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Supplementary Material

In the supplementary material, we describe the attention-
gated aggregation in details in Sec. 8, provide a detailed
description of math symbols frequently used in the paper
in Sec. 9, provide the pseudo code of HistoFS in Sec. 10,
present an analysis of pseudo bag style transfer in Sec. 11,
present an analysis of our authenticity module in Sec. 12
present the ablation studies in Sec. 13, and provide detailed
experimental settings in Sec. 14.

8. Attention-Gated Aggregation MIL
According to Eq. (3), we choose attention-gated aggrega-
tion (θInagg) [7] as our MIL backbone. Recall from Sec.
3 that a WSI XIn

m is treated as a bag of patch features
XIn

m = {xm,1, . . . , xm,P } ∈ RP×d. θInagg applies attention
weights to obtain the final bag representation as:

F =

M∑
m=1

am,pxm,p ∈ RP , (11)

where am,p is the learnable attention weight for xm,p and P
is the number of patches. The attention weight am,p, based
on [7], is formulated as:

am,p =
exp

{
wT (tanh (V1xm,p)⊙ sigm (V2xm,p))

}∑M
m=1 exp {wT (tanh (V1xm,p)⊙ sigm (V2xm,p))}

,

(12)
where w, V1, and V2 are the learnable parameters. Lastly,
the prediction layer fpred maps the final bag representation
F to slide label prediction: Ŷ In

m = θInagg(fpred(F)).

9. Math Symbols
Table 7 depicts the mathematical notations frequently used
in our proposed HistoFS.

10. Pseudo Code of HistoFS
Algorithms 1 and 2 describe the steps of HistoFS and local
pseudo bag style transfers, respectively.

11. Analysis of Pseudo Bag Style Transfer
11.1. Qualitative Analysis

We provide the visualization results of patch features from
four institutions for inspecting the behavior of pseudo bag
styles transfer. The visualization was conducted by trans-
forming the multi-dimensional patch features into a two-
dimensional t-SNE (t-distributed Stochastic Neighbor Em-
bedding) space [2]. As shown in Fig. 3(a), the patch

Table 7. Mathematical Notations.

Symbol Meaning/Definition

Federated MIL
N Number of participating client/institution in FL

In i-th client/institution in a FL framework

T Total communication rounds in FL

W Weight matrix of the MIL model

ℓ Loss function of the MIL model

am,p p-th attention weight corresponding to xm,p

fpred Prediction layer of the MIL model

F Final bag representation

θInext Feature extractor at In
θInagg Attention-gated aggregation at In
Whole Slide Image (WSI)
M In Total number of WSIs in In

P Total number of patches in a WSI

K Number of pseudo styles in a WSI

XIn
m m-th WSI (bag) at In

X
In(aug)
m Augmented WSI corresponding to XIn

m

Y In
m Slide label of XIn

m

Ŷ In
m Slide prediction of XIn

m

xm,p p-th patch feature from XIn
m

x
(aug)
m,p Augmented patch feature corresponding to xm,p

Style Information
SIn
m Bag of styles corresponding to XIn

m

Pm Feature distribution corresponding to XIn
m

µ(·)/σ(·) Mean/Standard deviation

W 2
2 2-Wasserstein distance

cm,k k-th pseudo style of XIn
m

CIn
m Pseudo bag styles of XIn

m

AdaIN(·)Adaptive Instance Normalization

Authenticity Module
AuthInscore Authenticity score

AIn
m Attention weights of XIn

m

AIn(align)
m Aligned attention weights of XIn

m

λ Tunable hyper parameter in the Authenticity Module

feature distributions are initially non-independent and non-
identically distributed. However, after applying the pseudo



