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1. Introduction
This supplementary material provides additional insights and extended analysis to support the main paper. Below, we outline
the key sections :

Extended Literature on Class Discovery: (Section 2) A detailed review of prior work in Novel Category Discovery (NCD)
and Generalized Category Discovery (GCD), emphasizing advancements relevant to domain shifts.

DG-GCD in Practice: Applications Across Domains: (Section 3) Real-world applications of DG-GCD, including driver-
less cars, healthcare, and retail.

Dataset Details: (Section 4) Comprehensive information on datasets, their configurations, and class distributions.

Technical Details about Synthetic Data Generation: (Section 5) Description of the synthetic domain generation pipeline
and parameter configurations.

Synthetic Domain Utilization in DG-GCD: (Section 6) Integration of synthetic domains into training and validation, with
visualizations and statistical insights.

Handling Open-Set Recognition: (Section 7) Methodologies for open-set recognition, including episodic classifiers and
adversarial loss.

Pseudocode for Episodic Training Strategy: (Section 8) The pseudocode for our episodic training strategy and its imple-
mentation.

Meta-Knowledge Learned in Episodic Training: (Section 9) An exploration of how meta-knowledge is acquired and re-
fined through episodic training, enabling robust domain generalization and task adaptability.

Comprehensive Comparative Analyses Across Datasets: (Section 10.2) Comparative analysis of DG2CD-Net on PACS,
Office-Home, and DomainNet, evaluating its robustness and adaptability against benchmarks.

Performance Comparison with Domain Adaptation Methods: (Section 11) A detailed comparison of DG2CD-Net with
baseline and upper-bound domain adaptation methods.

Additional Ablation Studies: (Section 12) An analysis of the contributions of individual components in DG2CD-Net across
multiple datasets.

Effect of Backbone Initialization: (Section 13) A comparison of results using different backbones.

Effect of LoRA Fine-Tuning: (Section 14) A comparison of results using DG2CD-Net with different LoRA adapters.

Limitations and Future Work: (Section 15) A discussion on the current limitations and potential future directions for
DG2CD-Net .

Each section is carefully crafted to provide deeper insights, reproducibility details, and additional context for the results
presented in the main paper. We hope this supplementary material enhances the reader’s understanding and offers a foundation
for future exploration of domain generalization and category discovery.
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2. Extended Literature on Class discovery
Category discovery has evolved significantly from Novel Category Discovery (NCD) [6] to GCD [20]. Traditionally, NCD
methods [6, 7, 27, 29, 30] have utilized dual-model architectures where separate models are trained on labeled and unlabeled
data to facilitate task transfer or employed parametric classifiers on top of generic feature extractors to categorize new classes.
Recent advancements in GCD focus on leveraging labeled data to generate pseudo-labels for unlabeled images. DCCL [16]
uses InfoMap clustering, while PromptCAL [26] identifies pseudo-positive samples through semi-supervised affinity propa-
gation techniques. PIM [2] improves this by optimizing bi-level mutual information, and SimGCD [23] utilizes knowledge
distillation with a parametric classifier to enhance pseudo-label reliability. A key innovation is the contrastive mean-shift
clustering from [3], which creates a highly discriminative embedding space for fine-grained class distinctions. Additionally,
Gaussian mixture models [28] have been explored for clustering in GCD.

Methods DT Available Evaluation on P(S) = P(T )for Training Known/Novel classes

NCD [5, 9] ✓ Novel ✓
GCD [20] ✓ Both ✓
CD-GCD [18] ✓ Both ✗

DG-GCD ✗ Both ✗

Table 1. Comparison of methods based on target-domain data (DT ) availability during training, evaluation on known and/or novel classes,
and distribution divergence between the source (S) and target (T ) domains in class discovery contexts: novel (NCD), generalized (GCD),
and cross-domain (CD-GCD). Our proposed DG-GCD setting is different and more challenging than the rest.

3. DG-GCD in Practice: Applications Across Domains
The challenge of domain generalization for generalized category discovery (DG-GCD) has numerous real-world applications
across various industries. In autonomous vehicles, models must adapt to changing environmental conditions (e.g., weather,
lighting) and detect novel road objects without access to original training data. In healthcare, medical image analysis must
generalize across different diagnostic tools while discovering new pathologies, all while respecting patient privacy regula-
tions. Wildlife monitoring requires models to generalize across ecosystems while identifying new species, while surveillance
systems must detect novel threats and adapt to different environments such as airports and public spaces. In retail and e-
commerce, recommendation systems need to adapt across product categories and discover new items, while robotics requires
models to generalize in dynamic environments and detect new objects. Lastly, in precision agriculture, systems must gener-
alize across different farms and detect novel crop diseases without requiring access to original datasets. These applications
highlight the importance of models that can generalize across domains and discover new categories in privacy-preserving,
real-world scenarios.

4. Dataset details
Datasets: Our experiments are conducted on three benchmark datasets (i) PACS [12] (ii) Office-Home [21], and (iii) Do-
mainNet [15].

For PACS and Office-Home, each domain was used as the source, with all others as target domains. For DomainNet,
a subset of source-target configurations was selected, as summarized in Table 2, ensuring the model was tested on diverse
domain pairs.

