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8. Dataset Details:
Implementation Details.

Each participant performs almost all the motion types.
Each motion type is repeated two or three times. Each se-
quence represents a Sub-Motion Type in Fig. 3 and lasts
about 10 minutes. Following Human3.6M, we split the
dataset into training and test sets at a 5:1 ratio based on par-
ticipants, ensuring that there is no overlap between training
and test sets for any <Participant, Motion Type >pair.
Volunteers Details.

Gender: Our dataset consists of 70 individuals, com-
prising 29 females and 41 males, as shown in Fig. 9.

Figure 9. Gender Ratio of MotionPRO

Age: As shown in Fig. 10, our dataset encompasses in-
dividuals across a broad age range, spanning from 15 to 61
years, with an average age of 31.4 for women and 26.6 for
men.

Figure 10. Age Distribution by Gender (5 years intervals)

Height: As shown in Fig. 11, our dataset includes indi-
viduals of varying heights, spanning from 157 cm to 185

cm, with an average height of 162.9 cm for women and
176.2 cm for men.

Figure 11. Height Distribution by Gender (5 cm intervals)

Weight: As shown in Fig. 12, our dataset includes indi-
viduals with a range of weights, spanning from 44.1 kg to
108 kg, with an average weight of 59.8 kg for women and
78.0 kg for men.

Figure 12. Weight Distribution by Gender (5 KG intervals)

Sensor Details.
Our system utilizes a multi-sensor setup for data acqui-

sition:
• 4 Azure Kinect cameras [38] to capture high-quality RGB

videos.
• 12 optical cameras (SWIFT 30) [34] to record raw marker

data for precise motion tracking.
• 1 pressure mat, specially designed for our system, to mea-

sure whole-body pressure during various motions.
Motion Types.

The T-SNE [52] and UMAP [36] plot in Fig.13



and Fig.14 demonstrates that MotionPRO encompasses
a wide range of motion types, nearly equivalent to the
combined distribution of all currently available datasets
(AMASS [35], MoYo [50], TIP [57], IC [33], SLP [30]).
The figure on the left represents the T-SNE or UMAP dis-
tribution of the existing dataset, while the figure on the right
illustrates the results of directly mapping MotionPRO based
on the T-SNE or UMAP distribution observed on the left.

Figure 13. The distribution of poses in MotionPRO and existing
MoCap datasets is visualized using T-SNE [52] dimensionality re-
duction.
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Figure 14. The distribution of poses in MotionPRO and existing
MoCap datasets is visualized using UMAP [36] dimensionality
reduction.

Motion Categories.
We define the six first-level categories as follows:
Daily: This category includes 172 common motions of

daily life, such as basic postures, simple activities, and
repetitive behaviors. These motions are characterized by
natural, non-specialized patterns with high frequency, serv-
ing as a crucial baseline for developing human motions.

Robot: This category includes motions that simulate
robotic or mechanized behaviors, characterized by mechan-
ical patterns, fixed postures, high repetition, and predictabil-
ity. Such data are essential for research on robotic motion
simulation and human-robot interaction dynamics.

Flexibility Exercise: This category primarily includes
motions involving large joint ranges of motion and the
maintenance of slow, stable postures, such as leg stretches
and splits.

Aerobic Exercise: This category comprises fitness ac-
tivities defined by high-frequency, large-amplitude, full-
body movements, typically associated with cardiovascular
training.

Traditional Chinese Exercise: This category empha-
sizes movements characterized by fluidity, control, and bal-
ance, contrasting with high-intensity workouts and reflect-
ing the characteristics of traditional Chinese fitness prac-
tices.
Ethics.

Volunteers in the MotionPRO dataset are well informed,
and all participants have signed a Data Release Commit-
ment Agreement, permitting the use of their data for re-
search purposes.

9. Baseline Details:
Intuition of pose estimation from pressure

Through the spatial distribution and temporal changes of
pressure, we verify that foot-to-floor pressure sensor read-
ings can provide important discriminative prior information
for pose estimation. Take standing and squatting as an ex-
ample (shown in Fig.15), the CoP (Center of Pressure) is
close to the heel and the toes exert almost no pressure on
the ground when a person is standing. Conversely, when
squatting, the CoP shifts closer to the forefoot and the toes
generate pressure on the ground, helping to maintain bal-
ance. Additionally, the temporal relationship can provide
more distinctive features. For example, when the posture
transitions from standing to squatting, the body generates
vertical acceleration, which leads to changes in both the to-
tal pressure value and the pressure distribution over time.

Standing Squatting Standing Squatting

Figure 15. Comparison of pressure between standing and squat-
ting.

Pressure network details.
When standing, the effective pressure area is small, re-

quiring more fine-grained feature extraction. To address
this, we reduce the size of the first convolution kernel in
the pressure encoder, enabling us to capture more features
within the limited pressure area. LSAM comprises two lay-
ers of bidirectional GRU and one layer of Self-Attention,
with each layer incorporating a residual connection. The
specific configuration of the network structure is determined
through testing on toy examples.
Loss functions.

