
EBS-EKF: Accurate and High Frequency Event-based Star Tracking

Supplementary Material

6. Overview

We include a video titled Short video overview.mp4 along

with this document, which provides a narrated overview

of our paper. Section 7 derives our extended Kalman fil-

ter (EKF) for event-based star tracking. Section 8 pro-

vides additional details on our tracking algorithm. Sec-

tion 9 provides implementation details and a discussion on

our laboratory setup used to perform centroiding experi-

ments. Section 10 provides more details on our synchro-

nized EVK4-HD event camera and APS star tracker, includ-

ing their hardware configurations, synchronization scheme,

and procedures for obtaining the brightness-dependent off-

set curve. Section 11 provides additional details on our

night sky dataset. Section 12 provides plots for the tracks

summarized in Table 2 of the main text.

7. State estimation with an Extended Kalman

Filter (EKF)

This section provides more details on estimating our state

using an EKF. Restated from the main text, our measure-

ments are the set of N , positive events E = {x, t}i=0:N ,

where we denote each event as ei ∈ E .

7.1. Bayesian State Estimation with a Kalman Filter

Under a Markov assumption, the probability distribution

over all states and measurements is,

p(S0, ..., SN ; e0, ..., eN ) = p(S0)
N
∏

i=0

L(ei|Si)p(Si|Si−1).

(9)

The Kalman filter uses predict and update phases to recur-

sively estimate the posterior distribution of the states con-

ditioned on measurements up to the current timestep. As

shown in [4], the predicted state is the distribution asso-

ciated with the previous state, over all possible previous

states,

p(Si|Ei−1) =

∫

p(Si|Si−1)p(Si−1|Ei−1)dSi−1 (10)

where the measurements up to the current timestep t are

Et = {e1, ..., et}. The update step is the product of the

measurement likelihood and the predicted state,

p(Si|Ei−1) =

∫

p(ei|Si)p(Si|Ei−1)dSi
p(Si|Ei−1)

(11)

We refer interested readers to Barker et al., [4] for more

details on these distributions and how they are estimated by

the EKF equations that we define in the next section.

7.2. EKF Predict and Update Matrix Equations

7.2.1. Measurement Geometry

We aim to use EBS measurements of stars to estimate the

camera state S = [q, ω], where q ∈ SO(3) is a quaternion

encoding a valid 3D rotation, and ω ∈ R
3 denotes the 3D

angular velocity. For our work, we consider the catalog of

stars S ∈ R
N×3 with apparent magnitude ≤ 7. Each of

the N stars is a 3D point normalized to the unit sphere with

negligible parallax effects [12]. A single star si ∈ S with

3D coordinates (X,Y, Z) is rotated into the camera’s frame

using a world-to-camera quaternion qwc
||,

ŝi = qwc(si), (12)

and projected onto the 2D imaging plane using the pinhole

camera model

x = f
X

Z
, y = f

Y

Z
, (13)

where f is the focal length.

7.2.2. EKF Predict and Update Equations

Our state is a compound manifold defined by SO(3) × R
3

(i.e., the camera’s rotation and angular velocity). To esti-

mate our state with an EKF, we employ the boxplus operator

⊞ [18], which defines the addition of a 6D residual vector

[δθx , δθy , δθz , δωx
, δωy

, δωz
] to our state manifold. Formally,

the operator is defined as,

⊞ : S× R
6 → S, (14)

and provides a mechanism for adding a change in rotation

and velocity to our state quaternion and velocity.

We use a constant velocity prior to have the state attitude

respond proportionally to the velocity and time,

qt+1 = qt
⊞∆tω = exp(∆tω) · qt. (15)

Here, the boxplus operator uses the exponential map to

project a change in angle to the quaternion’s Lie group,

where it is then multiplied with the quaternion to update

the rotation [18]. With a constant velocity prior defined, the

estimation of the state mean u is given by the standard EKF

equations,

ū = f(u), (16)

F =
df(ut)

du

∣

∣

∣

∣

ut

, (17)

P̄ = FPF⊤ +Q. (18)

||We typically omit the wc subscript for brevity.



Eq. 17 defines the Jacobian for the constant velocity model

f(·) at time t. Eq. 15 uses the model to predict the state

mean ū. Eq. 18 updates the state uncertainty P using the

linearized model F and process uncertainty Q.