Algorithm 1 HistoFS

1: Input: Initialized global weight matrix W
2: Output: Final global weight matrix W
3: for global round t = 1, . . . , T do
4: Stage 1: Federated Learning Process
5: The server selects participating institutions N and

sends W to each institution In ∈ N .
6: for each In ∈ N do
7: Compute pseudo bag styles CIn in Sec. 4.1.1.
8: Transmit CIn to the server in Sec. 4.1.2.
9: end for

10: The server shares {CIn}n∈N with all institutions.
11: Stage 2: Local Updates
12: for each In ∈ N do
13: (i) Pseudo bag styles transfer in Sec. 4.1.3.
14: (ii) Authenticity module in Sec. 4.1.4.
15: (iii) MIL prediction in Eq. (3).
16: Compute local cost function (Eq. (2)).
17: end for
18: The server updates the W by minimizing a global

cost function (Eq. (1)).
19: end for
20: return Final global weights W for evaluation.

Algorithm 2 Local Pseudo Bag Styles Transfer
Input:

Training set {XIn
m }MIn

m=1

Style bag CIn′ with subsets CIn′
j = {cj,1, . . . , cj,k} for

j = 1, . . . , J
Parameter: Augmentation ratio γ ∈ [0, 1]

Output: Augmented WSIs {XIn(aug)
m }MIn

m=1

1: Stage 1: Selected WSIs to augment
2: Sample γ ×M In WSIs: S ⊂ {1, . . . ,M In}
3: Stage 2: Iterate over the selected WSIs
4: for m ∈ S do
5: Randomly select CIn′

j from CIn′

6: Stage 3:Iterate over patches of XIn
m

7: for p = 1, . . . , P do
8: Randomly select cj,k ∈ CIn′

j

9: xaug
m,p = AdaIN(xm,p, cj,k)

10: Append xaug
m,p to X

In(aug)
m

11: end for
12: end for
13: Stage 4:Assign augmented label
14: Assign label Y In

m to X
In(aug)
m

15: return {XIn(aug)
m , Y In

m }MIn

m=1

bag styles transfer (Sec. 4.1.3), the distributions become
more identically distributed and aligned (Fig. 3(b)). This
obviously demonstrates that our pseudo bag styles transfer

effectively introduces different style properties from distinct
institutions, enabling each institution to train a local MIL
model without the risk of weight bias arising from a focus
on institution-specific styles.

(a) Before pseudo bag styles
transfer.

(b) After pseudo bag styles
transfer.

Figure 3. The 2D t-SNE plot represents the distribution of patch
features of WSIs from four institutions. (a) Without style transfer,
patch features are non-i.i.d. (b) After HistoFS with pseudo bag
styles transfer, patch features become more i.i.d.

11.2. Quantitative Analysis

As shown in Table 8, Wasserstein Distance (WD), Mu-
tual Information (MI), FID, and KID were used to quan-
tify either the similarity or dependency between any two
distributions of patch features. Table 8 shows our method
increase the similarity and dependency of patch features
across different clients. Since our method leads to a smaller
WD/FID/KID and a larger MI for any two distributions of
features, it’s an indicator of tending to i.i.d.

Table 8. Quantitative measure of pseudo bag style transfer.

Metric WD (↓) MI (↑) FID (↓) KID (↓)

Before (Fig. 3(a)) 2.28 2.27 11.36 0.32
After (Fig. 3(b)) 0.58 4.82 3.68 0.06

12. Analysis of Authenticity Module
As discussed in Sec. 4.1.4, augmenting local WSIs via style
transfer risks omitting RoIs. We analyze the effectiveness
of our authenticity module from the aspects of qualitative
analysis (in terms of visualization inspection) and quantita-
tive analysis.