Source Targets

Sketch Clipart, Painting, Infograph, Quickdraw, Real World
Painting Clipart, Sketch, Infograph, Quickdraw, Real World
Clipart Painting, Sketch, Infograph, Quickdraw, Real World

Table 2. Source-target configurations for DomainNet



Figure 1. Additional synthetic image samples generated for the PACS dataset, showcasing diverse styles and domains across different
categories (House and Dog).

5. Technical details about Synthetic Data Generation
We employed the InstructPix2Pix pipeline from Hugging Face’s Diffusers library, utilizing the timbrooks/instruct-
pix2pix model, for image transformation tasks. To achieve a balance between processing time and output quality, we
configured the key parameter num inference steps to 10. The image guidance scale parameter was set to 1.0,
ensuring that the model retained the essential structure of the input image while applying the specified transformations.
Furthermore, the guidance scale parameter was adjusted to 7.5, promoting a strong alignment with the transformation
prompt. These configurations allow for straightforward replication of our process while maintaining high-quality output.

6. Synthetic Domain Utilization in DG-GCD

Figure 2. Categorization of synthetic domains utilized in the training and validation phases. Training domains are designed to simulate
diverse conditions such as weather, color, and place variations. Validation domains challenge the model’s adaptability to new, complex
scenarios.

In our study, we generate nine synthetic domains for each of the PACS, Office-Home, and DomainNet datasets to en-
hance the adaptability of models trained under the Domain Generalization for Generalized Category Discovery (DG-GCD)
framework. Table 3 outlines the distribution of these domains, with six utilized in training and three in validation, ensur-
ing comprehensive exposure to varied environmental conditions and rigorous testing of generalization capabilities. This
structured approach improves the models’ robustness against unseen real-world scenarios.

Figure 2 categorizes the synthetic domains used in our study’s training and validation phases. The training domains
include variations such as “Rainy” and “Snow” weather, “White” and “Black” colors, and “Forest” and “Beach” settings,
broadening the model’s exposure to diverse scenarios. The validation domains introduce “Summer” weather, “Gray” color,
and “Urban” settings to test the model’s ability to generalize across new and complex environments. This strategic use
of synthetic domains demonstrates our approach to enhancing robustness and adaptability in models, crucial for effective
domain generalization in real-world applications.



Dataset Total Domains
Generated

Used in
Training

Used in
Validation

PACS 9 6 3
Office-Home 9 6 3
DomainNet 9 6 3

Table 3. Synthetic Domain Generation and Utilization for DG-GCD

Table 4 presents the Average Fréchet Inception Distance (FID) scores for synthetic domains compared to the original
domains within the Office-Home dataset. The scores are calculated to evaluate the visual similarity between generated
images in environments like “Rainy,” “Black,” “Urban,” “Beach,” “White,” and “Snow,” and the original dataset categories:
Art, Clipart, Product, and Real World. Lower FID scores indicate closer visual resemblance to the original domain, suggesting
better synthetic image quality and domain adaptation. The data reveal variations in FID scores, with “White” and “Black”
environments achieving the lowest scores, indicating higher similarity and potentially more effective domain generalization.
This analysis provides insights into which synthetic modifications most accurately reflect the characteristics of their respective
real-world counterparts, crucial for training robust models capable of generalizing across diverse visual contexts.

Domain
FID Scores

Art Clipart Product Real World

Rainy 140.11 158.81 167.27 154.42
Black 58.69 74.35 86.65 72.28
Urban 97.77 131.80 138.45 119.78
Beach 109.13 133.33 136.54 121.10
White 49.80 71.07 77.34 61.73
Snow 100.99 125.03 132.42 117.50

Table 4. Average Fréchet Inception Distance (FID) comparison between pairs of the generated and original domains over all the classes of
the Office-Home dataset.

7. Handling Open-Set Recognition with Episode-Specific Classifiers
In our framework, we employ a |Yeg

s |+1-class episode-specific classifier to address open-set recognition in episodic training.
Here, |Yeg

s | denotes the number of known classes in an episode, while the additional class models the open-set category, cap-
turing instances outside the known classes. This design dynamically adapts to episodic data, ensuring robust differentiation
between known and unknown classes.

7.1. Adversarial Loss in Open-Set Domain Adaptation
To refine the decision boundary, we use an adversarial loss, Ladv, which separates open-set instances by pushing them further
from the known classes in feature space. This adversarial refinement enables the confident classification of unknown samples
while maintaining performance on known categories. By tailoring decision boundaries to the episodic data, the classifier
improves adaptive learning, generalization to new domains, and detection of novel classes in unseen distributions.

The adversarial loss used in our method is inspired by [19]. It facilitates the separation of known and unknown samples in
the target domain by training the classifier Feg

c and the generator Fg−1 adversarially. The adversarial loss Ladv is defined as:

Ladv(x
t) = −α log(p(y = |Yeg

s |+1|xt))− (1− α) log(1− p(y = |Yeg
s |+1|xt)), (1)

Where:
• xt represents a target sample from Dsyn,
• p(y = |Yeg

s |+1|xt) is the predicted probability that xt belongs to the unknown class,
• α is a hyperparameter (set to 0.5 in our experiments) that determines the decision boundary for the unknown class.