The loss of pose parameters Lpose is the mean squared
error between the predicted θ and ground-truth pose param-
eters θ̃.

Lpose = ∥θ − θ̃∥22 (4)



The 3D joint loss, L3d, is the mean squared error be-
tween the predicted joints J(θ,T ) and ground-truth whole-
body joints J̃(θ,T ), after performing pelvis alignment.

L3d = ∥J(θ,T )− J̃(θ,T )∥22 (5)

Global translation loss Ltrans is the mean squared error
between predicted translation T and ground truth transla-
tion T̃ .

Ltrans = ∥T − T̃ ∥22 (6)

The ground contact loss, Lcontact, is the mean squared
error between the predicted global whole-body in-contact
joints JC(θ,T ) and the ground-truth global whole-body in-
contact joints J̃C(θ,T ).

Lcontact = ∥JC(θ,T )− J̃C(θ,T )∥22 (7)

L2d is the mean squared error of orthographic projection
O(·) in the camera direction between the predicted joints
and ground truth joints.

L2d = ∥O(J(θ,T ))−O(J̃(θ,T ))∥22, (8)

Implement Details.
When driving virtual humans or robots in a 3D envi-

ronment, their shapes typically remain constant over time.
These shapes are often specifically designed and can differ
significantly from those of human motion providers. There-
fore, human body shape estimation is not our focus. In
both Pose and Trajectory Estimation using Only Pres-
sure experiment and Pose and Trajectory Estimation by
Fusing Pressure and RGB experiment, we do not utilize
FRAPPE to estimate body shape. Instead, we pre-calculate
a more reasonable and representative shape based on the ac-
tual human body dimensions and maintain it fixed through-
out training and evaluation. Similarly, the shapes for other
comparison methods are also set to a consistent shape to
ensure fairness in evaluation. FRAPPE outputs the SMPL
pose and translation parameters θ,T .

FRAPPE takes 20 frames of consecutive RGB and pres-
sure images as input. The RGB images used in our method
are captured from a frontal view monocular camera, provid-
ing a direct perspective for motion analysis. Notably, in the
image branch, the encoder parameters are kept frozen dur-
ing training. This ensures that the model focuses on learn-
ing the fusion of pressure and RGB features rather than re-
learning image-specific features. At the same time, we also
ensure fairness in comparison with other methods on the
MotionPRO dataset, that is, our RGB image encoder, like
other methods, is not trained on the MotionPRO dataset.
We use AdamW optimizer with an initial learning rate of
5e−5 on 4 RTX 4090D GPUs.
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Figure 16. Framework of the robot demonstration system.

10. Robot Actuation Details:

We use the estimated human pose to actuate the robot. Our
robot demonstration system is shown in Fig. 16. Specifi-
cally, we first extract human skeletal joint points from the
SMPL model, which is estimated in motion capture module.
The human joint points are then retargeted to corresponding
target joint points that the robot can execute, involving coor-
dinate transformation, scaling, Center of Mass (CoM) track-
ing, and other related processes. Finally, in the robot motion
control module, we provide the retargeted pose to the robot
controller for inverse kinematics optimization and whole-
body control. For further details, refer to [26, 32, 40, 42].

Through the analysis of our framework, we argue that
the performance of the robot’s action depends not only on
the motion capture module but also on the other modules.
Therefore, we investigate further optimization of the mo-
tion retargeting modules through the use of pressure data.
Specifically, as the CoM distribution of the estimated hu-
man model does not perfectly align with the real pressure
data, we refine the joint points using the pressure data, fol-
lowing [32], to ensure that the body CoM offset aligns with
the pressure offset. Moreover, pressure data provides highly
accurate information on human body contact, which can be
used as a reference for controlling the robot’s support mode.
We apply this approach to CLIFF and FRAPPE and corre-
sponding results are shown in the main text.

We now clarify why CLIFF method performs better than
ours in completeness, as discussed in the main text. For
challenging actions that the robot cannot perform in the
dataset, such as jumping, lying down, and the plank pose,
etc, our method leads to the robot falling when imitating due
to the higher accuracy of our estimated poses. In contrast,
CLIFF’s less accurate poses allow the robot to remain stand-
ing and continue demonstrating the next action. In addition,
it should be mentioned that the MPJPE-H metric primarily
measures the difference between the estimated human pose
and the ground truth. As we use the human pose captured by
the optical system as the ground truth, resulting in a value
of 0 for the optical MPJPE-H in Tab. 6 of the main text.



11. Future Work
Our dataset offers valuable opportunities for future re-
search, particularly to examine the relationship between
contact duration within the Base of Support (BoS), the dis-
tance between the Center of Mass (CoM) and the Center
of Pressure (CoP), and demographic factors such as age,
weight, and height. In addition, it supports applications in
health monitoring and sports training. A key next step is to
infer pressure information from visual input, which would
expand its applicability by reducing the reliance on special-
ized sensors. Our dataset provides essential support for the
advancement of these research directions.