The EKF update phase is defined with the following

equations:

H =
dh(ūt)

du

∣

∣

∣

∣

ut

, (19)

y = z− h(ū), (20)

K = P̄H⊤(HP̄H⊤ +R)−1, (21)

u = ū⊞Ky, (22)

P = (I−KH)P̄. (23)

Eq. 19 defines a Jacobian for the measurement model h(·).
Eq. 20 is the residual between a measurement z and the pre-

dicted state measurement h(x̄). Eq. 21 defines the Kalman

gain, which is used in Eq. 22 to interpolate the prior and

measurement via the boxplus operator. Finally, Eq. 23 uses

the Kalman gain to update the state covariance.

7.3. Derivation of F, Q, H

7.3.1. Forward model Jacobian:

The forward model jacobian is a matrix F ∈ R
6×6 that

linearizes Eq 15. Our Jacobian matrix is comprised of four

partial derivatives,

F =

[

dq
t+1

dqt

dq
t+1

dωt

dωt+1

dqt
dωt+1

dωt .

]

(24)

Using identities defined by Bloesch et al. [6], we derive the

first partial derivative w.r.t the attitude as

dqt+1

dqt
=

d

dqt

[

exp(∆tωt) · qt
]

= C(exp(∆tωt)) (25)

= I+
sin(||∆tωt||)(∆tωt)×

||∆tωt|| (26)

+
(1− cos(||∆tωt||)(∆tω)×

2

||∆tωt||2
≈ I+ (∆tωt)× (27)

where I ∈ R
3×3 is the identity matrix, C(·) is Ro-

driguez’ formula applied to an exponential mapped rotation,

as defined by Bloesch et al. [6], and v× = (v1, v2, v3)
× de-

notes the 3× 3 skew-symmetric matrix,

v =





0 −v3 v2
v3 0 −v1
−v2 v1 0



 . (28)

We then derive the partial derivative with respect to velocity.

Using the chain rule,

dqt+1

dωt
=

d

dωt

[

exp(∆tωt) · qt
]

= Γ(∆tωt)∆t, (29)

where Γ is the Jacobian of the exponential map [6] and ex-

panded as

Γ(∆tωt) =I+
(1− cos(||∆tωt||))(∆tωt)×

||∆tωt||2 + (30)

(||∆tωt|| − sin(||∆tωt||))(∆tωt)×
2

||∆tωt||3 (31)

≈ (I+ 1/2(∆tωt)×). (32)

For the velocity transition function ωt+1 = ωt, the deriva-

tive with respect to the attitude is simply dωt+1

dqt = 03×3, and

the derivative with respect to velocity is the identity matrix,
dωt+1

dωt = I3×3. Filling in the four partial derivatives yields
the F matrix,

F =



















1 −∆t · ω3 ∆t · ω2 ∆t −
(∆t)2·ω3

2
(∆t)2·ω2

2

∆t · ω3 1 −∆t · ω1
(∆t)2·ω3

2
∆t −

(∆t)2·ω1

2

−∆t · ω2 ∆t · ω1 1 −
(∆t)2·ω2

2
(∆t)2·ω1

2
∆t

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



















.

7.3.2. Process noise:

The process noise matrix Q ∈ R
6×6 adds our uncertainty in

the constant velocity model to the Kalman filter covariance.

The continuous white noise is applied to the velocity terms,

Qc =

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















φs (33)

where φs is the power spectral density. In practice, the

power spectral density is an engineering knob — larger val-

ues result in smoother state predictions. The discretization

of the noise through our process model [32] is given by

Q =

∫ ∆t

0

F (t)QcF
⊤(t)dt (34)

We solve for Q using a symbolic solver, obtaining the ma-
trix

Q ≈





















0 0 0 (∆t)2

2
0 0

0 0 0 0 (∆t)2

2
0

0 0 0 0 0 (∆t)2

2
(∆t)2

2
0 0 ∆t 0 0

0 (∆t)2

2
0 0 ∆t 0

0 0 (∆t)2

2
0 0 ∆t





















,

which is shown as an approximation because we have set

small terms to zero.