7.1.1. Training Objectives
Adversarial loss (Ladv) is optimized along with Source Classification loss, which is a standard cross-entropy loss that ensures
accurate classification of known source samples:

Ls(x
s, ys) = − log(p(y = ys|xs)), (2)

where (xs, ys) represents a source sample and its label from DS respectively.
The classifier Feg

c and generator Fg−1 is trained in the following manner:
• For the classifier Feg

c , the objective is to minimize the total loss:

min
Feg

c

Ls(x
s, ys) + Ladv(x

t). (3)

• For the generator Fg−1, the objective is to deceive the classifier by maximizing the adversarial loss:

min
Fg−1

Ls(x
s, ys)− Ladv(x

t). (4)

7.1.2. Implementation Details
To efficiently compute the adversarial loss, we use a Gradient Reversal Layer (GRL), which flips the gradient sign during
backpropagation. This allows simultaneous updates to Feg

c and Fg−1, facilitating stable training of adversarial objectives.

8. Pseudocode of the proposed Episodic Training Strategy
In this section, we present the pseudocode for the proposed episodic training strategy, as detailed in the main paper. This
algorithm is used to iteratively update the global model parameters θglobal across multiple episodes and global updates. The
process involves training task models on synthetic domains and updating the global model based on task vector computations
and validation results.

9. Meta-Knowledge learnt in Episodic Training
In our episodic training framework, meta-knowledge encompasses the cumulative insights gained from dynamic adaptation
to varying domain conditions. This knowledge is perpetually refined via systematic application and iterative adjustment of
task vectors, informed by feedback from domain-specific fine-tuning and rigorous validation processes. Unlike conventional
meta-learning, which primarily targets rapid task adaptability, our framework emphasizes robust domain generalization. This
approach enhances the model’s proficiency in effectively preemptively addressing and adapting to evolving data distributions.

Meta-knowledge is acquired through:
[-] Cross-Domain Exposure: By engaging with overlapping features across multiple domains, the model develops a nuanced

capability to generalize across diverse training environments. This cross-domain learning is fundamental in enabling the
model to abstract and apply domain-invariant patterns to new, unseen scenarios.

[-] Dynamic Vector Adjustments: Task vectors are continually updated in response to real-time performance metrics. This
dynamic refinement process allows the model to adjust its generalization strategies on the fly, enhancing its responsiveness
to changes in domain characteristics.

[-] Validation-Driven Learning: The integration of internal validation mechanisms ensures continuous performance feed-
back. This feedback is instrumental in fine-tuning the model’s strategic adjustments, ensuring optimized responses to
future domain shifts and data interactions.
Our method enhances the generalizability of pre-trained foundation models by adaptively combining their fine-tuned ver-

sions across multiple automatically synthesized domains, eliminating the need for manual annotations. This adaptive strategy
leverages the generalization performance of each fine-tuned model, minimizing the impact of poorly generalizable models.
Besides, our approach ensures both discriminativeness and domain independence for the DG-GCD task. Consequently, this
produces an embedding space predominantly guided by class semantics and suppressing stylistic artifacts, making it highly
effective for generalization and clustering.

10. More details on comparisons to literature
10.1. DG-GCD specific adaptations for baselines
We evaluate several state-of-the-art methods for generalized category discovery (GCD) and domain generalization (DG)
by adapting them to the DG-GCD setting, as detailed in Table 2 of the main text. In this setting, target domain access



Algorithm 1 Proposed Episodic Training Strategy for Updating θglobal

Require: Pre-trained global model parameters θ0global, number of global updates ng , number of episodes per global update
ne, source domain Deg

S , synthetic domain Deg
syn, validation domain Dvalid in the ethg episode.

Ensure: Final global model θng

global.
1: for g = 1 to ng do ▷ Global updates
2: Randomly shuffle synthetic domains Deg

syn.
3: for each episode e = 1 to ne do ▷ Episode training
4: Initialize task model parameters θeglocal ← θg−1

global.
5: Train task model θeglocal on (Deg

S ,Deg
syn) for the CD-GCD task.

6: Compute task vector δeg (Equ. 1 in the main text) :

δeg = θg−1
global − θ

eg
local

7: Validate task model on Dvalid and compute accuracies: All, Old, New.
8: end for
9: Compute weights we

g using softmax on All accuracies (Equ. 2 in main text) :

we
g =

exp(Alle
g)∑ne

e′=1 exp(All
e′
g )

10: Update global model θgglobal (Equ. 3 in main text) :

θgglobal = θg−1
global −

ne∑
e=1

we
gδ

e
g

11: end for
12: Save the final global model: θng

global.

is completely removed during training, and for certain methods, synthetic domain data is incorporated to simulate domain
shifts.

For ViT-B/16, pre-trained with DINO, we fine-tuned only the last block using source domain data, following standard
GCD practices, and evaluated the model on target domains without any target domain data during training. Similarly, GCD
was adapted by fine-tuning the last block of the backbone on the source domain alone, and we introduced a synthetic domain
variant to account for domain shifts.

For CMS (Contrastive Mean Shift) and SimGCD, we followed a similar procedure. We fine-tuned the last block using only
the source domain and, in addition, created synthetic variants by incorporating synthetic domain data to assess the methods’
ability to handle domain shifts effectively.

