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We first provide more details of our data engine and the
proposed MINIMA. Then we conduct additional experi-
ments, including more ablation studies, more quantitative
and qualitative matching results, and applying our MIN-
IMA to the Visual Localization.

A. Details of Our Data Generation

A.1. Quality Verification of Modality Generation

The generation models for several modalities, excluding
infrared (IR), have achieved significant success in their
respective domains. Therefore, we additionally evaluate
the quality of our infrared generation model. We use a
diffusion-based method [7] for fine-tuning due to its sig-
nificant performance in style transfer. The fine-tuning pro-
cess utilizes 80% real RGB-IR pairs from LLVIP [8] and
M3FD [14], while the rest 20% is used for the test. These
two datasets provide over 10,000 real RGB-IR image pairs,
which are fully aligned by manual labeling.

Evaluation Protocol. In addition to LLVIP and M3FD,
we additionally evaluate the generation performance on
the MSRS dataset [23] by randomly selecting 120 RGB-
IR pairs. Specifically, we generate the pseudo-IR image
for one RGB and then compare it with the corresponding
real IR image. For comparison, we adopt XoFTR (CVPR
24) [24] and CPSTN (IJCAI 22) [26] as baseline methods.
XoFTR used a handcrafted method to transfer RGB to IR,
while CPSTN is a cycle-consistent perceptual network. We
employ quantitative metrics including PSNR (Peak Signal-
to-Noise Ratio), SSIM (Structural Similarity Index Mea-
sure) [29], LPIPS (Learned Perceptual Image Patch Simi-
larity) [30] with AlexNet [11], and PyTorch FID (Frechet
Inception Distance) [20]. As for FID, we compute the di-
mensionality of features with sizes 2048 to serve as an eval-
uation indicator. The results are presented in Tab. Al with
visualizations provided in Fig. Al and Fig. A2

Results Analysis. From both qualitative and quantitative
results, we find our infrared generation achieves huge im-
provements. Specifically, our generated infrared images are
closer to the real sensors, and the contents are clear and
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Figure Al. Visualization Results of Infrared generation on
MSRS. The first two columns are real RGB and Infrared images.

CPSTN Ours
Figure A2. Visualization Results of Infrared Generation on
MB3FD. The first two columns are real RGB and Infrared images.

even better than ground truths. In addition, almost all the
metrics demonstrate superiority to others by large margins.
The promising performance helps a lot for our data engine
to generate high-quality cross-modal image pairs. It is also
critical in training a unified matching model, making our
MINIMA obtain high generalization ability.

A.2. Data Cleaning

It is necessary to clean up the synthetic data to reduce the
impacts of abnormal ones since we can not ensure the qual-
ity of the generated images. To this end, and for each RGB
image and its corresponding pseudo modalities, we use our
matching model (fine-tuned on the target modality) to re-
cover the homographies (the ground truths are the identity
matrix) for them. Any image pair with the mean projec-
tion error of corner points larger than 10 pixels is regarded
as dirty data and dropped. Finally, 0.91% of the matching



Table Al. Quantitative Evaluation of Infrared Generation with
Different Metrics. The test datasets are LLVIP [8], M3FD [14]
and MSRS [23]. CPSTN (IJCAI 22) [26] and XoFTR (CVPR
24) [24] are used for comparison. Bold indicates the best.

Data Method PSNR1 SSIM{ LPIPS| FID-2048 |

CPSTN 2791 0.32 0.66 303.55
LLVIP XoFTR 27.90 0.29 0.71 204.44
Ours 28.28 0.55 0.42 145.93
CPSTN 27.82 0.37 0.56 161.71
M3FD XoFTR 27.86 0.33 0.59 125.07
Ours 28.14 0.53 0.46 119.96
CPSTN 27.95 0.15 0.74 204.37
MSRS  XoFTR 27.84 0.16 0.77 167.39
Ours 27.87 0.19 0.73 161.37
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Figure A3. Pixel Intensity Statistic for Generated Modalities.
The statistical differences reveal the excellent ability of our data
engine to generate modality gaps.

pairs are dropped in the training set.