7.3.3. Measurement Jacobian:

The event measurements relate to the attitude using the rota-

tion and projection models of Eq. 12 and Eq. 13. We define



our measurement matrix H ∈ 2× 6 for a single event as

H =

[

dx
dqt 01×3

dy
dqt 01×3,

]

(35)

where dx
dqt ∈ R

1×3, dy
dqt ∈ R

1×3, noting that we do

not incorporate velocity into our measurement model (i.e.,
dx
dωt = 01×3 and dy

dωt = 01×3). Considering the event x and

y coordinates, the partial derivatives w.r.t. attitude expands

as

dx

dqt
=

d

dqt

[

f
X

Z

]

=
d

dqt

[

f
qt(s)x
qt(s)z

]

(36)

and

dy

dqt
=

d

dqt

[

f
Y

Z

]

=
d

dqt

[

f
qt(s)y
qt(s)z

]

, (37)

respectively. In these equations, the quaternion q(·) rotates

the star world coordinates to the camera, and the (x, y, z)
subscripts index that dimension of the rotated vector (e.g.,

qt(s)x = qt(s)





1
0
0



). For completeness, the rotation of a

vector s ∈ R by a quaternion q = [q0, q̆] = [q0, qx, qy, qz]
is defined as,

q(s) = (2q20 − 1)s+ 2q0q̆
×s+ 2q̆(q̆⊤s). (38)

Using the product and chain rules, we compute the

derivative of the event location (x, y) with respect to atti-

tude as

dx

dqt
= f

[

− dZ

dqt
XZ−2 +

dX

dqt
Z−1

]

(39)

and

dy

dqt
= f

[

− dZ

dqt
Y Z−2 +

dY

dqt
Z−1

]

(40)

where the Jacobians of the rotations are given by

dX

dqt
= −(q(s))×x , (41)

dY

dqt
= −(q(s))×y , (42)

(43)

and

dZ

dqt
= −(qt(s))×z . (44)

Algorithm 2 EBS-EKF Star Tracking

Input: Positive event stream E = {x, t}i=0:N ,

Output: Camera State S (3D rotation and angular ve-

locity)

Initialize: S0 ← astrometry with binned positive events

r← max search radius

for each event ei = (xi, ti) do

Ŝi ← EKF predict at ti
xs ← closest projected catalog star to xi

if distance(xi, xs) ≤ r then

v̄s ← star’s normalized linear velocity via Ŝi

ms ← star’s apparent magnitude

x̂i ← xi + v̄s · z(ms) # apply offset correction

Si ← EKF update with x̂i

end if

end for

8. Tracking Algorithm Details

We now provide more details for our tracking algorithm,

which is summarized in the main text in Alg. 1. We restate

the algorithm here, and provide a more detailed description

of its operation.

Referring to Alg. 2, we initialize the camera attitude by

binning events with a small time window (e.g., 30 ms),

identifying event clusters with DBSCAN clustering [11].

Specifically, we accumulate positive events in batches of 60

milliseconds, and use scikit-learn’s implementation of DB-

SCAN [24] with parameters epsilon=2 and min samples=3.

We pass the centroids of identified clusters to astrome-

try [22], which attempts to compute a camera attitude. We

run astrometry with log odds of 14.

After obtaining an initial attitude with astrometry, we be-

gin processing events using our EKF algorithm. First, we

use the event’s timestamp to update the EKF prediction us-

ing Eqs. 16, 17, 18. We then check if the event is within a set

pixel radius of a catalog star, given the current attitude. This

requires projecting catalog stars onto the imaging plane us-

ing the camera state. To do so, we use Eq. 12 to rotate the

catalog with the current state, and Eq. 13 to project cata-

log stars into pixel space. If an event has a nearby catalog

star, we use the star’s magnitude and linear velocity to apply

our intensity-dependent offset correction. We compute the

linear velocity using the image Jacobian,

[

vx
vy

]

=

[

−xy/f f + x2/f y
−f − y2/f xy/f −x

]





ωx

ωy

ωz



 (45)

where ω is known, since it is part of our EKF state. After

applying the offset correction to the event, we use it as a

measurement to update the EKF using Eq. 22 and 23.



9. Monitor Centroiding Details

Monitor Details: The 500 Hz monitor used is the ASUS

ROG Swift Pro PG248QP. An important quality of this

monitor is that there is minimal pixel value overshoot in-

between frames (explained in [1]). This lends frame tran-

sitions that are similar to real analog scenes. We did ex-

plore using OLED monitors but noticed that the event cam-

era picked up on its refresh rate pattern.