CDAD-Net, which is designed for cross-domain adaptation, was also adapted for the DG-GCD setting. We ensured that
it trained solely on the source domain, without access to target domain data, and created a synthetic variant to evaluate its
performance on unseen domains.

As seen in Table 2 of the main text, the methods incorporating synthetic domain data, such as GCD with synthetic data,
generally performed better in handling domain shifts, especially for novel class discovery. Our proposed models, leveraging
task merging techniques such as TIES-Arithmetic and LoRA, outperform baseline methods on both benchmark datasets,
achieving superior results, particularly on novel classes. The inclusion of synthetic domains proves beneficial, as evidenced
by the marked performance improvement across all datasets, with our model consistently achieving the highest or second-
highest results.

10.2. Comprehensive comparative analyses of DG2CD-Net across multiple datasets
This section presents a concise comparative analysis of DG2CD-Net on PACS, Office-Home, and DomainNet in Table-
5, 6 and 7 respectively. Each dataset challenges DG2CD-Net with unique domain shifts, showcasing its adaptability and
robustness. This evaluation aims to validate DG2CD-Net ’s performance against established benchmarks, highlighting it’s



strengths and identifying opportunities for advancement in domain generalization.

PACS

Methods Art Painting→ Sketch Art Painting→ Cartoon Art Painting→ Photo Photo→ Art Painting Photo→ Cartoon Photo→ Sketch
All Old New All Old New All Old New All Old New All Old New All Old New

ViT [4] 37.44 50.73 19.5 47.4 61.3 35.25 76.05 87.13 64.64 53.17 77.31 31.67 47.01 55.54 39.57 31.87 37.57 24.16
GCD [20] 32.02 41.53 19.12 46.78 60.35 28.57 79.16 99.45 48.73 74.73 80.26 67.31 57.53 60.46 53.6 46.23 48.56 43.08
SimGCD [23] 29.35 17.3 62.12 23.08 28.26 16.32 51.98 74.44 33.26 46.29 48.96 43.17 34.26 44.91 20.35 24.84 31.88 5.68
CDAD-Net [18] 46.02 45.95 46.21 51.71 53.43 49.46 99.04 99.21 98.9 76.61 76.97 76.19 56.78 56.67 56.93 46.65 46.15 48.01
GCD With Synthetic 45.78 36.71 58.01 54.84 73.47 38.57 82.6 66.29 99.39 79 86.84 72.02 53.56 67.93 41.01 44.18 47.78 39.32
CDAD-Net with Synthetic 43.09 42.53 44.6 49.45 59.31 36.58 99.16 99.21 99.12 65.38 62.83 68.36 42.92 41.97 44.15 41.51 43.79 35.32
DG2CD-Net (TIES-Merging[24]) 41.31 40.56 42.31 45.69 57 35.81 96.11 97.87 94.29 62.87 87.72 40.72 48.98 60.02 39.33 44.1 36.33 54.58
DG2CD-Net [TA[11]] 46.4 51.3 42.8 56.21 58.82 52.7 99.2 99.5 98.8 81.47 91.09 68.57 57.76 56.11 59.99 46.88 48.96 44.06
DG2CD-Net (Ours) 46.79 38.13 58.49 57.96 73.38 44.48 99.34 99.7 98.97 86.67 91.87 82.04 62.97 71.18 55.8 45.72 36.53 58.13
DG2CD-Net * (Ours)[LoRA[10]] 46.83 37.79 59.03 63.82 71.13 57.43 99.46 99.35 99.57 88.89 93.94 84.4 64.19 72.23 57.15 46.45 37.75 58.19

Methods Sketch→ Art Painting Sketch→ Cartoon Sketch→ Photo Cartoon→ Art Painting Cartoon→ Sketch Cartoon→ Photo
All Old New All Old New All Old New All Old New All Old New All Old New

ViT [4] 23.93 26.53 21.61 40.61 58.92 24.62 33.29 33.88 32.69 38.09 47.36 29.82 33.57 35.67 30.74 41.38 39.08 43.74
GCD [20] 33.25 39.09 25.43 40.89 48.14 31.17 46.86 59.28 28.22 58.15 78.52 30.86 36 44.83 24.04 75.75 85.88 60.55
SimGCD [23] 21.19 31.91 8.67 23.17 36.77 5.4 34.22 27.46 40.8 38.38 42.07 34.07 34.84 33.94 37.31 53.05 45.85 59.06
CDAD-Net [18] 87.99 84.32 92.28 51.88 51.77 52.02 99.04 99.21 98.9 73.05 76.88 68.57 41.84 42.71 39.49 99.22 99.47 99.01
GCD With Synthetic 82.15 85.13 79.5 44.3 48.22 40.89 99.49 99.76 99.21 63.01 63.73 62.37 35.66 29.95 43.36 99.43 99.47 99.39
CDAD-Net with Synthetic 61.91 69.45 53.12 48.59 53.13 42.67 68.44 63.5 72.56 67.24 65.28 69.52 42.05 39.61 48.67 99.34 99.47 99.23
DG2CD-Net (TIES-Merging[24]) 80.59 80.78 80.42 58.94 75.71 44.28 99.07 98.64 99.51 87.45 90.93 84.35 40.67 31.39 53.2 98.71 97.99 99.45
DG2CD-Net (TA[11]) 73.02 79.37 64.51 55.89 54.84 57.29 99.31 99.5 99.03 90.89 92.75 88.4 46.03 49.67 41.1 99.16 99.35 98.88
DG2CD-Net (Ours) 88.75 93.52 84.49 56.76 72.14 43.33 99.13 98.7 99.57 90.77 93.37 88.46 49.2 43.18 57.33 95.57 91.62 99.64
DG2CD-Net * (Ours)[LoRA[10]] 90.87 95.28 86.93 66.25 78.32 55.72 99.22 98.88 99.57 91.02 93.99 88.37 46.33 38.19 57.33 99.22 98.82 99.64

