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A. Details About the Experiments
A.1. Datasets

Classification Datasets. FGVC encompasses five fine-
grained visual classification datasets: CUB-200-2011 [27],
NABirds [25], Oxford Flowers [23], Stanford Dogs [13], and
Stanford Cars [7]. Following Jia et al. [11], we split each
dataset into train (90%) and val (10%) subsets.

VTAB-1K contains 19 diverse visual tasks across three
categories: (i) Natural tasks involving standard camera im-
ages for object classification and scene recognition; (ii) Spe-
cialized tasks using domain-specific imagery such as medical
scans and satellite data; and (iii) Structured tasks focusing
on spatial relationships and object properties.

Segmentation Datasets. We evaluate on two semantic
segmentation benchmarks: ADE20K with 150 fine-grained
semantic concepts, and PASCAL Context providing pixel-
wise annotations across 60 object classes. For dataset parti-
tioning, we strictly follow the protocol established in VPT
[11]. Complete dataset statistics and task details are provided
in Table 2.

A.2. Implementation Details

Classification Tasks. For FGVC datasets, we employ stan-
dard data augmentation: random resizing and cropping to
224 x 224 pixels with random horizontal flipping. For
VTAB-1K, following Zhai et al. [32] and Jia et al. [11],
images are directly resized to 224 x 224 pixels without addi-
tional augmentation.

Model training utilizes the AdamW optimizer with a
batch size of 32 over 100 epochs. The learning rate fol-
lows a combined schedule: a 10-epoch linear warm-up fol-
lowed by cosine decay [17] from the initial value to le-
8. We determine optimal hyperparameters through cross-
validation on the validation set. Following established proto-
cols [6, 11, 16], we report mean accuracy across three runs
with different random seeds.

Segmentation Tasks. We implement our experiments us-
ing the SETR framework [33] through MMSegmentation.
We adopt the SETR-PUP configuration, utilizing one pri-
mary head and three auxiliary heads to process features from
transformer layers 9, 12, 18, and 24. Training follows Zheng
et al. [33]: 160k iterations for ADE20K and 80k iterations
for PASCAL Context, with hyperparameter optimization
mirroring our classification approach.

For multi-class segmentation samples, we adapt the
class assignment strategy by randomly selecting one non-
background class as the target class for visual prompt assign-
ment during each iteration, accounting for the pixel-wise
multi-class nature of segmentation tasks.

A.3. Hyperparameter Configuration

Parameter Search Space. Table | details our hyperpa-
rameter search space for each task, including learning rate,
weight decay, and the number and location of layers guided
by semantic metrics loss. For the main results, we maintain
default values for Proxy-Anchor loss parameters to narrow
the parameter searching space.

Configuration Value

Optimizer AdamW [18]

Base learning rate range {1e-3, 5e-4, le-4, 5¢-5}

Weight decay range {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0}
Learning rate schedule Cosine Decay [17]

Layers applied guidance
Num of prompts applied guidance {5, 10, 20, 40}

Proxy-Anchor & 32.0
Proxy-Anchor 7 10.0

Batch size 32

‘Warmup epoch 10

Total epoch 100 (ViT-B/16)

Augmentation RandomResizedCrop, RandomHorizontalFlip

Table 1. Hyper Parameters Searching Space and Training configu-
ration in our experiments

Prompt Configuration for Tasks with Limited Classes.
For tasks with limited classes (C' < 5), we augment the
visual prompts by adding extra unassigned prompts that are



not guided by semantic metrics loss. This approach empiri-
cally improves prompt transferability, particularly in tasks
with very few classes (e.g., Patch Camelyon, Retinopathy,
or KITTI-Dist in VTAB). The extra prompts help maintain
an effective number of visual prompts in the guiding layer
while preserving the semantic structure of the original class-
assigned prompts.

B. Discussion and Comparison with Self-SPT

Methodological Distinctions. While both Self-SPT and
our work leverage prompt distributions to enhance represen-
tation learning, they differ fundamentally in their approaches.
Self-SPT attempts to align prompt and visual token distribu-
tions through initialization, using mean or max pooling of
input data to set background values. In contrast, our method
achieves distribution matching at the semantic level through-
out the optimization process. This semantic-level matching
enables our visual prompts to capture discriminative features
by explicitly considering class relationships during training.

Our Key Advantages. Our approach demonstrates several

significant advantages over Self-SPT:

* Continuous Optimization: Our method maintains distri-
bution regularization throughout the entire optimization
process, while Self-SPT only applies distribution align-
ment during initialization.