Simulating Stars on Monitor: To simulate a moving star

on the monitor, we display a Gaussian distribution as shown

in Eq. 3 in the paper. We use a 2 pixel standard deviation

σs (2.5 pixels on the camera’s sensor) with a constant, un-

changing speed across the monitor (vx = 35 sensor pixels

per second, vy = 0). The pixel intensity values are also

gamma-corrected so that it appears truly Gaussian to the

camera sensor. To simulate different intensities stars, we

use a combination of lowering the peak pixel intensity (e.g.

255 to 128 to 64) and by placing neutral-density (ND) filters

in front of the camera which reduce the gathered light. As

a result, each subsequently displayed star in the experiment

is half as bright as the previously displayed star. We then

have to calibrate the relative magnitude ms of just one of

the displayed stars (found by matching the observed event

rate to what we found in our night sky dataset) and the rest

can be easily calculated. Examples of the monitor star event

profiles are depicted in Fig. 9.

Pixel Synchronization: The event camera was placed

about 8 feet away from the monitor such that one sensor

pixel corresponded to approximately one monitor pixel. To

calculate the homography matrix between the sensor and

the monitor, we flashed a series of eleven dots on the screen

and binned the positive events with 10ms time bins. Know-

ing the position of the dots on the monitor and calculat-

ing the position of the dots on the sensor with the binned

frames, we could recover a transformation matrix which re-

lates the two coordinate frames. For this matrix, our mean

reprojection error was approximately 0.5 pixels.

Time Synchronization: In order to compare events to

ground truth star locations in the monitor, we need to align

the monitor and event time scales. To do so, we flash a set

of pixels on the monitor at the start of an experiment — the

events generated from these pixels correspond with the start

of the experiment. However, once we place ND filters over

the camera, the events from these trigger pixels become de-

layed due to the low-pass filter effects discussed in the main

paper and in [26]. If unaccounted for, this would cause a

systematic bias in our low light experiments. Thus, we per-

form a calibration procedure where we place ND filters over

sections of the monitor, and then illuminate all sections si-

multaneously, allowing us to characterize and correct for

the relative differences in event timing and ensure proper

synchronization between the camera and monitor. The mea-

sured event rates for the trigger pulse under different light-

ing conditions are shown in Fig. 10.

Camera/Monitor Synchronization Discrepancies: Even

after accounting for the time and pixel synchronizations dis-

cussed in previous sections, we still observed a systematic

timing bias in the monitor experiments, where the positive

events excessively lagged behind the true star centroid as

depicted in the third row and first column of Fig. 9. This

error can be corrected by introducing a timing bias into the

synchronization. Importantly, this timing bias is constant

across all of the experiments. We determine this constant

timing offset by what minimizes the average error for the

maximum likelihood method (blue curve in Fig. 4 in the pa-

per). Since maximum likelihood should provide the most

accurate results, this approach ensures an optimal correc-

tion. While we acknowledge that this introduces some sci-

entific bias, the primary concern in Fig.4 is the slope (or

standard deviation) of the centroiding error with respect

to star magnitude. This is because centroiding inconsis-

tency is the main source of error in the centroiding algo-

rithms. The calculated timing offset does not affect this

slope, and both proposed methods—maximum likelihood

estimation and the Gaussian approximation—exhibit signif-

icantly smaller slopes and standard deviations than alterna-

tives. Finally, it is important to note that these method pa-

rameters were fitted to night sky measurements, not to the

monitor data. This ensures that the parameters are not over-

fit to this specific monitor data.

Offset Curve: For the monitor centroiding experiments, we

use the same offset curve as our real night sky data to en-

sure we are not overfitting to either modality. As shown

in Fig. 4 of the paper, the offset curve significantly reduces

centroiding error on the monitor, despite being calibrated

on the night sky dataset.

10. Real Night Sky Dataset Details

DVS Hardware: Our event camera is one of the latest

from Prophesee, the EVK4-HD. The EVK4-HD consists of

a 1280x720 event-pixel array (pixels are 4.86um in size)

and related readout circuitry which is accessible over USB.

The system is set up with a 35mm lens focused at infinity

with a field of view of 5.7°x 10.2°. This leads to an effective

instantaneous field of view for each pixel of approximately

30 arcseconds.

APS Hardware: We utilize a Rocket Lab ST-16RT2 star

tracker as our reference attitude-determination solution.

