
Supplementary Material for “Beyond Words: Augmenting Discriminative
Richness via Diffusions in Unsupervised Prompt Learning”

A. Overall Algorithm

We present the comprehensive algorithmic flow of the AiR
method in Algorithm 1. To balance data diversity and do-
main consistency in augmented images, we first fine-tune
the SD model using LoRA. Subsequently, synthetic images
X̂ are generated via the fine-tuned Stable Diffusion Model
(SD), and the samples most aligned with the semantic infor-
mation are selected based on cosine similarity. The chosen
synthetic images X̂∗ serve as auxiliary classifiers, working
alongside text classifiers to assign pseudo-labels ỹ∗ to the
unlabeled samples. Finally, the pseudo-labeled data (x, ỹ∗)
and synthetic data (x̂, y) are used as training samples to
compute the loss and iteratively optimize the prompt.

Algorithm 1: Workflow about our AiR method for
optimizing prompt t

1 Get pseudo label data {x, ỹ} in Eq. (2)
2 Finetune SD with LoRA in Eq. (4)
3 Generate synthetic images X̂ in Eq. (5)
4 Select high confidence samples X̂∗

5 for iter = 1, 2, 3, ... do
6 Text-image prediction

pc =
exp(sim(f,gc)/τ)∑C

c′=1
exp(sim(f,gc′ )/τ)

7 Image-image prediction
p̂c =

exp(sim(f,x̂∗
c)/τ)∑C

c′=1
exp(sim(f,x̂∗

c′ )/τ)

8 Combine both types of predictions
p∗c = pc + λ ∗ p̂c

9 Pseudo labels ỹ∗ = argmax
c

p∗c

10 Real data loss min
t
Lr = min

t
Lce(x, ỹ

∗)

11 Synthetic data loss min
t
Ls = min

t
Lce(x̂, y)

12 Total loss min
t
L = min

t
(Lr + β ∗ Ls)

13 Take gradient descent step on∇L
14 Update titer+1 ← titer − η∇L
15 end

Method RESISC45 EuroSAT DTD
Kandinsky2.2 77.6 69.5 54.3
Dreambooth 78.3 70.8 54.8
Stable Diffusion 79.9 71.4 55.7

Table S1. Comparison of top-1 test accuracy (%) in unsupervised
learning with different generative models: Kandinsky2.2, Dream-
booth, and Stable Diffusion. The best results are in bold.

B. Task Introduction

We outline the experimental settings for three distinct learn-
ing paradigms following [4, 9]:
Semi-Supervised Learning (SSL): In this paradigm, ac-
cess to labeled data is restricted. To evaluate the influence
of pseudo-labels, we consider scenarios with minimal la-
beled data and abundant unlabeled data, using two labeled
samples per class.
Unsupervised Learning (UL): Here, only unlabeled data is
available. Pseudo-labels are initially derived entirely from
the zero-shot predictions of CLIP, eliminating the need for
any manual annotation.
Transductive Zero-Shot Learning (TRZSL): In this set-
ting, labeled data is provided for a subset of target classes
(seen classes) in the downstream dataset. We set the seen-
to-unseen class ratio to 62:38, with pseudo-labels generated
exclusively for unseen classes. Additionally, for TRZSL,
we report the harmonic mean of the accuracies for seen and
unseen classes to account for performance balance.

C. Finetune with LoRA

We fine-tune the Stable Diffusion-v1-4 (SD) model using
LoRA [3], following the approach in [8]. For each dataset,
we select the top 5 pseudo-labeled samples with the high-
est confidence to train the SD model. To ensure alignment
between the SD model and the semantic space of CLIP’s
text encoder, only the U-Net component of SD is fine-tuned.
The model is trained for 15,000 steps with a batch size of 1,
using a learning rate of 1e-5.



Method Flowers102 DTD EuroSAT
Euclidean Distance 54.8 51.5 73.0
OT distance 68.3 62.3 76.6
Cosine Distance 68.3 62.3 76.6

Table S2. Comparison of top-1 test accuracy (%) in unsupervised
learning with different similarity metrics: Euclidean Distance, OT
distance, and Cosine Distance. The best results are in bold.

D. Effect of Generative Models
To investigate the performance variations of our AiR
method across different generative models, we fine-tune
three models: Kandinsky 2.2, DreamBooth [6], and Stable
Diffusion using LoRA and apply the same training strategy
for the AiR model, with CPL as the baseline. As shown
in Table S1, we conduct experiments on three datasets, and
the results indicate that the performance of AiR across these
generative models varies by less than 2%. This demon-
strates that our method is not heavily dependent on the
choice of the generative model, as long as the model can be
fine-tuned to ensure both the fidelity of the generated im-
ages and sample diversity. However, DreamBooth requires
individual fine-tuning for each category, leading to higher
computational costs, while Kandinsky 2.2 shows slightly
lower performance compared to Stable Diffusion. Conse-
quently, we select Stable Diffusion as the generative model
for our AiR framework.