¢ Discriminative Feature Learning: Through metric guid-
ance, our prompts explicitly capture class-specific discrim-
inative features by comparing tokens from the same and
different classes. In contrast, Self-SPT’s uniform back-
ground value initialization does not differentiate between
class-specific features.

* Computational Efficiency: Our method significantly re-
duces pre-processing overhead by clustering class repre-
sentations rather than entire visual token sets, avoiding the
computational burden of Self-SPT’s k-means clustering
approach on the full dataset.

Empirical Analysis. To thoroughly evaluate the relation-
ship between background value initialization and metric
guidance learning, we attempted to reproduce Self-SPT’s
results and assess its performance when integrated with our
method. As illustrated in Figure 1, our experiments revealed
two key findings: (1) we were unable to reproduce the per-
formance metrics reported in the original Self-SPT paper,
and (2) the background value initialization strategy did not
yield measurable improvements when combined with our
metric guidance approach. These results further validate our
focus on semantic-level distribution matching as the primary
mechanism for improving prompt optimization.

The comparative analysis demonstrates that while both
methods address prompt distribution optimization, our ap-
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Figure 1. Impact of Prompt Initialization Strategies. Com-
parative analysis of model performance under different prompt
initialization schemes. Results demonstrate that the background
value initialization method proposed in Self-SPT [28], which uses
mean pooled visual tokens, shows no significant performance gains
when combined with our distribution-aware guidance approach.
This suggests that our method’s effectiveness stems from its contin-
uous distribution matching during training rather than initial prompt
configurations.

proach offers more robust theoretical foundations, better
computational efficiency, and superior empirical perfor-
mance. The continuous nature of our distribution regular-
ization, combined with explicit semantic guidance, provides
a more principled framework for learning discriminative
prompt representations.

C. DA-VPT+: Integration with Bias Tuning

This section examines the synergy between our proposed
metric learning guidance and bias tuning in PEFT mod-
els. Our investigation is motivated by an intriguing observa-
tion from the original VPT work [11], which reported that
bias tuning adversely affects vanilla VPT optimization. We
present a novel perspective on this interaction and demon-
strate how our approach effectively addresses these limita-
tions.

Theoretical Motivation. The distribution of visual tokens
in transformer layers is inherently constrained by the repre-
sentations from previous layers and their associated visual
prompts. We hypothesize that unfreezing bias terms, partic-
ularly in Key and Value projections, introduces additional
flexibility in token representation. This flexibility becomes
especially significant when combined with our metric learn-
ing guidance, as it allows for more nuanced distribution
alignment between visual prompts and tokens.



Datasets \ Task Description | Classes | Train Size | Val Size | Test Size
Fine-Grained Visual Classification (FGVC) [11]

CUB-200-2011 [27] Fine-grained Bird Species Recognition 200 5,394 600 5,794
NABirds [25] Fine-grained Bird Species Recognition 55 21,536 2,393 24,633
Oxford Flowers [23] Fine-Grained Flower Species recognition 102 1,020 1,020 6,149
Stanford Dogs [13] Fine-grained Dog Species Recognition 120 10,800 1,200 8,580
Stanford Cars [7] Fine-grained Car Classification 196 7,329 815 8,041

Visual Task Adaptation Benchmark (VTAB-1k) [32]

Caltech101 [5] 102 6,084
CIFAR-100 [14] 100 10,000
DTD [3] Natural-Tasks (7) 47 1,880
Oxford-Flowers102 [22] Natural images captured using standard 102 800/1000 200 6,149
Oxford-PetS [24] cameras. 37 3,669
SVHN [21] 10 26,032
Sun397 [29] 397 21,750
Patch Camelyon [26] Special-Tasks (4) 2 32,768
EuroSAT [9] Images captured via specialized 10 800/1000 200 3,400
Resisc45 [2] . 45 1,880
Retinopathy [4] equipments 5 42,670
Clevr/count [12] 15,000
Clevr/distance [12] 6 15,000
DMLab [1] 6 22,735

KITTI-Dist [8] Structured-Tasks (8) 4 711
dSprites/location [19] Require geometric comprehension 16 80071000 200 73,728
dSprites/orientation [19] 16 73,728
SmallNORB/azimuth [15] 18 12,150
SmallNORB/elevation [15] 18 12,150

Image Semantic Segmentation
ADE20K [34] Fine-grained images with pixel-wise 150 20210 2000 3352
PASCAL Context [20] semantic annotations 60 4998 5105 —

Table 2. The details and specifications of the downstream task datasets we selected to evaluate our proposed framework.