The ST-16RT2 consists of a 2592 x 1944 pixel CMOS

active-pixel sensor, a custom 16mm f/1.6 lens, a 12 cm

rigid sun-keepout baffle, and an onboard processor capa-

ble of providing attitude solutions at 2Hz over an RS-485

link which we access via a USB to RS-485 converter. The

manufacturer states the tracker can achieve accuracies of 5

arcseconds RMS cross-boresight and 55 arcseconds RMS

around-boresight, with a maximum slew rate of 3°/second.



Figure 9. Example spatial event likelihoods from theory, night sky,

and monitor measurements. This is similar to results shown in Fig

3 of the main paper. Note that the positive event centroid (white

“x”) lags behind the true star centroid more in the monitor exper-

iments (3rd row) due to minor discrepancies in monitor/camera

synchronization. However, the trend of the positive event cen-

troid offset increasing with star magnitude is consistent across all

modalities.

Figure 10. Synchronization timings of monitor experiments. Each

neutral-density (ND) filter stop decreases light by 87.5%.

The system is set up for a field of view of 15°x 20°.

Sensor Stage Motion: We utilize two Edelkrone HeadONE

units set up in a pan/tilt configuration to sweep the night

sky with both the EVK4-HD and the ST-16RT2, which are

rigidly mounted to each other. These are controlled wire-
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Figure 11. Left: Block diagram of synchronization hardware ar-

chitecture. Right: Visualized timelines for the commercial star

tracker (left) and event camera (right). Attitude requests come

from the control laptop, which triggers the Sync Pulse Generator

to send a synchronization pulse which the event camera records

in its own timestream alongside positive and negative events. The

commercial star tracker solution includes the validity time offset

dt, measured from when the solution request was received. By

combining the event-time of the sync pulse and the validity offset,

the timestamp of the commercial star tracker’s solution relative to

the event stream can be recovered.

lessly via an Edelkrone Motor Controller dongle. For each

experiment, after a short static calibration period the pan/tilt

mechanism is used to rotate both sensors at various speeds

to simulate satellite rotation.

DVS/APS Time Synchronization: We synchronize our

event camera with the Rocket Lab star tracker to align our

orientation estimates temporally as described in Fig. 11. To

do so, we set up a small microcontroller (an Adafruit Trin-

ket M0) which listens to the RS-485 serial line used to com-

municate with the Rocket Lab tracker. When a solution is

requested by our control computer via this serial line, the

microcontroller sends a square wave pulse to the EVK4

which records the pulse in the event stream with the ap-

propriate timestamp. Rocket Lab attitude solutions include

a validity timestamp relative to the time of the initial so-

lution request/square wave pulse which has been recorded

in the EVK4 event stream. This combination of recorded

data allows us to identify the precise time when the Rocket

Lab-estimated attitude is valid in the event data timeline.

Relative Attitude Calibration: To accurately compare at-

titude solutions between the Rocket Lab APS tracker and

the DVS camera, we need to determine the relative rota-

tion between them. Assuming the cameras share a rigid

body (i.e., are mounted to each other), the relative rota-

tion remains constant regardless of the cameras’ orienta-

tions. Therefore, we generally evaluate performance based

on the deviation of the DVS tracker from this relative ro-

tation. While stereo calibration using pixel values would

be ideal, the Rocket Lab tracker provides quaternion solu-



tions that are precisely calibrated to its imaging plane and

undergo proprietary signal processing corrections inacces-

sible to the user. Consequently, we must rely directly on the

quaternion solutions from the Rocket Lab tracker.

To obtain the relative rotation, we perform velocity

sweeps of the night sky with both cameras, as shown in

the velocity sweep experiments in Fig. 6. We then run our

tracker over these sweeps and identify the rotation that min-

imizes the error between the Rocket Labs solutions and our

tracker’s solutions. Mathematically, we determine the rel-

ative rotation qr that minimizes the rotation error between

the two trackers:

min
qr

∑

i

||qi
RL · qr ⊟ qi

DVS|| (46)

Here, the ⊟ sign represents the boxminus operator for

subtracting rotations, as described in Hertzberg et al. [18].