A.3. Analysis of the Generated Modalities

We show a group of generated modalities of our data engine
in A3, which show high-quality visible results. We also pro-
vide their pixel intensity statistics, which reveal the modal-
ity gap among them. These high-quality images together
with their modality gaps enable existing matching models
to easily obtain cross-modal ability. Not only image match-
ing, our MINIMA can also deliver significant reference and
insight for other multimodal perception tasks.

B. Details of MINIMA

The details of our fine-tuning stage are as follows. i) Light-
Glue (LG) [13]. We use SuperPoint [4] to extract 2048
keypoints and freeze its parameters, then only fine-tune
LightGlue. Because SuperPoint is verified to extract match-
able features for cross-modal images [10]. Just fine-tuning
LightGlue can achieve promising performance, as demon-
strated by our MINIMA1 . Here we directly adopted the
initial learning rate, i.e., 1 x 10™%, in the fine-tuning stage.
In practice, we fine-tune the LG model for 50 epochs as
the authors suggested, which also shows converged perfor-
mance in our study. ii) LoFTR [22] and RoMa [6]. We
lower the learning rate to the 1/10 of the original, with
the linear scaling rule to account for batch size differences.
Specifically, the initial learning rate is set as 1 x 10~* for
LoFTR. And we set it as 1.5 x 107° for the RoMa de-
coder, and 7.5 x 10~7 for the RoMa encoder. Note that
we maintain the default learning rate decay strategies for
all methods during the fine-tuning. For LoFTR, we fine-
tune for 30 epochs. In contrast, we fine-tune RoMa for
only 4 epochs due to its inherent capabilities, which have
already achieved amazing gains. For better understanding,
we also fine-tune ELoFTR [28] and XoFTR [24], denoted
as MINIMAELOFTR and MINIMAXOFTR. And they are
fine-tuned for 20 epochs and 5 epochs, respectively. Their
learning rates are similar to our MINIMA ,rrr. The cor-
responding results are in Tab. A3, Tab. A4 and Tab. AS.

C. Additional Experimental Results

C.1. More Studies on Different Training Data

To better understand our MINIMA, we fine-tune the basic
models on different combinations of our generated cross-
modal data. The obtained models are evaluated on different
real scenes, and the results are reported in Tab. A2. For
each baseline, we first report the AUCs of the official mod-
els (without any fine-tuning) in the first row. Then we fine-
tune each model on a single type of modality pair (RGB+X),
which shows large enhancements compared with the ba-
sic models. Finally, we fine-tune the models on two or
more modality types. The results demonstrate that differ-
ent modalities can cooperate to train a better model. Using
RGB-IR/Depth/Normal can achieve the best overall perfor-
mance; hence, we use them as our final models. Addition-
ally, using artistic data (Paint and Sketch) can not further
enhance the performance because the artistic type has no
physical property and is different from other modality types.

C.2. More Results of Semi-dense Matching

For a better understanding of our MINIMA, we further
fine-tune ELoFTR [28] and XoFTR [24] on the generated
data, obtaining MINIMAg,,rrr and MINIMAx,rTRr. The
corresponding results of semi-dense matching are reported



Table A2. Ablation Studies with Different Training Data. The basic models are LG, LoFTR, and RoMa. The training sets are different
combinations of our generated cross-modal data. We evaluated the fine-tuned models on real cross-modal cases. For each baseline, the
model trained on the original MegaDepth is reported in the first row. The average performance is shown in the last column.