Advantages over Vanilla VPT. Unlike vanilla VPT, DA-
VPT explicitly manages distribution alignment between vi-
sual prompts and tokens through metric learning guidance.
This explicit alignment makes our method more responsive
to distribution shifts in visual tokens, which are substantially
influenced by projection layer bias terms. By simultane-
ously optimizing bias terms and maintaining distribution
alignment, DA-VPT+ achieves more robust and effective
feature representations. This integration of bias tuning with
DA-VPT demonstrates how our method’s distribution-aware
approach can transform a previously problematic component
(bias tuning) into a complementary enhancement.

D. Supplemental Empirical Studies

We conduct additional empirical investigations to explore
potential extensions of our proposed framework in two key
directions: alternative metric learning approaches and modi-
fied architectural connections.

Alternative Metric Learning Losses. We investigate the
effectiveness of different metric learning losses for guiding
visual prompt distributions. Specifically, we compare our
proposed Proxy-Anchor (PA) loss against two alternatives:
vanilla Proxy-NCA loss and triplet loss. For these vanilla
losses, we treat the selected prompts as individual data points,
with class assignments determined by the current training
epoch. This comparison helps us understand the relative
advantages of our PA loss formulation in the context of
prompt optimization. Details are listed in Table 3.

Modified Connection Structures. We examine two archi-
tectural modifications to the base framework: 1) Cross-layer
prompt connections (DA-VPT+Conn), which enable infor-
mation flow between prompts at different layers, and 2)
Learnable gated connections following GateVPT [30] (DA-
VPT+Gate), which introduce adaptive control over prompt
interactions.

These architectural studies provide insights into the role
of prompt connectivity in our distribution-aware framework.
The experimental results and detailed analysis of these varia-



Methods CUB200 Cars NABirds  VTAB-Natural
VPT (baseline) 88.6 87.4 85.7 78.48
DA-VPT 90.2 (+1.6) 89.7 (+2.3) 87.4 (+1.7) 80.25 (+1.77)
DA-VPT+Conn  89.6 (+1.0) 88.1(+0.7) 86.8 (+1.1)  79.11 (+0.63)
DA-VPT+Gate 89.8 (+1.2) 88.4(+1.0) 87.0(+1.3) 79.48 (+1.00)
DA-VPT (PNCA) 89.2 (+0.6) 88.2(+0.8) 86.9 (+1.2) 79.22 (+0.74)

DA-VPT (triplet)  87.9 (-0.7) 87.1(-0.3) 85.4(-0.3) 78.61 (+0.13)

Table 3. Analysis of Connection Structures and Metric Learning
Variants. Empirical evaluation of (a) different visual prompt con-
nection architectures across transformer layers and (b) alternative
metric learning approaches. Our results indicate that neither cross-
layer connections nor learnable activation gates provide substantial
improvements over our base method. Furthermore, experiments
with alternative metric learning losses show less stable fine-tuning
performance compared to our approach, with some variants per-
forming below the VPT baseline. These findings suggest that the
effectiveness of our method primarily stems from its distribution-
aware prompt optimization rather than architectural modifications
or alternative metric formulations.

tions are presented in Table 3.

Algorithm 1 Distribution Aware Visual Prompt Tuning (DA-
VPT)

Input: Pre-trained ViT model fy, Dataset D =
(:E i3 yi)i\il 5
number of prompts M, (3, A, learning rate and other re-
lated hyperparameters
Output: Fine-tuned ViT model fy
Initialize M prompts p' for each layer /
Get class tokens S € R€*P by Forward passing fp
Create a mapping from C' classes to M prompts (C' — M)
using k-means clustering on S
while stop criteria is not satisfied do

Obtain a batch {z;,y; }7, from D

Forward pass x; through ViT fy with prompts p'

Select saliency patch x right after attention layer in
last selected blocks

Calculate metric learning losses Lyp(x,p) and
ACML (P, Xcls)

Calculate cross-entropy loss Lcg

Minimize loss: £ = Lcg + BLmL(X,p) +
AL (P, Xets)

Update p and other learnable parameters from Back-
ward of £

Update class tokens S and class-prompt mapping
C — M after certain steps

return Fine-tuned ViT model fy

E. The Proof and Detial of theorem 1

Theorem 1. For a weight perturbation Aa; calculated using
the softmax function, there is an approximate relationship:

Aai ~ az(l — ai)Asi,
where As; is a small change in the attention score s;, and
ApTo;
Vd

Proof. The attention weights a; are calculated using the
softmax function applied to the attention scores s;:

ASZ‘ =

Si

C
= Zj et
The partial derivative of a; with respect to s; is given by:

8@1
aSj

Q;

= a;(0;5 — aj),
where d;; is the Kronecker delta function:

1, ifi=j
dij = e
0, ifiz#j.

