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Supplementary Material

6. Overview

We include a video titled Short video overview.mp4 along
with this document, which provides a narrated overview
of our paper. Section 7 derives our extended Kalman fil-
ter (EKF) for event-based star tracking. Section 8 pro-
vides additional details on our tracking algorithm. Sec-
tion 9 provides implementation details and a discussion on
our laboratory setup used to perform centroiding experi-
ments. Section 10 provides more details on our synchro-
nized EVK4-HD event camera and APS star tracker, includ-
ing their hardware configurations, synchronization scheme,
and procedures for obtaining the brightness-dependent off-
set curve. Section 11 provides additional details on our
night sky dataset. Section 12 provides plots for the tracks
summarized in Table 2 of the main text.

7. State estimation with an Extended Kalman
Filter (EKF)

This section provides more details on estimating our state
using an EKF. Restated from the main text, our measure-
ments are the set of N, positive events £ = {x,t};—o0.n,
where we denote each event as e; € £.

7.1. Bayesian State Estimation with a Kalman Filter

Under a Markov assumption, the probability distribution
over all states and measurements is,
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The Kalman filter uses predict and update phases to recur-
sively estimate the posterior distribution of the states con-
ditioned on measurements up to the current timestep. As
shown in [4], the predicted state is the distribution asso-
ciated with the previous state, over all possible previous
states,

p(Sil€i—1) = /p(Si|Si—1)p(Si—l|57‘,—1)dS11—1 (10

where the measurements up to the current timestep ¢ are
& = {e1,...,e:}. The update step is the product of the
measurement likelihood and the predicted state,
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We refer interested readers to Barker et al., [4] for more
details on these distributions and how they are estimated by
the EKF equations that we define in the next section.

7.2. EKF Predict and Update Matrix Equations

7.2.1. Measurement Geometry

We aim to use EBS measurements of stars to estimate the
camera state S = [q, w], where q € SO(3) is a quaternion
encoding a valid 3D rotation, and w € R? denotes the 3D
angular velocity. For our work, we consider the catalog of
stars S € RN*3 with apparent magnitude < 7. Each of
the [V stars is a 3D point normalized to the unit sphere with
negligible parallax effects [12]. A single star s; € S with
3D coordinates (X, Y, Z) is rotated into the camera’s frame
using a world-to-camera quaternion qyc',

éi = qwC(Si)7 (12)

and projected onto the 2D imaging plane using the pinhole
camera model
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where f is the focal length.

7.2.2. EKF Predict and Update Equations

Our state is a compound manifold defined by SO(3) x R?
(i.e., the camera’s rotation and angular velocity). To esti-
mate our state with an EKF, we employ the boxplus operator
M [18], which defines the addition of a 6D residual vector
[06, 90,00, , 0w, s Ou, , 0. ] to OUr state manifold. Formally,
the operator is defined as,

H:SxR =S, (14)

13)

and provides a mechanism for adding a change in rotation
and velocity to our state quaternion and velocity.

We use a constant velocity prior to have the state attitude
respond proportionally to the velocity and time,

q'™ = q' B Atw = exp(Atw) - q'. (15)

Here, the boxplus operator uses the exponential map to
project a change in angle to the quaternion’s Lie group,
where it is then multiplied with the quaternion to update
the rotation [18]. With a constant velocity prior defined, the
estimation of the state mean u is given by the standard EKF
equations,

u= f(u), (16)

_ df(u’)
F= du |’ (17)
P =FPF' +Q. (18)

'We typically omit the wc subscript for brevity.



Eq. 17 defines the Jacobian for the constant velocity model
f(-) at time ¢. Eq. 15 uses the model to predict the state
mean u. Eq. 18 updates the state uncertainty P using the
linearized model F' and process uncertainty Q.

The EKF update phase is defined with the following
equations:

H— dh(ut) , (19)

du |,
y =z — h(a), (20)
K=PH'(HPH™ +R) !, (21)
u=uHKy, (22)
P = (I- KH)P. (23)

Eq. 19 defines a Jacobian for the measurement model A(-).
Eq. 20 is the residual between a measurement z and the pre-
dicted state measurement h(x). Eq. 21 defines the Kalman
gain, which is used in Eq. 22 to interpolate the prior and
measurement via the boxplus operator. Finally, Eq. 23 uses
the Kalman gain to update the state covariance.