Table 5. Detailed comparison of our proposed DG2CD-Net on DG-GCD with respect to referred literature for PACS Dataset.

Office-Home

Methods Art→ Clipart Art→ Product Art→ Real World Clipart→ Art Clipart→ Real World Clipart→ Product
All Old New All Old New All Old New All Old New All Old New All Old New

ViT [4] 18.88 20.86 15.79 30.34 35.42 21.83 29.52 32.76 24.85 14.96 15.6 14.12 18.59 20.12 16.4 30.39 32.51 26.84
GCD [20] 31.65 32.11 30.93 63.18 64.35 61.22 63.85 66.56 59.96 51.96 52.7 51 62.62 65.29 58.79 60.59 67.13 49.61
SimGCD [23] 24.54 34.35 8.09 41.95 57.92 13.54 46.78 65.54 14.73 31.11 39.56 11.88 25.66 37.66 5.15 28.88 41.38 12.96
CDAD-Net [18] 30.95 33.65 26.43 64.99 68.04 59.32 67.5 70.89 61.72 53.36 56.05 47.23 64.7 69.4 55.25 67.02 68.8 63.7
GCD With Synthetic 29.86 31.04 28.02 57.92 63.12 49.19 59.47 59.59 59.29 53.3 52.84 53.89 61.46 58.27 66.06 63.84 64.04 63.51
CDAD-Net with Synthetic 31.97 35.1 26.71 65.39 68.94 62.51 67.83 70.87 62.64 53.51 56.65 46.37 66.97 69.76 62.2 61.4 65.55 57.4
DG2CD-Net (TIES-Merging[24]) 33.96 37 29.23 59.99 62.93 55.07 66.26 68.42 63.15 52.18 52.3 52.04 58.16 58.62 57.5 65.32 72.33 53.56
DG2CD-Net [TA[11]] 29.52 27.31 33.06 62.42 61.67 63.59 64.46 62.14 67.8 51.24 53.32 47.12 64.23 61.24 68.92 65.28 66.03 64.13
DG2CD-Net (Ours) 31.51 31.96 30.81 67.46 68.73 65.32 64.45 60.25 70.48 50.76 48.76 53.36 64.77 60.58 70.79 65.34 67.48 61.76
DG2CD-Net (Ours)[LoRA [10]] 31.56 31.85 31.1 65.22 65.68 64.45 67.81 65.14 71.66 53.4 48.47 59.81 66.13 61.63 72.61 66.16 67.12 64.57

Methods Product→ Art Product→ Real World Product→ Clipart Real World→ Art Real World→ Product Real World→ Clipart
All Old New All Old New All Old New All Old New All Old New All Old New

ViT [4] 23.2 24.64 21.33 31.21 35.45 25.13 19.27 20.52 17.31 32.22 35.79 27.58 44.67 52.21 32.03 20.8 23.71 16.26
GCD [20] 50.27 48.18 52.99 65.07 63.09 67.91 29.08 29.22 28.87 54.26 54.05 54.55 69.04 72.76 62.79 31.04 34.93 24.97
SimGCD [23] 38.28 50.42 10.66 48.36 67.07 16.41 22.45 32.37 11.34 48.95 66.79 8.36 57.19 69.23 44.15 21.7 31.46 5.33
CDAD-Net [18] 50.1 52.43 44.67 66.47 72.13 56.81 31.36 34.6 25.94 54.68 58.07 46.96 61.39 64.79 55.06 31.78 36.02 24.69
GCD With Synthetic 49.18 46.54 52.61 63.4 59.67 68.77 28.43 27.72 29.55 51.71 61.55 38.91 61.14 65.34 54.1 26.38 28.11 23.68
CDAD-Net with Synthetic 54.12 57.67 46.04 66.97 70.2 61.46 32.34 35.13 28.68 53.72 56.89 46.5 56.47 62.33 45.62 31.19 33.67 27.02
DG2CD-Net (TIES-Merging[24]) 53.28 54.77 51.33 62.74 66.85 56.83 31.82 33.97 28.46 57.11 66.14 45.36 67.04 74.25 54.95 34.41 37.94 28.9
DG2CD-Net [TA[11]] 49.92 52.33 45.17 65.57 67.22 62.99 31.48 30.21 33.51 51.65 55.06 44.92 65.01 63.73 66.99 30.73 28.65 34.08
DG2CD-Net (Ours) 52.45 50.51 54.98 67.87 69.88 64.97 30.71 30.05 31.75 52.31 49.42 56.07 67.37 71.65 60.19 31.28 31.13 31.51
DG2CD-Net * (Ours)[LoRA[10]] 52.66 51.75 53.84 65.48 62 70.48 31.52 31.83 31.04 53.42 51.6 55.78 66.33 68.97 61.91 32.26 30.4 35.15