Generated Modalities

Rel IR Rel Depth Rel Event RS Medical

Models Infrared Depth Normal Event Paint Sketch | AUC@10° AUC@10px AUC@10px AUC@I10px AUC@I10px ‘\Yerase
537 11.26 7.02 44.62 49.48 23.55

v 35.55 4727 13.39 55.12 5273 40.81

v 30.54 5178 12.08 57.73 52.17 40.86

v 32.66 48.66 10.44 58.15 52.43 40.47

MINIMArG v 2333 38.37 10.01 55.72 51.32 35.75
v v v 37.17 55.97 12.82 58.74 52.50 43.44

vV 13.05 31.09 10.89 51.52 49.67 31.24

v v v ooV 36.34 55.93 12.74 58.41 52.45 43.17

6.94 15.16 5.91 50.79 50.13 25.79

v 29.55 39.23 1112 48.79 51.71 36.08

v 15.12 36.06 532 53.64 52.40 32.51

v 23.14 39.79 10.28 54.73 52.53 36.09

MINIMAT oFTR v 14.96 32.97 12.19 45.77 50.28 31.24
v v v 30.84 44.85 11.38 56.81 52.77 39.33

vV 10.10 21.96 11.33 48.59 49.88 35.47

v v v v 30.80 48.55 12.44 56.04 51.82 39.93

v v v vV 30.61 45.10 11.83 55.33 52.19 39.01

48.12 4931 10.71 57.84 53.75 43.95

v 57.28 57.49 10.49 60.37 57.08 48.54

v 60.42 72.63 11.00 62.95 56.72 52.74

v 60.36 72.51 10.89 63.23 55.26 52.45

MINIMARoMa v 59.11 69.11 11.71 64.30 57.75 52.40
v v 58.89 72.88 12.36 63.91 55.50 5271

v v v 60.70 72.54 17.07 64.38 55.09 53.96

S ooV 58.14 65.91 8.79 59.66 57.73 50.05

v v v v 61.27 73.80 11.02 65.01 55.04 53.23

v v v ooV 60.43 72.83 12.98 64.80 57.92 53.79

Table A3. Semi-dense Matching Results on Our Synthetic Dataset. The AUC of the pose error in percentage is reported. The best and

second are masked as Bold and Underline, respectively.

RGB-IR RGB-Depth RGB-Normal RGB-Event RGB-Sketch RGB-Paint

Category Method
@5° @10° @20° @5° @10° @20° @5° @10° @20° @5° @10° @20° @5° @10° @20° @5° @10° @20°
LoFTR [22] 544 12.58 2428 0.13 044 1.88 5.72 12.07 23.14 490 12.43 26.45 37.81 54.82 69.52 593 12.22 22.19
XoFTR [24] 17.85 32.21 49.53 12.82 23.10 36.02 22.74 38.35 54.71 33.33 51.61 67.49 44.18 61.39 75.07 3.73 7.54 14.48
ELoFTR [28] 6.73 14.59 27.36 0.25 0.79 3.32 11.20 21.67 36.86 9.25 20.39 37.56 43.86 61.09 74.84 14.09 25.11 39.44
Semi-Dense GIMy oprRr [21] 2.60 6.79 1550 0.00 0.04 027 035 1.06 4.01 044 143 528 17.30 31.82 48.79 4.84 10.64 21.82
MINIMA},,prr  18.07 32.36 48.42 14.70 28.81 46.23 27.65 44.26 59.88 18.14 32.74 49.11 36.07 53.54 68.47 7.79 15.45 27.39
MINIMAxorrr 18.97 34.36 51.72 24.47 40.90 58.36 30.47 47.90 64.64 31.14 49.39 65.71 42.91 60.77 75.00 5.61 11.56 20.95
MINIMAEL rTR 13.14 26.36 43.63 16.59 32.26 50.37 29.72 47.47 63.72 15.66 30.72 48.73 41.64 59.63 73.73 15.02 27.02 41.62

in Tab. A3 and Tab. A4. The results reveal that with better
pipelines, our MINIMA can achieve further enhancements
of overall performance.