7.3. Derivation of F, Q, H

7.3.1. Forward model Jacobian:

The forward model jacobian is a matrix F € R6*6 that
linearizes Eq 15. Our Jacobian matrix is comprised of four
partial derivatives,
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Using identities defined by Bloesch et al. [6], we derive the
first partial derivative w.r.t the attitude as
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where I € R3*3 is the identity matrix, C(-) is Ro-
driguez’ formula applied to an exponential mapped rotation,
as defined by Bloesch et al. [6], and v* = (v1, va, v3)* de-
notes the 3 x 3 skew-symmetric matrix,
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We then derive the partial derivative with respect to velocity.
Using the chain rule,

dqt+1
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where I' is the Jacobian of the exponential map [6] and ex-
panded as
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For the velocity transition function w!*! = w?, the deriva-
. . . . . t+1

tive with respect to the attitude is simply dgT = O3x3, and

the derivative with respect to velocity is the identity matrix,

t+1 1. . . . . .
dgT = I343. Filling in the four partial derivatives yields
the F matrix,
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7.3.2. Process noise:

The process noise matrix Q € R®*5 adds our uncertainty in
the constant velocity model to the Kalman filter covariance.
The continuous white noise is applied to the velocity terms,
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where ¢, is the power spectral density. In practice, the
power spectral density is an engineering knob — larger val-
ues result in smoother state predictions. The discretization
of the noise through our process model [32] is given by

At
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We solve for Q using a symbolic solver, obtaining the ma-
trix
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which is shown as an approximation because we have set
small terms to zero.
7.3.3. Measurement Jacobian:

The event measurements relate to the attitude using the rota-
tion and projection models of Eq. 12 and Eq. 13. We define



our measurement matrix H € 2 x 6 for a single event as

AL O1xs
H-= d% 0 35)
dq? 1x3,

where % e RI*3, d% € R'X3, noting that we do
not incorporate velocity into our measurement model (i.e.,
% = 01«3 and % = 01 x3). Considering the event z and

y coordinates, the partial derivatives w.r.t. attitude expands

as
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and
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respectively. In these equations, the quaternion q(-) rotates

the star world coordinates to the camera, and the (z,y, z)

subscripts index that dimension of the rotated vector (e.g.,
1

q’(s), = q’(s) [0|). For completeness, the rotation of a
0

vector s € R by a quaternion q = [go, 4] = [90, 9= @y, G-]

is defined as,

a(s) = (2q5 — 1)s +2004*s +24(q"s).  (38)
Using the product and chain rules, we compute the

derivative of the event location (z,y) with respect to atti-
tude as
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where the Jacobians of the rotations are given by

for = —(a)z. (1)
for = —la);. “2)
(43)
and
92 _ _(qis))r. (44)

Algorithm 2 EBS-EKF Star Tracking

Input: Positive event stream & = {x,t};—o. N,
Output: Camera State S (3D rotation and angular ve-
locity)
Initialize: Sy < astrometry with binned positive events
1 <— max search radius
for each event e; = (x;,t;) do
Si < EKF predict at ¢;
X5 < closest projected catalog star to x;
if distance(x;, X;) < r then
v < star’s normalized linear velocity via Si
ms <— star’s apparent magnitude
X; < X; + Vs - z(my) # apply offset correction
S; <+ EKF update with X;
end if
end for

8. Tracking Algorithm Details

We now provide more details for our tracking algorithm,
which is summarized in the main text in Alg. 1. We restate
the algorithm here, and provide a more detailed description
of its operation.

Referring to Alg. 2, we initialize the camera attitude by
binning events with a small time window (e.g., 30 ms),
identifying event clusters with DBSCAN clustering [11].
Specifically, we accumulate positive events in batches of 60
milliseconds, and use scikit-learn’s implementation of DB-
SCAN [24] with parameters epsilon=2 and min_samples=3.
We pass the centroids of identified clusters to astrome-
try [22], which attempts to compute a camera attitude. We
run astrometry with log odds of 14.