Table 6. Detailed comparison of our proposed DG2CD-Net on DG-GCD with respect to referred literature for Office-Home Dataset



DomainNet

Methods Sketch→ Real Sketch→ Quickdraw Sketch→ Infograph Sketch→ Painting Sketch→ Clipart
All Old New All Old New All Old New All Old New All Old New

ViT [4] 47.17 47.92 44.95 12.13 12.1 12.21 11.99 12.68 10.28 30.95 33.02 25.75 32.64 34.29 28.64
GCD [20] 51.13 51.88 48.92 16.08 15.65 17.2 12.6 12.57 12.68 35.25 35.96 33.46 31.22 30.85 32.1
SimGCD [23] 3.11 3.47 2.32 2.31 2.4 2.1 3.16 2.27 5.24 4.1 2.57 5.62 3.02 2.3 4.07
CDAD-Net [18] 48.21 47.7 49.77 12.27 11.52 14.24 12.07 12.69 11.34 35.47 36.39 32.86 18.63 17.52 20.39
GCD With Synthetic 53 51.71 47.64 13.71 13.79 13.99 12.24 11.99 11.37 35.43 34.12 30.83 22.49 22.2 21.49
CDAD-Net with Synthetic 47.11 46.09 49.4 12.75 13.1 14.05 12.52 13.04 11.92 35.87 36.73 33.35 18.99 17.68 21.07
DG2CD-Net (TIES-Merging[24]) 50.32 52.88 42.8 15.22 15.12 15.49 14.75 16.04 11.53 35.84 38.99 27.93 31.06 33.34 25.53
DG2CD-Net [TA[11]] 51.84 52.58 49.65 13.67 13.44 14.25 12.72 13.05 11.89 33.96 35.32 30.55 21.94 21.8 22.29
DG2CD-Net (Ours) 53.67 55.48 48.35 15.9 16 15.63 14.63 15.66 12.06 37.44 39.53 32.19 30.47 32.89 24.58
DG2CD-Net * (Ours)[LoRA[10]] 53.01 53.75 50.84 13.71 13.38 14.57 13.82 14.23 12.78 36.77 37.9 33.93 24.17 24.46 23.44

Methods Clipart→ Infograph Clipart→ Quickdraw Clipart→ Sketch Clipart→ Real Clipart→ Painting
All Old New All Old New All Old New All Old New All Old New

ViT [4] 12.18 12.64 11.03 12.13 12.1 12.21 24.76 26.24 21.27 44.14 45.43 40.34 26.76 28.7 21.91
GCD [20] 14.03 14.64 12.49 14.94 14.67 15.65 25.33 27.68 19.78 53.23 55.48 46.62 34.82 36.82 29.83
SimGCD [23] 2.03 0.4 3.94 0.5 0.3 1 1 0.02 3.842 1.64 1.07 2.42 2.07 2.05 2.13
CDAD-Net [18] 12.79 12.96 12.87 12.06 11.59 12.78 19 19.17 18.76 47.06 44.62 49.2 34.45 36.02 32.85
GCD With Synthetic 11.46 12.03 10.04 12.68 12.57 12.95 18.74 20.54 14.47 50.11 52.26 43.79 32.67 34.91 27.06
CDAD-Net with Synthetic 13 13.37 12.56 12.07 11.76 12.89 17.46 18.03 16.67 48.25 47.51 49.6 33.23 32.79 34.2
DG2CD-Net (TIES-Merging[24]) 15.66 17.02 12.28 14.91 14.73 15.39 27.75 30.64 20.89 54.18 56.73 46.72 36.71 38.14 33.16
DG2CD-Net [TA[11]] 15.71 16.88 12.78 14.63 14.18 15.81 27.03 29.89 20.26 53.91 55.14 50.29 36.85 39.69 29.75
DG2CD-Net (Ours) 15.81 17.09 12.63 14.53 14.14 15.58 26.86 29.49 20.64 54.54 56.03 50.17 36.81 38.87 31.67
DG2CD-Net * (Ours)[LoRA[10]] 14.19 14.12 14.35 13.31 13.23 13.53 22.01 22.9 19.91 53.95 54.99 50.91 37.12 37.89 35.21

Methods Painting→ Infograph Painting→ Quickdraw Painting→ Sketch Painting→ Real Painting→ Clipart
All Old New All Old New All Old New All Old New All Old New