Importantly, we observe that the choice of tracking algo-

rithm has minimal impact on the estimated relative rotation,

as any bias (i.e., centroiding error) is removed by perform-

ing the velocity sweeps in opposite directions. We mea-

sured the consistency of our relative rotation across three

velocity sweeps to be within 20 arcseconds. We use the

same relative rotation on all tracks and separate the data

used for rotation calibration from test data to ensure there is

no data leakage.

Offset Curve Calibration: Knowledge of the cameras’ rel-

ative rotation enables us to register events with the “ground

truth” star locations predicted by the APS tracker. We mea-

sure the frequency of events occurring near star locations,

generating the histograms like those shown in the middle

row of Fig. 9. These histograms allow us to measure the

offset of the event mean to the star’s true location. The

measured offset for each star magnitude results in our off-

set calibration curve. In our experiments, we used a veloc-

ity sweep pattern (which is not used for evaluation in the

main paper) to obtain the data for creation of the calibration

curve.

Computing the Theoretical Offset Curve: To calculate

the theoretical offset curve z(ms) from Eq. 7 in the pa-

per, we first need to find the dark current value I0 in pa-

per Eq. 2 and the cutoff frequency fc values a, b in paper

Eq. 5. With the relative attitude calibration performed in

the previous section, we can find the observed offset be-

tween the APS tracker (i.e. ground truth) and the centroids

of our EBS tracker for each given star magnitude in the

field of view. Given these offsets and also knowledge of

the star size (σs = 2 pixels) and speed (50 pix/s), we have

an empirical offset curve. Substituting these values into pa-

per Eqs. 2, 3, 5, and 6, we then can optimize the values of

I0, a, b such that the theoretical offset curve matches closely

to the empirical curve, which lends the values I0 = 1 (nor-

malized so that a star with ms = 7 has peak intensity of 1),

a = 20 Hz/intensity, and b = 2 Hz. This curve is shown in

Fig. 3c in the paper.

It is important to note three things about this calibration.

The first is that we actually optimize the normalized off-

set curves, where the minimum offset value z(ms) is set to

0. This is to remove systematic calibration offsets between

our different modalities, and therefore we are matching the

slope of the z(ms) curve with respect to ms, which is more

important for accuracy calibration. The second is that we

also test these same values of I0, a, b in the monitor experi-

ments in Section 4 in the paper and show near-perfect agree-

ment. This suggests that we are not overfitting to the night-

sky results but that these values do encompass the sensor

characteristics. Finally, the offset curve theoretically does

change slightly as a function of star speed v. However,

empirically in our night sky dataset we see that it hardly

changes the offset, perhaps due to small synchronization is-

sues or calibration. Therefore we just use the same offset

curve for different star speeds. Future work should explore

this relationship.

11. Night Sky Dataset Discussion

In comparison to other works (see Table 3 for a summary

of key dataset features), our dataset is unique in being col-

lected from stars visible in an actual night sky. Other

datasets were collected using a monitor to simulate stars.

While simulating stars allows for reconstructing ground

truth of the induced ‘orientation’ of the event camera star

tracker, this type of data has downsides:

• Monitor pixels are not perfectly uniform and may intro-

duce unrealistic fixed pattern noise into event data col-

lected from a monitor.

• The dynamic range of a monitor is limited and quantized

to discrete pixel values. A monitor is therefore unable to

represent any portions of a star’s light which are dimmer

than its smallest ‘on’ value (i.e. 1 if the range of available

values is 0-255) or brighter than its highest ‘on’ value. A

monitor star is also limited to a set of discrete brightness

levels, while stars in the night sky can produce a continu-

ous set of brightnesses.

• Pixels in a monitor have a finite update rate and a quan-

tized location (a monitor star cannot be located between

pixels), introducing unrealistic event patterns into moni-

tor data and sub-pixel inaccuracies in star location. The

night sky has an effectively infinite update rate, as we

slew the sensors over unchanging light sources (stars).

Tables 2 (of the main text) and 3 summarize and compare

to other works the dataset we test on and will release for

further study. Most of our experiments are approximately

2.5 to 5 minutes long, ensuring we have a long enough time

period to uncover possible drift in various trackers. The

total amount of data we release is significantly longer than



Dataset Camera Resolution FOV
Max

Slew Rate

Total

Length
Stars

Chin/

Bagchi

Davis

240C

240

x180

20

deg

4

deg/s

4.5

min
LCD

Latif
Proph.

EVK3

1280

x720

1.5

deg

0.005

deg/s

70

sec
LCD

Ours
Proph.