After obtaining an initial attitude with astrometry, we be-
gin processing events using our EKF algorithm. First, we
use the event’s timestamp to update the EKF prediction us-
ing Eqs. 16, 17, 18. We then check if the event is within a set
pixel radius of a catalog star, given the current attitude. This
requires projecting catalog stars onto the imaging plane us-
ing the camera state. To do so, we use Eq. 12 to rotate the
catalog with the current state, and Eq. 13 to project cata-
log stars into pixel space. If an event has a nearby catalog
star, we use the star’s magnitude and linear velocity to apply
our intensity-dependent offset correction. We compute the
linear velocity using the image Jacobian,

v [ —wy/f  f+a?f oy T
[vy}_[—f—zﬁ/f wy/f -l (]

where w is known, since it is part of our EKF state. After
applying the offset correction to the event, we use it as a
measurement to update the EKF using Eq. 22 and 23.



9. Monitor Centroiding Details

Monitor Details: The 500 Hz monitor used is the ASUS
ROG Swift Pro PG248QP. An important quality of this
monitor is that there is minimal pixel value overshoot in-
between frames (explained in [1]). This lends frame tran-
sitions that are similar to real analog scenes. We did ex-
plore using OLED monitors but noticed that the event cam-
era picked up on its refresh rate pattern.

Simulating Stars on Monitor: To simulate a moving star
on the monitor, we display a Gaussian distribution as shown
in Eq. 3 in the paper. We use a 2 pixel standard deviation
o (2.5 pixels on the camera’s sensor) with a constant, un-
changing speed across the monitor (v, = 35 sensor pixels
per second, v, = 0). The pixel intensity values are also
gamma-corrected so that it appears truly Gaussian to the
camera sensor. To simulate different intensities stars, we
use a combination of lowering the peak pixel intensity (e.g.
255 to 128 to 64) and by placing neutral-density (ND) filters
in front of the camera which reduce the gathered light. As
a result, each subsequently displayed star in the experiment
is half as bright as the previously displayed star. We then
have to calibrate the relative magnitude mg of just one of
the displayed stars (found by matching the observed event
rate to what we found in our night sky dataset) and the rest
can be easily calculated. Examples of the monitor star event
profiles are depicted in Fig. 9.

Pixel Synchronization: The event camera was placed
about 8 feet away from the monitor such that one sensor
pixel corresponded to approximately one monitor pixel. To
calculate the homography matrix between the sensor and
the monitor, we flashed a series of eleven dots on the screen
and binned the positive events with 10ms time bins. Know-
ing the position of the dots on the monitor and calculat-
ing the position of the dots on the sensor with the binned
frames, we could recover a transformation matrix which re-
lates the two coordinate frames. For this matrix, our mean
reprojection error was approximately 0.5 pixels.

Time Synchronization: In order to compare events to
ground truth star locations in the monitor, we need to align
the monitor and event time scales. To do so, we flash a set
of pixels on the monitor at the start of an experiment — the
events generated from these pixels correspond with the start
of the experiment. However, once we place ND filters over
the camera, the events from these trigger pixels become de-
layed due to the low-pass filter effects discussed in the main
paper and in [26]. If unaccounted for, this would cause a
systematic bias in our low light experiments. Thus, we per-
form a calibration procedure where we place ND filters over
sections of the monitor, and then illuminate all sections si-
multaneously, allowing us to characterize and correct for
the relative differences in event timing and ensure proper
synchronization between the camera and monitor. The mea-
sured event rates for the trigger pulse under different light-

ing conditions are shown in Fig. 10.