ViT [4] 12.2 13.1 9.94 12.13 12.1 12.21 23 24.78 18.79 51.53 54.16 43.8 26.57 28.08 22.92
GCD [20] 12.87 12.67 13.37 10.74 10.56 11.21 21.49 22.26 19.68 52.12 51.86 52.86 25.32 24.79 26.6
SimGCD [23] 3.2 2.6 3.8 3.5 2.32 4.65 4.23 3.56 4.86 4.2 3.52 5 4.49 3.6 5.23
CDAD-Net [18] 11.65 12.49 10.66 11.98 11.2 12.44 17.11 17.68 16.32 49.04 48.63 50.27 20.06 19.74 20.57
GCD With Synthetic 10.86 10.56 9.84 11.81 11.8 11.77 17.26 16.25 13.83 49.1 47.3 42.04 19.3 19.45 18.04
CDAD-Net with Synthetic 11.53 12.32 10.59 11.86 10.71 12.32 17.29 18.45 15.7 48.4 50.23 49.7 17.44 15.92 19.86
DG2CD-Net (TIES-Merging[24]) 15.34 16.64 12.13 12.89 12.64 13.58 23.45 25.6 18.38 55.16 57.3 47.46 27.5 29.48 22.65
DG2CD-Net [TA[11]] 15.17 16.52 11.8 12.78 12.58 13.29 23.21 25.69 17.34 55.16 57.31 48.87 26.76 27.91 23.96
DG2CD-Net (Ours) 15.71 16.72 13.22 12.9 12.66 13.53 23.14 25.23 18.19 55.07 56.97 49.5 27.6 29.07 24.03
DG2CD-Net * [Ours)[LoRA[10]] 14.41 14.68 13.74 12.9 12.9 12.91 21.39 22.39 19.03 53.83 54.99 50.44 22.94 22.41 24.24

Table 7. Detailed comparison of our proposed DG2CD-Net on DG-GCD with respect to referred literature for DomainNet Dataset

11. Performance comparison with Domain Adaptation (DA) methods
Table 8 presents a performance comparison of our proposed method, DG2CD-Net , against two prominent methods, CROW
(DA) and CDAD-Net (DA), across three benchmark datasets: PACS, Office-Home, and DomainNet. Notably, CDAD-Net
(DA) represents a strong upper bound as it operates in the Domain Adaptation (DA) setting, leveraging access to target-
domain data during training. In contrast, DG2CD-Net is designed for the more challenging Domain Generalization (DG)
setting, where no target-domain information is available. While CROW (DA) is included in this supplementary comparison
for reference, CDAD-Net (DA) serves as a more appropriate upper bound, given its superior performance.

Our method significantly outperforms CROW (DA) across all datasets in terms of overall accuracy, achieving a margin of
+9.34% on PACS (73.30% vs. 63.96%), +3.39% on Office-Home (53.86% vs. 50.47%), and +2.81% on DomainNet (29.01%
vs. 26.20%). Additionally, DG2CD-Net demonstrates robust generalization across both old and new classes, underscoring
its adaptability in diverse scenarios. While CDAD-Net (DA) achieves higher performance due to its reliance on target domain
data, the comparison highlights the inherent trade-off between the DA and DG settings. By including CROW (DA) results
here, we provide a holistic view of baseline performance while emphasizing the relevance of CDAD-Net (DA) as the key
upper bound in this context. This reinforces the practical value of DG2CD-Net in solving the domain generalization challenge
without relying on target domain assumptions.

12. Additional Ablation Studies
Component Impact on Office-Home: Table 9 reveals the significant effects of essential components on the DG2CD-Net’s
overall performance. Removing synthetic domains leads to a decrease of approximately 3.28% in the “All” metric, un-



Methods Venue Target-Domain PACS Office-Home DomainNet

All Old New All Old New All Old New

CROW (DA) [22] ICML’24 ✓ 63.96 61.78 68.65 50.47 54.50 39.71 26.20 26.60 25.80
DG2CD-Net (Ours) – × 73.30 75.28 72.56 53.86 53.37 54.33 29.01 30.38 25.46
CDAD-Net (DA) [18] [Upper bound] CVPR-W’24 ✓ 83.25 87.58 77.35 67.55 72.42 63.44 70.28 76.46 65.19

Table 8. Performance comparison of CROW method with our method, as well as the upper bound CDAD-Net (DA), on all datasets.

derscoring its importance for generalization. The absence of episodic training results in a decrease of 2.33%, highlighting
its role in model adaptability. The most considerable impact is observed with a fixed old/novel class split, which shows a
reduction of 4.67% compared to the full model’s configuration. In contrast, the full implementation of DG2CD-Net achieves
a comprehensive performance of 53.79% across all classes, demonstrating the effectiveness of dynamic weighting and the
combined utility of all components in enhancing domain generalization and class discovery in the Office-Home dataset.

Model Variant Office-Home
All Old New

✓Without Synthetic Domain 50.51 50.58 50.31
✓ Without multi-global updates 51.46 50.77 52.26
✓ Static known/novel class split across episodes 49.11 56.23 38.85

Full DG2CD-Net (Proposed) 53.79 53.83 53.66

Table 9. Ablation study results on the impact of various components of DG2CD-Net for the Office-Home dataset.

Observation on Old-New class splits: Table 10 illustrates the impact of varying base (old) and novel (new) class splits on the
performance of DG2CD-Net on the PACS dataset. We tested five different splits, ranging from 2 old classes with five novel
classes to 6 old classes with one novel class. The results show that as the proportion of novel classes increases, the model’s
performance on novel classes improves, but there is a slight decline in accuracy for base classes. This behavior highlights the
challenge of maintaining a balance between recognizing old and novel categories. The best overall performance is observed
with the 5-2 split, indicating that DG2CD-Net is more effective when the distribution of old and novel classes is moderately
balanced.