E. Effect of Cosine Selected Strategy
To determine the most effective filtering strategy for se-
lecting representative synthetic samples, we evaluate differ-
ent similarity metrics between synthetic samples and tex-
tual features across three datasets. We report the pseudo-
labeling accuracies of the Top-50 confidence samples for
the CLIP model after incorporating synthetic samples as
auxiliary classifiers. As shown in Table S2, we test the
Euclidean distance, OT distance [7], and cosine similarity.
The Euclidean distance results in a significant drop in per-
formance, indicating its unsuitability for selecting synthetic
samples. Both OT distance and cosine similarity demon-
strate comparable performance, with a slight degradation
observed for OT distance. Considering that OT distance re-
quires higher computational resources compared to cosine
similarity, we ultimately select cosine similarity as the fil-
tering strategy to identify the most representative synthetic
samples.

F. Hyper-parameters
To investigate the influence of hyperparameters λ and β dis-
cussed in Sec. 3.5, we evaluate the accuracy of pseudo-
labels by varying their values on the EuroSAT [2] and RE-

Figure S1. Comparison of top-1 test accuracy (%) of pseudo labels
with different hyper-parameters λ.

Figure S2. Comparison of top-1 test accuracy (%) of pseudo labels
with different hyper-parameters β.

SISC45 [1] datasets. As illustrated in Fig. S1 and Fig. S2,
the model’s accuracy fluctuates by approximately 3% when
λ changes from 1/8 to 1. This suggests that effectively
balancing the results of the auxiliary classifier (constructed
using synthetic samples) and the text classifier is crucial.
Overemphasizing either side diminishes the quality of the
pseudo-labels. We observe optimal performance when λ is
set to 1/6 or 1/4, achieving 78.6% accuracy on the EuroSAT
dataset and 83.8% on the RESISC45 dataset. Consequently,
for our final experiments, we select λ as 1/6. Similarly,
when adjusting β between 1/4 and 2, the model’s perfor-
mance remains relatively stable. This indicates that opti-
mizing the network with synthetic samples as a loss func-
tion does not require extensive fine-tuning of β. Ultimately,
we choose 1 as the value of β for its higher performance
consistency.

G. Pseudo Label Accuracy

To further illustrate the impact of our method on enhancing
pseudo-labeling quality, we compare the pseudo-labeling
accuracy of CPL (used as a baseline) with that of our
AiR method on the Flowers102 [5] dataset over succes-
sive training iterations. As depicted in Fig. S3, the pseudo-



Figure S3. Comparison of top-1 test accuracy (%) of pseudo labels
during different training iterations.

labeling accuracy of our method consistently surpasses that
of the baseline by 2%-7% as training progresses. This high-
lights the sustained improvement in pseudo-labeling quality
achieved by our approach. The stable accuracy margin of
over 2% further validates that our method generates high-
quality pseudo-labeled samples, enabling the training of a
more robust unsupervised prompt learning model.

H. t-SNE of Different Discrimination Out-
comes.

In this section, we analyze the spatial distribution of syn-
thetic image embeddings, text embeddings, and sample em-
beddings using t-SNE visualizations on the DTD and RE-
SISC45 datasets. As illustrated in Fig. S4 and Fig. S5, col-
ored circular dots represent different image classes, trian-
gles indicate the text embeddings for each class, squares de-
note the synthetic image embeddings, and pentagrams rep-
resent the fused embeddings of text and synthetic images, as
described in Sec. 3.5. The findings are consistent with the
results discussed in the main paper. The fused embeddings
(pentagrams) reveal a clear tendency for text embeddings to
shift toward their corresponding test sample classes. This
alignment indicates that augmenting discriminative infor-
mation effectively calibrates the embeddings, bringing them
closer to the correct test samples and enhancing the model’s
classification accuracy across various classes.

I. Comparison on Large Scale Dataset.

We conduct experiments on ImageNet, which is challeng-
ing and not considered by other works. Due to memeory
constraints, we select 100 samples per class. As shown in
Table S3, ours outperforms CPL by nearly 2% accuracy.
These results indicate that our AiR consistently boosts the
classification performance of prompt learning models even
on large scale dataset, demonstrate the robustness of our
method.
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Figure S4. Visualization of the spatial distribution of synthetic
image, text, and sample embeddings with t-SNE in DTD dataset.
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Figure S5. Visualization of the spatial distribution of synthetic
image, text, and sample embeddings with t-SNE in RESISC45
dataset.

Method ImageNet
SSL UL TRZSL

CPL 61.6 62.8 65.3
Ours 63.9 64.9 67.2

Table S3. Comparison results of top-1 test accuracy (%) on Ima-
geNet dataset. The best results are in bold.

Method Source Target
RESISC45 Flowers102 FGVCaircraft DTD EuroSAT Average

CPL 77.3 36.2 2.6 16.9 35.3 22.7
Ours 79.9 49.6 6.9 24.3 44.5 31.3

Flowers102 RESISC45 FGVCaircraft DTD EuroSAT Average
CPL 72.9 20.4 6.3 20.9 34.7 20.5
Ours 74.3 28.4 6.5 29.3 39.9 26.0

DTD RESISC45 FGVCaircraft Flowers102 EuroSAT Average
CPL 51.9 40.8 4.4 45.7 27.5 29.6
Ours 55.7 44.3 5.2 47.9 32.5 32.5

Table S4. Results in cross-dataset scenarios.

J. Comparison in Cross-dataset Scenarios.

To further demonstrate the generalisability of our approach,
we perform comparative experiments in cross-dataset sce-
narios. We train models on RESISC45/Flowers102/DTD
and test them on other datasets. As shown in Tab. S4, our
Air still surpasses the SOTA-CPL by 3-8% accuracy, prov-
ing its generalizability.
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