C.3. Results on Original MegaDepth Dataset

In this part, we will evaluate the performance degradation
on RGB-only matching tasks for those cross-modal match-
ing methods. To this end, we test these methods back to the
original MegaDepth-1500 [12]. We use the same settings
as described in [13, 22]. Following previous testing, the
RANSAC threshold is still set to 0.5. For semi-dense and
dense methods, the longest edge of the input images is re-
sized to 1200 pixels, while for sparse methods, it is resized

to 1600 pixels. The results are summarized in Tab. A5, re-
vealing that our MINIMA can well maintain the ability of
RGB-only matching, except for LoFTR.

C.4. Scratch Training v.s. Fine-tuning

We report the loss values and AUC@5° performance with
respect to epochs, by using scratch training and fine-tuning.
The test set is our synthetic RGB-IR data generated from
MegaDepth-1500 [12]. We use LoFTR as the basic model,
and the training set is our synthetic RGB-IR/Depth/Normal.
Statistic results are shown in Fig. A4, which reveal that
the fine-tuning strategy can converge more rapidly since
the pre-trained model can provide good matching priors for



Table A4. Semi-dense Matching Results on Real Dataset. The AUC of the pose error in percentage is reported. The best and second are

masked as Bold and Underline, respectively.

Real RGB-IR Real RGB-Depth Medical Remote Sensing Real RGB-Event
Category  Method

@5° @10° @20° @3px @5px @10px @3px @5px @10px @3px @5px @10px @3px @5px @10px

LoFTR [22] 288 694 1495 097 420 1516 3842 43.89 50.13 24.13 3380 50.79 0.00 0.00 3.59

XoFTR [24] 18.47 34.64 515 11.03 27.24 51.60 39.67 45.60 52.32 27.35 39.58 56.63 0.00 137 12.64

ELoFTR [28] 288 7.88 17.72 0.82 4.09 16.69 34.57 41.66 49.08 1645 29.65 46.74 0.64 134 778

Semi-Dense GIMyiorrr [21] 043 1.06 299 000 025 1.15 39.51 4440 4894 1796 2741 3729 0.00 0.55 1.19
MINIMAp,pTr  15.61 30.84 47.87 535 18.65 44.85 39.67 4533 52.77 2332 35.18 56.81 0.81 249 11.75
MINIMAxorpTr 19.38 35.82 5294 11.76 29.48 55.05 39.33 4492 52.09 25.19 37.86 5436 0.00 1.92 15.23
MINIMAgLopTr 12.11 28.07 4725 396 1642 44.03 39.12 4461 52.12 19.70 33.78 53.83 0.37 1.04 9.66

Table AS5. Evaluation on Original Megadepth-1500 for Pose
Estimation. The AUC of the pose error in percentage is reported.
This mainly demonstrates that our MINIMA can well preserve the
RGB-only matching performance except when using LoFTR.

Pose estimation AUC

Category Method
@5° @10° @20°
SuperGlue [16](cver 20) 49.7  67.1 80.6
Sparse LightGlue (LG) [13]qcev 23y 499 670  80.1
GIMLG [21](1c1R 24) 413 607 759
MINIMAL,¢ 473  65.0 78.6
LoFTR [22](cver 21 536 699 820
GIMLorTR [21](1cLR 24) 513 685  8l.1
ELOFTR [28](cver 24) 564 722 835
Semi-Dense  XoFTR [24](cvpR 24 458 617 740
MINIMAT,,FTR 209 453 595
MINIMAELFTR 51.0 68.1 80.3
MINIMA X oF TR 445 600 723
DKM [5](cveR 23) 604 749 851
Dense GIMpkMm [21](icLr 24) 607 755 859
RoMa [6](cvpr 24) 626 767 863
MINIMARoMa 61.7 76.5 86.4

—e— Scrateh Training
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—e—  Scratch Training

Fine-tuning
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Figure A4. Training Loss and AUC@5° w.r.t. Epochs, using
Scratch Training and Fine-tuning. The basic model is LoFTR.

