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8. Additional Training Details
We provide additional details about our training configura-
tions in Tab. 9. We also indicate dataset-specific settings,
like batch size and number of epochs, in Tab. 10.

Setting Value

Learning Rate Schedule Linear
Warmup Proportion (Linear) 10%
CLIP Param. Learning Rate 1e-7

Temporal Layer Learning Rate 1e-4
Optimizer Adam

Adam Betas β1 = 0.9, β2 = 0.98
Adam ϵ 1e-6

Weight Decay 0.01
Max. Grad. Norm 1

Table 9. Training settings for VIDEO-COLBERT.

Dataset Backbone Type Batch Size Epochs

MSR-VTT ViT-B/32 256 5
ViT-B/16 128 5

MSVD ViT-B/32 256 5
ViT-B/16 128 5

VATEX ViT-B/32 256 10
ViT-B/16 128 10

DiDeMo ViT-B/32 64 20
ViT-B/16 64 20

ActivityNet ViT-B/32 64 20
ViT-B/16 64 20

Table 10. Dataset-specific training settings.

9. Computational Analysis
In Tab. 11, we analyze the computational trade-offs in-
volved in the different MMS variants. We report num-
bers pertaining to both offline index creation and query-time
ranking. During video indexing, we see that MMSFV is no
more expensive than MMSV , as they involve identical for-
ward passes through the video encoder. At query-time, de-
spite MMSFV involving more dot products, latency is vir-
tually the same as the single-level interactions. Because
query latency is dominated by the text encoding process
(which involves self-attention), any differences in interac-
tion complexity are rendered negligible. The main draw-
back of the two-level interaction is the storage cost of main-
taining both spatial and spatiotemporal features in the video

index, which can be mitigated by employing index com-
pression methods.

Indexing (ms/vid) Query Latency (ms) R@1

MMSF 8.90 11.1 44.3
MMSV 9.64 11.1 47.0
MMSFV 9.64 11.2 48.1

Table 11. Indexing time, query latency and retrieval accuracy on
MSR-VTT 1K with CLIP-B/32 on A5000 GPU.

During training, we find that the multi-level loss adds
no additional computational burden. Backpropagation on
our dual sigmoid loss involves the exact same number of
gradient computations as doing so on a single-level loss (on
v), and uses virtually the same amount of VRAM.

10. Effect of Query Pad Token Choice

In Tab. 12, we show how video retrieval results are af-
fected by different choices of padding token when using soft
query augmentation in VIDEO-COLBERT with a CLIP-
B/32 backbone. Ordinarily (e.g. when using only the spe-
cial aggregation token to represent the query), the choice
of padding token does not have any influence on retrieval
outcomes. However, when performing soft query augmen-
tation, all self-attention operations involve padding tokens,
and the outputs of these extra tokens are used for interac-
tion with visual features. As a result, the choice of pad
token does have an impact on retrieval results when using
query augmentation and token-wise interaction. Because
we freeze the token embeddings in the text encoder, we find
that the choice of padding token has a noticeable effect on
retrieval metrics. This is due to the fact that certain tokens
will have pre-existing semantics that are better aligned with
the query augmentation task than others. We found that the
exclamation mark leads to the best performance out of the
options we considered.

Token ID Token Text R@1 R@5 R@10 nDCG

31 @ 46.0 74.6 83.3 0.644
49407 <|endoftext|> 46.0 73.3 82.3 0.638
3002 ... 47.8 74.6 83.6 0.652

13530 </w> 47.9 72.8 83.5 0.646
49406 <|startoftext|> 48.0 74.3 84.0 0.653

0 ! 48.1 74.9 83.9 0.652

Table 12. Effect of choice of padding token for soft query aug-
mentation. Results on MSR-VTT using CLIP-B/32 backbone.



Figure 4. Visualization of the interactions between query tokens and video frames before and after the temporal encoder of VIDEO-
COLBERT, trained on MSR-VTT. The green arrow ( ) represents the interaction between query tokens and frames before temporal encod-
ing. The red arrow ( ) represents the interaction between query tokens and frames after the temporal encoding.

11. Visualization
In Fig. 4, we explore how interactions between text tokens
and frame representations change before and after the tem-
poral transformer layers by visualizing the maximally sim-
ilar frame to certain query tokens. To enhance the inter-
pretability of this exploration, we do not use query or vi-
sual expansion during encoding. Generally, we find that the
frame representations before and after the temporal encoder
behave differently during interaction with the text tokens. In
Fig. 4, the most obvious shift is in the similarities of “field”
and “street.” Prior to the temporal encoding, “street” and
“field” correspond to frames that clearly represent the sin-
gular visual concept: a large grassy field with the car in
the distance, and the street from the first person view of
the car. After the temporal encoder, they then become as-
sociated with new frames: one with the car slightly on the
grass field and another when the car is driving back onto
the street. We interpret these results as a sign of stronger
temporal contextualization in the frame representations af-
ter the encoding. Specifically, the associated frames seem to
shift from depicting static concepts to more dynamic ones
when temporally contextualized features are used.
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