Camera/Monitor Synchronization Discrepancies: Even
after accounting for the time and pixel synchronizations dis-
cussed in previous sections, we still observed a systematic
timing bias in the monitor experiments, where the positive
events excessively lagged behind the true star centroid as
depicted in the third row and first column of Fig. 9. This
error can be corrected by introducing a timing bias into the
synchronization. Importantly, this timing bias is constant
across all of the experiments. We determine this constant
timing offset by what minimizes the average error for the
maximum likelihood method (blue curve in Fig. 4 in the pa-
per). Since maximum likelihood should provide the most
accurate results, this approach ensures an optimal correc-
tion. While we acknowledge that this introduces some sci-
entific bias, the primary concern in Fig.4 is the slope (or
standard deviation) of the centroiding error with respect
to star magnitude. This is because centroiding inconsis-
tency is the main source of error in the centroiding algo-
rithms. The calculated timing offset does not affect this
slope, and both proposed methods—maximum likelihood
estimation and the Gaussian approximation—exhibit signif-
icantly smaller slopes and standard deviations than alterna-
tives. Finally, it is important to note that these method pa-
rameters were fitted to night sky measurements, not to the
monitor data. This ensures that the parameters are not over-
fit to this specific monitor data.

Offset Curve: For the monitor centroiding experiments, we
use the same offset curve as our real night sky data to en-
sure we are not overfitting to either modality. As shown
in Fig. 4 of the paper, the offset curve significantly reduces
centroiding error on the monitor, despite being calibrated
on the night sky dataset.

10. Real Night Sky Dataset Details

DVS Hardware: Our event camera is one of the latest
from Prophesee, the EVK4-HD. The EVK4-HD consists of
a 1280x720 event-pixel array (pixels are 4.86um in size)
and related readout circuitry which is accessible over USB.
The system is set up with a 35mm lens focused at infinity
with a field of view of 5.7°x 10.2°. This leads to an effective
instantaneous field of view for each pixel of approximately
30 arcseconds.

APS Hardware: We utilize a Rocket Lab ST-16RT2 star
tracker as our reference attitude-determination solution.
The ST-16RT2 consists of a 2592 x 1944 pixel CMOS
active-pixel sensor, a custom 16mm f/1.6 lens, a 12 cm
rigid sun-keepout baffle, and an onboard processor capa-
ble of providing attitude solutions at 2Hz over an RS-485
link which we access via a USB to RS-485 converter. The
manufacturer states the tracker can achieve accuracies of 5
arcseconds RMS cross-boresight and 55 arcseconds RMS
around-boresight, with a maximum slew rate of 3°/second.
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Figure 9. Example spatial event likelihoods from theory, night sky,
and monitor measurements. This is similar to results shown in Fig
3 of the main paper. Note that the positive event centroid (white
“x”) lags behind the true star centroid more in the monitor exper-
iments (3rd row) due to minor discrepancies in monitor/camera
synchronization. However, the trend of the positive event cen-
troid offset increasing with star magnitude is consistent across all
modalities.
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Figure 10. Synchronization timings of monitor experiments. Each
neutral-density (ND) filter stop decreases light by 87.5%.

The system is set up for a field of view of 15°x 20°.

Sensor Stage Motion: We utilize two Edelkrone HeadONE
units set up in a pan/tilt configuration to sweep the night
sky with both the EVK4-HD and the ST-16RT2, which are
rigidly mounted to each other. These are controlled wire-
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Figure 11. Left: Block diagram of synchronization hardware ar-
chitecture. Right: Visualized timelines for the commercial star
tracker (left) and event camera (right). Attitude requests come
from the control laptop, which triggers the Sync Pulse Generator
to send a synchronization pulse which the event camera records
in its own timestream alongside positive and negative events. The
commercial star tracker solution includes the validity time offset
dt, measured from when the solution request was received. By
combining the event-time of the sync pulse and the validity offset,
the timestamp of the commercial star tracker’s solution relative to
the event stream can be recovered.

lessly via an Edelkrone Motor Controller dongle. For each
experiment, after a short static calibration period the pan/tilt
mechanism is used to rotate both sensors at various speeds
to simulate satellite rotation.

DVS/APS Time Synchronization: We synchronize our
event camera with the Rocket Lab star tracker to align our
orientation estimates temporally as described in Fig. 11. To
do so, we set up a small microcontroller (an Adafruit Trin-
ket MO) which listens to the RS-485 serial line used to com-
municate with the Rocket Lab tracker. When a solution is
requested by our control computer via this serial line, the
microcontroller sends a square wave pulse to the EVK4
which records the pulse in the event stream with the ap-
propriate timestamp. Rocket Lab attitude solutions include
a validity timestamp relative to the time of the initial so-
lution request/square wave pulse which has been recorded
in the EVK4 event stream. This combination of recorded
data allows us to identify the precise time when the Rocket
Lab-estimated attitude is valid in the event data timeline.