Splits (Old-New) PACS
All Old New

2 - 5 74.94 73.29 76.77
3 - 4 75.11 76.28 74.69
4 - 3 73.3 75.28 72.56
5 - 2 75.85 74.01 80.72
6 - 1 74.89 74.90 74.96

Table 10. Sensitivity on different Old-New class splits.

Effect of Lmargin : As shown in Figure 3, adding Lmargin improves accuracy across all categories. Old classes benefit
the most with a 2.36% increase, indicating enhanced feature separation for well-known classes. New classes see a 2.23%
improvement, suggesting better discrimination for novel classes. Overall, accuracy increases by 1.85%, demonstrating that
Lmargin enhances class separability and generalization across both familiar and unseen categories.
Effect of m in Lmargin : Table 11 illustrates the average accuracy of our model across different margin values (m) inLmargin.
We experimented with different values of m ranging from 0.3 to 0.9. The highest scores were observed for m = 0.7, indicating
that this margin setting provides better separation between known and novel classes.
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Figure 3. Accuracy comparison of Old, All, and New categories with and without Lmargin loss.

m
PACS

All Old New

0.3 71.50 74.48 69.05
0.4 71.27 75.58 67.92
0.5 69.82 74.00 66.23
0.6 63.13 65.42 61.99
0.7 73.30 75.28 72.56
0.8 72.24 75.77 69.92
0.9 71.91 75.69 68.98

Table 11. Average accuracy for different sensitivity of the
hyper-parameter m.
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Figure 4. The relationship between margin m and accuracy
(All, Old, New). The margin m in the loss function influences
class separation, with peak accuracy observed at m = 0.7.

13. Effect of initialization of backbone
Backbone selection significantly impacts the performance of DG2CD-Net in domain generalization. Initially, we employed
ViT-B/16 with DINO initialization for comparability with prior work, but inspired by DINO-v2’s advancements, we expanded
our study to include ViT-B/16 with DINO-v2 initialization. Additionally, we have experimented with ResNet-50 with CLIP
and ImageNet initializations and ViT-B/16 with CLIP initialization. Table 12 summarizes the results on PACS.

Model Backbone PACS
All Old New

ResNet-50 CLIP [17] 25.39 20.97 29.33
ResNet-50 ImageNet [8] 54.98 64.18 45.33
ViT-B/16 DINO [1] 73.30 75.28 72.56
ViT-B/16 DINO-v2 [14] 87.71 90.67 84.91
ViT-B/16 CLIP [17] 90.07 92.25 87.72

Table 12. Performance Comparison of DG2CD-Net with different backbones on the PACS Dataset

The results highlight the superiority of the DINO-v2 and CLIP-based models, with CLIP achieving the highest perfor-
mance. The strong results of ViT-B/16 (CLIP) suggest that pre-training with vision-language data improves generalization.
Given these findings, we recommend DINO-v2 and CLIP-based ViT as strong baselines for future domain generalization
studies.

14. Effect of LoRA Fine-Tuning
In our experiments, we incorporated LoRA (Low-Rank Adaptation) into DG2 CD-Net to improve the efficiency of fine-tuning
while minimizing memory overhead. Unlike full fine-tuning, LoRA updates a small subset of parameters while keeping pre-
trained weights frozen, thereby reducing catastrophic forgetting and enhancing adaptation and generalization.



Method Trainable Parameters (K) Total Parameters (K) Percentage (%)
DG2CD-Net (Vanilla) 7,088 85,799 8.261
DG2CD-Net* (LoRA) 98 85,799 0.115

Table 13. Comparison of model parameters with and without LoRA fine-tuning.

Table 14 presents a performance comparison of DG2CD-Net using different LoRA-based adapters, including LoRA [10],
DoRA [13], and AdaLoRA [25]. These adapters aim to improve the model efficiency while maintaining high accuracy, with
LoRA achieving the best performance.

Adapters All (%)

LoRA [10] 75.21
DoRA [13] 74.11
AdaLoRA [25] 74.20

Table 14. Performance comparison of DG2CD-Net with different LoRA Adapters

These findings emphasize the efficiency of LoRA in reducing the computational burden of fine-tuning while maintaining
the model’s overall capacity. Given the benefits, we recommend adopting LoRA-based fine-tuning in future research for
domain generalization tasks to optimize memory usage and training speed without sacrificing performance.

15. Limitations and Future Work
While DG2CD-Net demonstrates strong performance in domain generalization and category discovery, there are areas for
future enhancement. One aspect that can be improved is the reliance on synthetic domain generation, which, while effective,
can be optimized to reduce computational costs. Exploring more streamlined approaches to synthetic domain creation or
alternative techniques that do not require synthetic data could further improve scalability and efficiency. Additionally, the
episodic training framework, though beneficial for adaptation, demands considerable computational resources, especially
when applied to large-scale datasets like DomainNet. Optimizing this process could make the method more feasible for
real-world, large-scale applications.

In future work, efforts can focus on enhancing the efficiency of both synthetic domain generation and the episodic training
process. Advanced techniques for model merging can also be explored to further improve performance. Addressing chal-
lenges like data imbalance, which is common in real-world scenarios, will strengthen the model’s robustness and adaptability.
Overall, extending DG2CD-Net in these directions holds great promise for developing even more scalable and effective solu-
tions for complex tasks in domain generalization.
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