The test set is our synthetic RGB-IR of MD-syn.

challenging cross-modal tasks.

C.5. Apply to Visual Localization

Vision localization (VL) is a critical downstream task of
image matching. The target is to recover the 6—degree-
of-freedom (6—DOF) camera pose from a query image re-
lated to a known 3D scene model. We perform it on the
Aachen v1.0 dataset, which is a challenging large-scale out-

Table A6. Visual Localization on Aachen Day-Night V1.0 [17]

Day Night
Method
(0.25m,2°) / (0.5m,5°) / (5m,10°)
MNN 86.9/92.0/955 73.5/79.6/88.8

SuperGlue [16](cvepr 20)
SGMNet [2]iccv 21)
LightGlue (LG) [13](1ccv 23)
ConvMatch [31](tpam 23)
MINIMA1,¢

87.9/95.0/97.9
86.5/93.7/97.2
88.0/93.8/97.5
88.1/94.4/97.3
88.3/94.7/98.3

84.7/92.9/99.0

82.7/91.8/99.0

84.7/91.8/99.0

79.6/88.8/96.9
85.7/92.9/100.0

door dataset for localization with large-viewpoint and day-
night illumination changes, making the localization largely
rely on the robustness of matching methods. We adopt its
full localization track for benchmarking.

Following [13, 15], we integrate different matching
methods into the official HLoc pipeline [15] to achieve lo-
calization. Specifically, with COLMAP [18, 19] toolbox,
we first triangulate a 3D point cloud for all reference im-
ages with known poses and calibration, then retrieve 20 ref-
erence images for each query image with NetVLAD [1] on
Aachen Day-Night v1.0. Then, we match the query im-
age and the retrieved images with image matching meth-
ods, where the feature points are extracted up to 4096 by
SuperPoint [4]. Finally, the camera poses are estimated by
RANSAC and a Perspective-n-Point solver. We report the
pose recall at different scales of distance and angular thresh-
olds, ie., (0.256m,2°) / (0.5m,5°) / (5m,10°). The sparse
matchers, including SuperGlue [16], SGMNet [2], Light-
Glue (LG) [13], ConvMatch [31] and our MINIMA fine-
tuned with LightGlue, are used for comparison. We also
report the raw results of SuperPoint directly with Mutual
Nearest Neighbor (MNN) matching.

The localization results are summarized in Tab. A6,
which demonstrate the good ability of our MINIMA for
downstream applications. Since our MINIMA is addition-
ally trained on high-quality multimodal image pairs, it can
be more robust in complex scenarios.
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Figure AS. Qualitative Results on Real RGB-IR Image Pairs of METU-VisTIR [24]. The red lines indicate false matches.
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Figure A6. Qualitative Results on Real RGB-Depth Image Pairs of DIODE Dataset [25]. The red lines indicate false matches.

C.6. More Visible Results on Real Datasets

We also show more qualitative results, which are se-
lected from real RGB-IR [24], RGB-Depth [25], RGB-
Event [27] and Remote Sensing [10] (including Optical-
SAR, optical-Map, and Day-Night) datasets. For each
pair, we show the raw matching results before RANSAC.
The red lines indicate false matches whose epipolar er-
ror (pose) or projection error (homography) is beyond 5 x
10~* and 3 pixels, respectively. Visible results are shown
in Fig. A5, Fig. A6, Fig. A7 and Fig. A8. Our meth-
ods MINIMA; g (sparse) and MINIMAR,\a. (dense) are
compared with the sparse pipeline ReDFeat [3] and Om-
niGlue [9], and semi-dense matcher XoFTR [24]. ReD-
Feat and XoFTR are cross-modal methods, and OmniGlue
is known for its generalization. The results reveal that our
MINIMA can produce a high number and ratio of correct
matches (green lines).
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