EVK4

1280

x720

10

deg

7.5

deg/s

19.5

min

Night

Sky

Table 3. EBS star tracking dataset comparisons. Our dataset contains more data and faster slew rates than prior works, in addition to be

collected from an actual night sky instead of simulated stars on a monitor.

prior datasets.

Drift Phenomenon: In some tracks, we observed that

the mean difference between the trackers changed as they

moved across the sky, with the change becoming more ex-

treme near the horizon. An example of this “drift” in dif-

ference can be observed in the across plot of Fig. 26, where

the difference gradually increases and decreases throughout

the track. One potential explanation is a differential flexure

of the cameras, which could change their relative rotation

as they point closer to the horizon. In particular, the Rocket

Lab tracker has a large sun keep-out baffle on it, which may

lead it to be more deflected by gravity than the much smaller

event camera when the optical axis is more perpendicular to

the gravity vector. Another potential culprit is atmospheric

diffraction towards the horizon impacting the accuracy of

the trackers [20]. Since the two sensor (APS and EBS) are

not perfectly optically aligned, they may experience differ-

ent attitude errors due to atmospheric refraction. In one ex-

periment, we collected data in a small range of angles near

the zenith, and observed that the relative error between the

APS and EBS attitude remained relatively constant (i.e., we

did not observe the drift phenomenon). Since tracks mea-

sured closer to zenith (further from the horizon) are less sus-

ceptible to the drift effect, they have a 10-20 second lower

arcsecond difference on average.

12. Additional Results

Additional Plots: We provide difference plots (Figs. 12

- 24) for all tracks shown in Table 2 of the main text, in-

cluding plots comparing performance with and without our

offset correction (Figs. 25 - 36). Referring to the differ-

ence plots, our method is typically an order-of-magnitude

more accurate than the existing methods. Referring to the

offset correction plots, we observe that using our offset typ-

ically reduces the error by 30 arcseconds, particularly in the

roll direction, which is highly sensitive to centroiding er-

rors [27]. We observe that the offset can drastically improve

performance when a bright star is in the FOV. For instance,

Fig. 34 shows results for a track that passed over Vega, an

exceptionally bright star with an apparent magnitude of .03.

In this case, our offset correction improves the mean aver-

age difference by over 180 arcseconds.

Video Results: We include three video results in the sup-

plemental folder. In high-velocity-track.mp4, we display

event frames for the high velocity track shown in Fig. 1 of

the main text. White circles circle events that were used

to update the tracker’s attitude (i.e., white circles indicate

stars). Note that while we display events as frames (using

30 ms batch times), the algorithm operated asynchronously

at 1 KHz; the events are shown as frames for visualization

purposes. The video high vel.mp4 shows the camera frus-

tum for the high velocity track. We show the reconstructed

track by our algorithm in red and the APS track in pur-

ple. The APS track failed to provide solutions in the fast

regions of the track, resulting in an incorrect track interpo-

lation. Our method provides an accurate reconstruction of

the track. We also include a visualization of the frustum for

the velocity sweep track in vel sweep 1.mp4.
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Figure 12. Multipose 1. RL samples are shown in black and each method is shown in a unique color.
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Figure 13. Multipose 2. RL samples are shown in black and each method is shown in a unique color.
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Figure 14. Multipose 3. RL samples are shown in black and each method is shown in a unique color.
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Figure 15. Multipose 4. RL samples are shown in black and each method is shown in a unique color.
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Figure 16. Velocity Sweep 1. RL samples are shown in black and each method is shown in a unique color.
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Figure 17. Velocity Sweep 2. RL samples are shown in black and each method is shown in a unique color.
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Figure 18. Velocity Sweep 3. RL samples are shown in black and each method is shown in a unique color.
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Figure 19. Velocity Sweep 4. RL samples are shown in black and each method is shown in a unique color.
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Figure 20. Velocity Sweep 5. RL samples are shown in black and each method is shown in a unique color.
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Figure 21. Velocity Sweep 6. RL samples are shown in black and each method is shown in a unique color.
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Figure 22. Velocity Sweep 7. RL samples are shown in black and each method is shown in a unique color.
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Figure 23. Smooth Sine. RL samples are shown in black and each method is shown in a unique color.
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Figure 24. Tilt Ladder. RL samples are shown in black and each method is shown in a unique color.
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Figure 25. Multipose 1 EBS-EKF w/ offset vs EBS-EKF w/o Offset