12.1. Qualitative Analysis

To verify the effectiveness of our authenticity module (Sec.
4.1.4) in aligning RoIs after augmenting WSIs through
pseudo bag styles transfer, we provide the color map vi-
sualization for WSI images, as an example shown in Fig.
4. Style transfer computes the statistical properties glob-
ally without considering the local context and correlation
information between patch features. Indeed, this informa-
tion is important for localizing the region of interests (RoIs)



Figure 4. Visualization of three WSI examples from the TCGA-RCC dataset. For each WSI, the attention weights for all the patch features
in the slide are normalized to a range of [0,1]. The normalized scores are then mapped to their spatial locations in the slide, where the
RGB color map is applied (red: high attention, blue: low attention). The green bounding box represents the RoIs’ locations generated from
attention weights (Eq. (12)).

in WSIs to make a slide-level prediction. We utilized the
configuration of CLAM [8] to produce an attention maps
for WSI. Fig. 4 (a) and Fig. 4 (b) show three WSIs from
the TCGA-RCC dataset and their attention maps, respec-
tively. Regions with high attention (in red) in the attention
maps can be recognized as ROIs; otherwise, it is a normal
tissue. Notably, the MIL model can localize RoIs that con-
tribute to the WSI classification task as well. In Fig. 4(c),
it indicates that RoI shift occurs [21] when the MIL model
cannot pay attention to the RoIs after style transfer and pro-
duce many false highly-attended regions outside the green
bounding box. However, when our proposed authenticity
module is applied, Fig. 4(d) shows that the RoIs can be re-
fined and aligned well, indicating RoIs can be maintained
and patch features can be learned with diverse styles from
other institutions.

12.2. Quantitative Analysis

Attention weights can serve as an indicator to identify RoIs
in a WSI. We combined the test sets from three different
institutions (see Table 2) to calculate the authenticity score

(Eq. (9)) between the attention weights of both local and
augmented WSIs. We then apply kernel density estima-
tion (KDE) to assess the probability distribution of the au-
thenticity scores. Fig. 5 shows KDE comparison between
our proposed authenticity module and the baseline meth-
ods, including HistoFL [3] and CCST [21], where the x-
axis denotes the authenticity score in that the values close
to 0 indicate the minimal changes in RoIs and those near 1
suggest significant deviations. Our module effectively pre-
serves attention weight consistency between the local and
augmented RoIs, maintaining RoIs as also shown in Fig. 5.

13. Ablation Studies

13.1. Comparison via bACC and F1-Score

Table 9 presents the comparison results under the RCC and
HER2 datasets in terms of bACC and F1-score. Our pro-
posed method outperforms the competitors, which validates
the advantage of using pseudo bag styles transfer and au-
thenticity module. Specifically, the average bACC and F1
scores are improved by 2 ∼ 5% on RCC and HER2, re-



Table 9. Classification accuracy comparison in terms of bACC and F1 score.

Methods Inst. A Inst. B Inst. C Avg Entropy Score

bACC F1 bACC F1 bACC F1 bACC F1 bACC F1

(RCC Dataset)

MIL
HistoFL [38] 95.51 91.28 86.59 91.20 94.97 92.60 92.36 91.69 0.218 0.238
DTFD-MIL [11] 95.80 93.65 88.67 89.92 93.60 93.82 92.60 92.46 0.209 0.216
FRMIL [10] 96.98 95.62 89.44 86.89 93.39 93.82 93.27 92.11 0.193 0.225

Local MixStyle [30] 96.97 93.65 89.55 91.40 96.83 96.58 94.45 93.88 0.160 0.177
Style Transfer DSU [31] 96.97 93.65 88.57 88.92 96.58 96.58 94.04 93.05 0.171 0.199

Federated CCST [21] 96.97 93.65 89.55 91.40 96.83 96.58 94.45 93.88 0.160 0.177
Style Transfer DACS [26] 95.51 91.28 88.57 91.20 96.83 95.61 93.64 92.03 0.183 0.210

HistoFS Pseudo Bag Styles Only 96.97 93.65 90.05 91.80 96.83 96.58 94.61 94.01 0.155 0.173
+ Authenticity Module 97.81 95.63 90.95 93.21 96.83 96.58 95.86 95.14 0.139 0.142