Relative Attitude Calibration: To accurately compare at-
titude solutions between the Rocket Lab APS tracker and
the DVS camera, we need to determine the relative rota-
tion between them. Assuming the cameras share a rigid
body (i.e., are mounted to each other), the relative rota-
tion remains constant regardless of the cameras’ orienta-
tions. Therefore, we generally evaluate performance based
on the deviation of the DVS tracker from this relative ro-
tation. While stereo calibration using pixel values would
be ideal, the Rocket Lab tracker provides quaternion solu-



tions that are precisely calibrated to its imaging plane and
undergo proprietary signal processing corrections inacces-
sible to the user. Consequently, we must rely directly on the
quaternion solutions from the Rocket Lab tracker.

To obtain the relative rotation, we perform velocity
sweeps of the night sky with both cameras, as shown in
the velocity sweep experiments in Fig. 6. We then run our
tracker over these sweeps and identify the rotation that min-
imizes the error between the Rocket Labs solutions and our
tracker’s solutions. Mathematically, we determine the rel-
ative rotation ¢, that minimizes the rotation error between
the two trackers:

min |l - dr B dbys|| (46)

Here, the B sign represents the boxminus operator for
subtracting rotations, as described in Hertzberg et al. [18].
Importantly, we observe that the choice of tracking algo-
rithm has minimal impact on the estimated relative rotation,
as any bias (i.e., centroiding error) is removed by perform-
ing the velocity sweeps in opposite directions. We mea-
sured the consistency of our relative rotation across three
velocity sweeps to be within 20 arcseconds. We use the
same relative rotation on all tracks and separate the data
used for rotation calibration from test data to ensure there is
no data leakage.

Offset Curve Calibration: Knowledge of the cameras’ rel-
ative rotation enables us to register events with the “ground
truth” star locations predicted by the APS tracker. We mea-
sure the frequency of events occurring near star locations,
generating the histograms like those shown in the middle
row of Fig. 9. These histograms allow us to measure the
offset of the event mean to the star’s true location. The
measured offset for each star magnitude results in our off-
set calibration curve. In our experiments, we used a veloc-
ity sweep pattern (which is not used for evaluation in the
main paper) to obtain the data for creation of the calibration
curve.

Computing the Theoretical Offset Curve: To calculate
the theoretical offset curve z(myg) from Eq. 7 in the pa-
per, we first need to find the dark current value I, in pa-
per Eq. 2 and the cutoff frequency f. values a,b in paper
Eq. 5. With the relative attitude calibration performed in
the previous section, we can find the observed offset be-
tween the APS tracker (i.e. ground truth) and the centroids
of our EBS tracker for each given star magnitude in the
field of view. Given these offsets and also knowledge of
the star size (05 = 2 pixels) and speed (50 pix/s), we have
an empirical offset curve. Substituting these values into pa-
per Egs. 2, 3, 5, and 6, we then can optimize the values of
Iy, a, b such that the theoretical offset curve matches closely
to the empirical curve, which lends the values Iy = 1 (nor-
malized so that a star with m4 = 7 has peak intensity of 1),

a = 20 Hz/intensity, and b = 2 Hz. This curve is shown in
Fig. 3c in the paper.

It is important to note three things about this calibration.
The first is that we actually optimize the normalized off-
set curves, where the minimum offset value z(my) is set to
0. This is to remove systematic calibration offsets between
our different modalities, and therefore we are matching the
slope of the z(m) curve with respect to m, which is more
important for accuracy calibration. The second is that we
also test these same values of Iy, a, b in the monitor experi-
ments in Section 4 in the paper and show near-perfect agree-
ment. This suggests that we are not overfitting to the night-
sky results but that these values do encompass the sensor
characteristics. Finally, the offset curve theoretically does
change slightly as a function of star speed v. However,
empirically in our night sky dataset we see that it hardly
changes the offset, perhaps due to small synchronization is-
sues or calibration. Therefore we just use the same offset
curve for different star speeds. Future work should explore
this relationship.

