizations

To demonstrate the superiority of our method in integrating
multimodal features, we visualized the distribution of rep-
resentation for pre-fusion cellular image features and the
post-fusion multimodal features under different labels. The
left column of Fig. S2 presents the pre-fusion cellular image
features across four assays, while the right column displays
the multimodal features after fusion.

Obviously, the pre-fusion features exhibit significant
overlap between positive and negative labels, making them
difficult to distinguish. In contrast, the post-fusion mul-
timodal features show significantly enhanced separability
across all four assays, effectively distinguishing whether a

sample is active in assays. These results highlight the ef-
fectiveness of our multimodal fusion strategy in improving
feature integration and enhancing the discriminative power
of the representations.

C. Drug repurposing
We provide a comprehensive drug recommendation work-
flow based on the large-scale integration atlas of perturba-
tion profiles. In step 1, given the compounds’ structure of
the screening library, MINER retrieved the perturbed tran-
scriptional profiles of all candidate compounds. In step 2,
the perturbation fold-change and the average fold-change
for the transformed expression profile are computed. The
gene ranking is then performed based on the fold-change
values. In step 3, given the gene signature for a specific dis-
ease, we compute the enrichment scores for up- and down-
regulated gene sets of screening compounds. Finally, com-
pounds in the screening library are ranked based on these
enrichment scores.

After ranking the drugs for breast cancer, literature veri-
fication revealed that Sulbactam (rank 1), Norelgestromin
(rank 3), Triethylenetetramine (rank 5), Chlorpromazine
(rank 7), and Roxithromycin (rank 9) are supported for use
in breast cancer treatment (Table S3). A study by Wen
et al. [44] on mammalian cells suggested that sulbactam
can reduce the expression of ABC transporter proteins in
breast cancer cells, thereby decreasing the efflux of dox-
orubicin and enhancing its efficacy. Another study [27]
demonstrated that Norelgestromin acts as a selective estro-
gen enzyme modulator in human breast cancer cell lines,
affecting sulfatase activity in comparison to medroxypro-
gesterone acetate. Furthermore, Triethylenetetramine [42]
has been shown to synergize with pharmacologic Ascorbate
(Asc) autoxidation and H2O2 overproduction in breast can-
cer cells, suppressing the RAS/ERK pathway and inducing
apoptosis.

Table S3. Top 10 enrichment scores for drugs against Breast Can-
cer. Compounds marked in gray have literature support.

Disease FDA-approved Drug Enrichment score Literature

Breast Cancer

Sulbactam 0.3103 [44]
Troleandomycin 0.2936
Norelgestromin 0.2750 [27]

Perazine 0.2554
Triethylenetetramine 0.2546 [42]

Ethchlorvynol 0.2533
Chlorpromazine 0.2481 [17]

Technetium Tc-99m pyrophosphate 0.2392
Roxithromycin 0.2383 [39]

Boceprevir 0.2377
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