EBS-EKF w/ offset (70.9’’ ± 58.7’’) EBS-EKF w/o offset (71.1’’ ± 57.8’’)
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Figure 26. Multipose 2 EBS-EKF w/ offset vs EBS-EKF w/o Offset

EBS-EKF w/ offset (243.0’’ ± 88.0’’) EBS-EKF w/o offset (243.1’’ ± 88.3’’)

EBS-EKF w/ offset (105.7’’ ± 84.6’’) EBS-EKF w/o offset (110.3 ± 91.1’’)
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Figure 27. Multipose 3 EBS-EKF w/ offset vs EBS-EKF w/o Offset

EBS-EKF w/ offset (25.8’’ ± 24.0’’) EBS-EKF w/o offset (27.0’’ ± 24.4’’)

EBS-EKF w/ offset (60.3’’ ± 81.0’’) EBS-EKF w/o offset (83.1 ± 93.9’’)
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Figure 28. Velocity Sweep 1 EBS-EKF w/ offset vs EBS-EKF w/o Offset



EBS-EKF w/ offset (31.7’’ ± 32.2’’) EBS-EKF w/o offset (31.9’’ ± 32.9’’)

EBS-EKF w/ offset (87.9’’ ± 121.0’’) EBS-EKF w/o offset (109.3 ± 127.0’’)
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Figure 29. Velocity Sweep 2 EBS-EKF w/ offset vs EBS-EKF w/o Offset

EBS-EKF w/ offset (26.1’’ ± 27.9’’) EBS-EKF w/o offset (25.9’’ ± 27.6’’)

EBS-EKF w/ offset (75.3’’ ± 94.2’’) EBS-EKF w/o offset (84.5 ± 86.8’’)
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Figure 30. Velocity Sweep 3 EBS-EKF w/ offset vs EBS-EKF w/o Offset

EBS-EKF w/ offset (25.2’’ ± 28.5’’) EBS-EKF w/o offset (24.2’’ ± 28.6’’)

EBS-EKF w/ offset (69.1’’ ± 86.0’’) EBS-EKF w/o offset (88.6 ± 77.5’’)
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Figure 31. Velocity Sweep 4 EBS-EKF w/ offset vs EBS-EKF w/o Offset



EBS-EKF w/ offset (27.0’’ ± 27.3’’) EBS-EKF w/o offset (26.0’’ ± 26.4’’)

EBS-EKF w/ offset (77.9’’ ± 140.7’’) EBS-EKF w/o offset (80.8 ± 126.9’’)
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Figure 32. Velocity Sweep 5 EBS-EKF w/ offset vs EBS-EKF w/o Offset

EBS-EKF w/ offset (22.1’’ ± 24.5’’) EBS-EKF w/o offset (22.1’’ ± 23.4’’)

EBS-EKF w/ offset (78.1’’ ± 93.4’’) EBS-EKF w/o offset (86.1 ± 89.1’’)
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Figure 33. Velocity Sweep 6 EBS-EKF w/ offset vs EBS-EKF w/o Offset

EBS-EKF w/ offset (170.1’’ ± 72.9’’) EBS-EKF w/o offset (172.1’’ ± 75.0’’)

EBS-EKF w/ offset (139.0’’ ± 190.3’’) EBS-EKF w/o offset (322.0 ± 260.4’’)
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Figure 34. Velocity Sweep 7 EBS-EKF w/ offset vs EBS-EKF w/o Offset



EBS-EKF w/ offset (28.6’’ ± 32.9’’) EBS-EKF w/o offset (26.7’’ ± 30.5’’)

EBS-EKF w/ offset (75.9’’ ± 66.9’’) EBS-EKF w/o offset (84.5 ± 71.1’’)
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Figure 35. Smooth Sine EBS-EKF w/ offset vs EBS-EKF w/o Offset

EBS-EKF w/ offset (49.1’’ ± 45.1’’) EBS-EKF w/o offset (50.3’’ ± 44.0’’)

EBS-EKF w/ offset (64.5’’ ± 53.4’’) EBS-EKF w/o offset (79.1 ± 71.7’’)
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Figure 36. Tilt Ladder EBS-EKF w/ offset vs EBS-EKF w/o Offset
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