11. Night Sky Dataset Discussion

In comparison to other works (see Table 3 for a summary

of key dataset features), our dataset is unique in being col-

lected from stars visible in an actual night sky. Other
datasets were collected using a monitor to simulate stars.

While simulating stars allows for reconstructing ground

truth of the induced ‘orientation’ of the event camera star

tracker, this type of data has downsides:

* Monitor pixels are not perfectly uniform and may intro-
duce unrealistic fixed pattern noise into event data col-
lected from a monitor.

* The dynamic range of a monitor is limited and quantized
to discrete pixel values. A monitor is therefore unable to
represent any portions of a star’s light which are dimmer
than its smallest ‘on’ value (i.e. 1 if the range of available
values is 0-255) or brighter than its highest ‘on’ value. A
monitor star is also limited to a set of discrete brightness
levels, while stars in the night sky can produce a continu-
ous set of brightnesses.

* Pixels in a monitor have a finite update rate and a quan-
tized location (a monitor star cannot be located between
pixels), introducing unrealistic event patterns into moni-
tor data and sub-pixel inaccuracies in star location. The
night sky has an effectively infinite update rate, as we
slew the sensors over unchanging light sources (stars).

Tables 2 (of the main text) and 3 summarize and compare
to other works the dataset we test on and will release for
further study. Most of our experiments are approximately

2.5 to 5 minutes long, ensuring we have a long enough time

period to uncover possible drift in various trackers. The

total amount of data we release is significantly longer than



. Max Total
Dataset Camera Resolution FOV Slew Rate  Length Stars
Chin/ Davis 240 20 4 4.5 LCD
Bagchi 240C x180 deg deg/s min
. Proph. 1280 1.5 0.005 70

Laif | pyks X720 deg  degls sec  CP
Ours Proph. 1280 10 7.5 19.5 Night

EVK4 x720 deg deg/s min Sky

Table 3. EBS star tracking dataset comparisons. Our dataset contains more data and faster slew rates than prior works, in addition to be
collected from an actual night sky instead of simulated stars on a monitor.

prior datasets.

Drift Phenomenon: In some tracks, we observed that
the mean difference between the trackers changed as they
moved across the sky, with the change becoming more ex-
treme near the horizon. An example of this “drift” in dif-
ference can be observed in the across plot of Fig. 26, where
the difference gradually increases and decreases throughout
the track. One potential explanation is a differential flexure
of the cameras, which could change their relative rotation
as they point closer to the horizon. In particular, the Rocket
Lab tracker has a large sun keep-out baffle on it, which may
lead it to be more deflected by gravity than the much smaller
event camera when the optical axis is more perpendicular to
the gravity vector. Another potential culprit is atmospheric
diffraction towards the horizon impacting the accuracy of
the trackers [20]. Since the two sensor (APS and EBS) are
not perfectly optically aligned, they may experience differ-
ent attitude errors due to atmospheric refraction. In one ex-
periment, we collected data in a small range of angles near
the zenith, and observed that the relative error between the
APS and EBS attitude remained relatively constant (i.e., we
did not observe the drift phenomenon). Since tracks mea-
sured closer to zenith (further from the horizon) are less sus-
ceptible to the drift effect, they have a 10-20 second lower
arcsecond difference on average.

12. Additional Results

Additional Plots: We provide difference plots (Figs. 12
- 24) for all tracks shown in Table 2 of the main text, in-
cluding plots comparing performance with and without our
offset correction (Figs. 25 - 36). Referring to the differ-
ence plots, our method is typically an order-of-magnitude
more accurate than the existing methods. Referring to the
offset correction plots, we observe that using our offset typ-
ically reduces the error by 30 arcseconds, particularly in the
roll direction, which is highly sensitive to centroiding er-
rors [27]. We observe that the offset can drastically improve
performance when a bright star is in the FOV. For instance,
Fig. 34 shows results for a track that passed over Vega, an
exceptionally bright star with an apparent magnitude of .03.

In this case, our offset correction improves the mean aver-
age difference by over 180 arcseconds.