For small perturbations As;, we can approximate the
change in a; using a first-order Taylor expansion:

aai

Aai ~ -
; aSj

ASj.

Then we substitute the expression for the derivative:
Aai ~ Zal(éw — CLJ‘)ASJ'.
J

Split the summation into two parts:

Aa; = a;(1 —a;)As; —a; ZajAsj.
J#i
We assume that the weighted sum of the perturbations
As; for j # i is negligible:

Z a; As o~ 0.
J#i
This approximation is reasonable when:
* The perturbations As; for j # 4 are small and uncorre-
lated, so they average out.
 The attention weights a; for j # 4 are small (i.e., a; is
dominant).
Under this assumption, the expression simplifies to:

Aai ~ ai(l — ai)As,-.



F. Limitations

Our Parameter-Efficient Fine-Tuning (PEFT) approach,
while effective, still faces a few key challenges.

Hyperparameter Sensitivity. The introduction of metric
learning losses alongside the standard cross-entropy loss cre-
ates additional complexity in hyperparameter optimization.
The performance of our method depends significantly on
the weight ratios 5 and A, which require careful tuning for
each combination of backbone model and downstream task.
This dependency can make the optimization process more
time-intensive compared to simpler PEFT approaches.

Computational Overhead. Our method introduces addi-
tional computational costs through the metric learning losses
and their associated operations. While the increased latency
remains within practical bounds (typically 5% higher than
baseline PEFT methods), it may impact applications with
strict real-time requirements or resource constraints.

G. Future Works

To address these limitations, we plan to develop automated
hyperparameter optimization strategies, potentially leverag-
ing meta-learning or Bayesian optimization techniques. We
will also investigate more efficient metric learning formu-
lations that maintain performance while reducing compu-
tational overhead. Additionally, our research will explore
hardware-specific optimizations to minimize the latency im-
pact in practical deployments.

Despite these challenges, our experimental results demon-
strate that the performance improvements offered by our
method consistently outweigh its limitations across diverse
tasks and model architectures.

H. Broader Impact

Distribution Aware Visual Prompt Tuning (DA-VPT) has
significant implications for both technical advancement and
societal applications.

Technical Contributions. Our method advances the per-
formance in parameter-efficient fine-tuning by enabling more
efficient adaptation of large vision models to specific do-
mains. The reduced computational requirements for model
specialization, coupled with improved performance on fine-
grained visual tasks, make sophisticated vision models more
accessible and practical for real-world applications.

Potential Applications. DA-VPT could enable significant
advances in several high-impact domains. In healthcare, it
can facilitate more accurate medical image analysis with lim-
ited training data, potentially improving diagnostic accuracy

and treatment planning. Environmental protection efforts
could benefit from enhanced wildlife monitoring and bio-
diversity assessment capabilities. The method’s efficiency
also enables deployment of sophisticated vision models on
edge devices, advancing assistive technologies for accessi-
bility applications. Furthermore, industrial applications such
as quality control and visual inspection systems could see
substantial improvements in accuracy and reliability.

Table 4. Summary of notation used throughout the paper.

Symbol  Domain Description

I RHXWXC  Input image

N N Number of image patches

D N Dimension of embedding space
L N Number of Transformer layers
l {1,...,L} Layer index

Xels RP Class [CLS] token

X RW+DXD  Sequence of embeddings

H, RDPxD Attention head 4

Query, Key, Value matrices

M N Number of prompt tokens

P RMxD Set of prompt tokens

P RP k-th prompt token

X RP L2-normalized vector of x

Yi {1,...,C} Class label for sample 7

C N Number of classes

1 R+ Margin in metric learning

T Rt Temperature parameter

P - Set of all prompts

P - Set of positive prompts

Xp* - Set of positive visual tokens

X, - Set of negative visual tokens

By Rt Loss weighting hyperparameters
S REXD Class representations

Wb RP*D Query projection matrix at layer [
bg,by RP Bias terms for Key and Value projections

I. More Examples of Attention Maps on
Prompts

We also demonstrate some representative attention visual-
izations from CUB-200-2011 and Stanford Dogs datasets.
For each image, we display the attention map corresponding
to its class-assigned prompt. The attention patterns demon-
strate how our method learns to focus on class-discriminative
regions.
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