HistoFS w/ DTFD-MIL 97.20 94.05 89.55 91.40 96.83 96.58 94.52 94.00 0.157 0.173
w/ FRMIL 98.00 96.05 90.50 93.00 96.83 96.58 95.11 95.21 0.141 0.139

(HER2 Dataset)

MIL
HistoFL [38] 65.56 62.66 81.04 81.07 75.00 74.18 73.87 72.64 0.663 0.685
DTFD-MIL [11] 68.61 68.72 79.60 83.42 76.21 74.38 74.80 75.50 0.647 0.629
FRMIL [10] 72.22 72.22 81.32 81.38 78.21 71.43 77.25 75.01 0.595 0.643

Local MixStyle [30] 73.33 72.75 88.46 88.49 78.57 78.12 82.12 79.96 0.525 0.533
Style Transfer DSU [31] 76.76 75.65 88.44 88.21 78.30 78.05 78.92 78.47 0.503 0.515

Federated CCST [21] 67.78 63.90 84.88 85.01 79.84 79.23 77.50 76.04 0.582 0.609
Style Transfer DACS [26] 72.22 72.73 81.87 81.83 75.00 74.71 76.36 76.42 0.615 0.613

HistoFS Pseudo Bag Styles Only 76.76 75.65 88.89 87.60 82.14 81.84 82.59 81.69 0.469 0.491
+ Authenticity Module 76.80 77.51 89.01 88.89 82.14 81.84 82.65 82.08 0.468 0.466

HistoFS w/ DTFD-MIL 74.80 75.00 88.44 88.21 79.84 79.23 81.03 80.81 0.505 0.510
w/ FRMIL 76.76 76.65 88.46 88.49 83.00 82.20 82.74 82.44 0.466 0.473

Figure 5. Kernel Density Estimation (KDE) of authenticity score
for the RCC dataset.

spectively. We further revealed the performance divergence
in terms of bACC and F1 score by calculating the entropy
scores across all institutions. As shown in Table 9, our
method has the smallest entropy scores, indicating perfor-
mance divergence is reduced effectively.

13.2. Comparison with Aggregation-Based FL

Table 10 shows that our proposed HistoFS achieves the
highest average AUC score among aggregation-based FL
methods, such as FedBN [39] and FedProx [40]. Specifi-
cally, FedBN [39] preserves batch normalization statistics
locally, while FedProx [40] incorporates a proximal term
to regularize the gap between local and global models. In

contrast, our proposed HistoFS shares style statistics across
clients to minimize the gap.

Table 10. Comparison with aggregation-based FL methods.

Dataset Methods Inst. A Inst. B Inst. C Avg. Entropy

RCC
FedBN [39] 98.62 95.20 97.90 97.24 0.081
FedProx [40] 97.80 96.65 98.00 97.48 0.074
HistoFS 99.48 95.39 99.46 98.11 0.056

HER2
FedBN [39] 70.20 88.74 79.21 79.38 0.539
FedProx [40] 74.35 89.12 78.40 80.62 0.513
HistoFS 80.66 92.85 84.69 86.07 0.383

13.3. Comparison with Shorter Local Iteration

We conducted experiments using local iterations that are
four times shorter while increasing the total number of
global rounds that are four times longer than usual. As
shown in Table 11, the results suggest that shorter local
iterations are insufficient to achieve convergence for each
client. Our proposed method, however, can maintain good
performance regardless of the local iteration length.

13.4. Effect of Feature Extractors

In an MIL setup, the feature extractor transforms patch
images into features. We investigate the performance
of proposed method under different backbones, including
ResNet50 [49] and SSL-ViT [1], for feature extraction,



Table 11. Shorter Local Epochs and Longer Aggregations.