Video Results: We include three video results in the sup-
plemental folder. In high-velocity-track.mp4, we display
event frames for the high velocity track shown in Fig. 1 of
the main text. White circles circle events that were used
to update the tracker’s attitude (i.e., white circles indicate
stars). Note that while we display events as frames (using
30 ms batch times), the algorithm operated asynchronously
at 1 KHz; the events are shown as frames for visualization
purposes. The video high_vel. mp4 shows the camera frus-
tum for the high velocity track. We show the reconstructed
track by our algorithm in red and the APS track in pur-
ple. The APS track failed to provide solutions in the fast
regions of the track, resulting in an incorrect track interpo-
lation. Our method provides an accurate reconstruction of
the track. We also include a visualization of the frustum for
the velocity sweep track in vel_sweep_I.mp4.



EBS-EKF w/ Offset 2D KF ICP Hough
305.2°

38.3°

Dec ‘,A ‘,A JA:

21.24°

28.9°
Roll

-25.9°

Across Difference

25007
0"
About Difference
LT TN KA ) V
25007 Y {
| W /"\ LJ / Al
o] aa— - X ‘ mﬂ\:ﬂc:l
0 seconds 150
Figure 12. Multipose 1. RL samples are shown in black and each method is shown in a unique color.
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Figure 13. Multipose 2. RL samples are shown in black and each method is shown in a unique color.
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Figure 14. Multipose 3. RL samples are shown in black and each method is shown in a unique color.
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Figure 15. Multipose 4. RL samples are shown in black and each method is shown in a unique color.
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Figure 16. Velocity Sweep 1. RL samples are shown in black and each method is shown in a unique color.
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Figure 17. Velocity Sweep 2. RL samples are shown in black and each method is shown in a unique color.
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Figure 18. Velocity Sweep 3. RL samples are shown in black and each method is shown in a unique color.
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Figure 19. Velocity Sweep 4. RL samples are shown in black and each method is shown in a unique color.
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Figure 20. Velocity Sweep 5. RL samples are shown in black and each method is shown in a unique color.
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Figure 21. Velocity Sweep 6. RL samples are shown in black and each method is shown in a unique color.
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Figure 22. Velocity Sweep 7. RL samples are shown in black and each method is shown in a unique color.
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Figure 23. Smooth Sine. RL samples are shown in black and each method is shown in a unique color.
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Figure 24. Tilt Ladder. RL samples are shown in black and each method is shown in a unique color.
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Figure 25. Multipose 1 EBS-EKF w/ offset vs EBS-EKF w/o Offset
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Figure 26. Multipose 2 EBS-EKF w/ offset vs EBS-EKF w/o Offset
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Figure 27. Multipose 3 EBS-EKF w/ offset vs EBS-EKF w/o Offset
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Figure 28. Velocity Sweep 1 EBS-EKF w/ offset vs EBS-EKF w/o Offset
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Figure 29. Velocity Sweep 2 EBS-EKF w/ offset vs EBS-EKF w/o Offset
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Figure 30. Velocity Sweep 3 EBS-EKF w/ offset vs EBS-EKF w/o Offset
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Figure 31. Velocity Sweep 4 EBS-EKF w/ offset vs EBS-EKF w/o Offset
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Figure 32. Velocity Sweep 5 EBS-EKF w/ offset vs EBS-EKF w/o Offset
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Figure 33. Velocity Sweep 6 EBS-EKF w/ offset vs EBS-EKF w/o Offset
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Figure 34. Velocity Sweep 7 EBS-EKF w/ offset vs EBS-EKF w/o Offset
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Figure 35. Smooth Sine EBS-EKF w/ offset vs EBS-EKF w/o Offset
Across Difference
2001 — EBS-EKF w/ offset (49.1” +45.1") == EBS-EKF w/o offset (50.3” + 44.0”)
i A AN YA A o ‘.*MMM
0 u
About Difference
950" — EBS-EKF w/ offset (64.5” + 53.4") —— EBS-EKF w/o offset (79.14+ 71.7")
0"
Brightest Star in FOV
® —— Apparent Magnitude
e Vo et 0 R N N S
<
2
@ 0

0 seconds 3 "10

Figure 36. Tilt Ladder EBS-EKF w/ offset vs EBS-EKF w/o Offset
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