Dataset Methods Inst. A Inst. B Inst. C Avg. Entropy

RCC
HistoFL [3] 95.80 93.61 97.00 95.47 0.132
CCST [21] 98.43 92.40 97.28 96.04 0.115
HistoFS 99.20 94.38 99.16 97.58 0.071

HER2
HistoFL [3] 60.30 78.95 74.20 71.14 0.713
CCST [21] 67.80 88.48 80.60 78.96 0.545
HistoFS 79.80 90.65 83.28 84.57 0.421

where the dimension (d) of patch features is 1024. In Ta-
ble 12, it can be observed that our HistoFS outperforms
MixStyle [30] and CCST [21] in terms of AUC and entropy
score.

Table 12. Effect of Feature Extractor.

Methods Inst. A Inst. B Inst. C Avg Entropy

AUC AUC AUC AUC AUC

(RCC Dataset)

ResNet50
MixStyle 96.16 89.81 94.09 93.35 0.075
CCST 96.36 89.49 96.02 93.96 0.074
Proposed HistoFS 96.65 90.02 96.14 94.27 0.069

SS-ViT
MixStyle 99.02 94.44 98.21 97.22 0.081
CCST 99.07 94.25 98.45 97.26 0.080
Proposed HistoFS 99.48 95.39 99.46 98.11 0.056

(HER2 Dataset)

ResNet50
MixStyle 59.71 82.96 65.81 69.49 0.7382
CCST 60.65 81.31 64.79 68.91 0.752
Proposed HistoFS 67.50 84.06 70.69 74.05 0.657

SS-ViT
MixStyle 75.70 89.01 78.06 80.92 0.507
CCST 69.25 91.63 82.65 81.18 0.492
Proposed HistoFS 80.66 92.85 84.69 86.07 0.383

13.5. Different strategies for Pseudo Bag Styles

As described in Sec. 4.1.1, one of the motivations for con-
structing pseudo bag styles CIn

m = {cm,1, . . . , cm,K} is to
avoid the high communication burden caused by possible
transmitting thousands of styles in each FL round. In ad-
dition to the one discussed in Sec. 4.1.1, we provide three
alternative designs for constructing pseudo bag styles as fol-
lows:
• L-Bag styles: We sort and select the J styles with

the lowest values from the bag of styles SIn
m =

{sm,1, . . . , sm,P }, then concatenate them into L-Bag
styles LIn

m = {lm,1, . . . , lm,J}, 1 ≤ J ≤ P .
• R-Bag styles: : Randomness is beneficial to promote di-

versity. We select J random styles and concatenate them
into R-Bag styles RIn

m = {rm,1, . . . , rm,J} .
• H-Bag styles: We can also obtain J style with the highest

values after sorting and concatenating them into H-Bag
styles HIn

m = {hm,1, . . . , hm,J}.
Table 13 shows that pseudo bag styles is a sophisticated de-
sign tailored to the characteristics of WSI, as described in
Section 1.1, and generally performs better than the other
three strategies.

Table 13. Different Strategies for Constructing Pseudo Bag Styles.

Methods Inst. A Inst. B Inst. C Avg Entropy

AUC AUC AUC AUC AUC

(RCC Dataset)
L-Bag Styles 98.93 94.79 98.32 97.35 0.078
R-Bag Styles 99.16 94.89 98.43 97.49 0.074
H-Bag Styles 99.09 94.63 98.38 97.36 0.077
Pseudo Bag Styles 99.48 95.39 99.46 98.11 0.056

(HER2 Dataset)
L-Bag Styles 76.21 91.24 82.43 83.29 0.449
R-Bag Styles 77.08 91.69 82.78 83.85 0.436
H-Bag Styles 76.34 91.38 82.67 83.46 0.445
Pseudo Bag Styles 80.66 92.85 84.69 86.07 0.383

13.6. Effect of Hyper-Parameters

We evaluate the impact of two key hyper-parameters, in-
cluding K (the number of clusters for generating pseudo
bag styles) and λ (the tunable parameter in the authentic-
ity module). In the upper plot of Fig. 6, when K is small
enough, the entropy score is high because the model lacks
sufficient exploration of statistical properties beyond the
client’s WSIs. As K increases, the entropy scores stabi-
lize around 0.005, indicating reduced divergence. Overall,
HistoFS outperforms CCST [21]. The lower plot of Fig. 6
shows the effect of λ on the entropy score. With a smaller λ,
HistoFS outperforms CCST [21], showing that the pseudo
bag styles strategy is effective. However, as λ increases
significantly, the entropy score rises, reflecting larger per-
formance divergence across institutions and making fine-
tuning λ challenging.

14. More details about Experimental Settings
We use HistoFL’s code base for implementation and build
other state-of-the-art methods based on their officially re-
leased codes. Specifically:
• The official code for HistoFL [3] can be found at https:
//github.com/mahmoodlab/HistoFL. We de-
ployed its attention-gated aggregation and differential pri-
vacy settings for our use.

• The official codes for FRMIL [10] and DTFD-MIL
[11] can be found at https://github.com/
PhilipChicco/FRMIL and https://github.
com/hrzhang1123/DTFD-MIL, respectively. We
deployed their MIL backbones in a federated setting.

• The official codes for MixStyle [30] and DSU [31] can be
found at https://github.com/KaiyangZhou/
mixstyle - release and https : / / github .
com/lixiaotong97/DSU, respectively. We de-
ployed their style augmentation methods during the local
update process.

• The official code for CCST [21] can be found at https:
//github.com/JeremyCJM/CCST. We deployed

https://github.com/mahmoodlab/HistoFL
https://github.com/mahmoodlab/HistoFL
https://github.com/PhilipChicco/FRMIL
https://github.com/PhilipChicco/FRMIL
https://github.com/hrzhang1123/DTFD-MIL
https://github.com/hrzhang1123/DTFD-MIL
https://github.com/KaiyangZhou/mixstyle-release
https://github.com/KaiyangZhou/mixstyle-release
https://github.com/lixiaotong97/DSU
https://github.com/lixiaotong97/DSU
https://github.com/JeremyCJM/CCST
https://github.com/JeremyCJM/CCST


Figure 6. Effect of hyper-parameters, K and λ, on HistoFS.

its cross-client style transfer along with our federated pro-
cess.

• The official code for DACS [26] can be found
at https://github.com/FlyingRoastDuck/
DACS_official. We deployed its style transforma-
tion model (STM) and authenticity constraints along with
our MIL backbone choice.

In particular, these methods [21, 26, 30, 31] were em-
ployed to transform the statistical properties of each image
feature from one client using those from others. However,
this is not the case for WSIs that consists of hundreds to
hundreds of thousands of patch image features. So, we
modified their codes according to our use. For CCST [21],
the server was employed to receive all the styles from each
client’s patch image features and broadcast them back to
all clients. For DACS [26], we trained the STM accord-
ing to style information of each patch and transformed the
style via AdaIN [18]. For local style transfer [30, 31], we
randomly selected patches according to the probability aug-
mentation level that was 0.5 [30] within a local WSI.

On the other hand, we adopted SSL-ViT [1] and
ResNet50 [49] as the feature extractors, respectively.
Specifically, SSL-ViT is a transformer-based model. We
thus built upon the DINO framework and used the pre-
trained model released in the timm library (https://
huggingface.co/timm/vit_small_patch16_

224.dino). For each patch image, SSL-ViT outputs a
feature with 384 dimensions. ResNet50, on the other hand,
is a widely used CNN model in the WSI community, uti-
lizing the ImageNet pre-trained model officially released
by PyTorch (https://download.pytorch.org/
models/resnet50-0676ba61.pth). For each patch
image, ResNet50 outputs a feature with 1024 dimensions.

https://github.com/FlyingRoastDuck/DACS_official
https://github.com/FlyingRoastDuck/DACS_official
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