
Prior Does Matter: Visual Navigation via Denoising Diffusion Bridge Models

Supplementary Material

A. Details of DDBM in Imitation Learning
As shown in Section 4.1, the evolution of conditional prob-
ability of denoising diffusion bridfge models q(at|aT) has
a time-reversed SDE of the form:

dat = [f(at, t)− g(t)2(s(at, t,aT , T)

− h(at, t,aT , T))]dt+ g(t)dw̄t,
(1)

with an associated probability flow ODE:

dat = [f(at, t)− g(t)2(
1

2
s(at, t,aT , T)

− h(at, t,aT , T))]dt+ g(t),
(2)

on t < T − ϵ for any ϵ > 0, where ŵt denotes a Wiener
process.

The derivation of q(at|a0,aT) is shown at Section 4.1.
Clearly defining each variable in the formula is necessary to
complete the computation process. Following the definition
of [2], the bridge processes generated by both VP and VE
diffusion are in Table 1.

As mentioned in Section 4.1, with the reparametriza-
tion of Elucidating Diffusion Models, score function
s(a, t,aT , T) can be expressed as:

∇at logq(at|aT) ≈ s(Dθ,at, t,aT , T)

=
at − (SNRT

SNRt

αt

αT
aT + αtDθ(at, t,aT)(1− SNRT

SNRt
))

σ2
t (1− SNRT

SNRt
)

,

(3)
We following DDBM [2] to define the scaling functions

and weighting function w(t):

cin(t) =
1√

a2tσ
2
T + b2tσ

2
0 + 2atbtσ0T + ct

(4)

cskip(t) =
(
btσ

2
0 + atσ0T

)
· c2in(t) (5)

cout(t) =
√

a2t (σ
2
Tσ

2
0 − σ0T 2) + σ2

0ct · cin(t) (6)

w(t) =
1

cout(t)2
(7)

cnoise(t) =
1

4
log(t) (8)

where at = αt

αT
· SNRT

SNRt
, bt = αt

(
1− SNRT

SNRt

)
, ct =

σ2
t

(
1− SNRT

SNRt

)
.

Following EDM [1], the model output can be parameter-
ized as:

Dθ(at, t) = cskip(t)at + cout(t)Fθ

(
cin(t)at, cnoise(t)

)
, (9)

where Fθ is a neural network with parameter θ that predicts
x0.

B. Rule-based Prior Design and Derivation
B.1. Rule-based Prior Design

The rule-based prior design employed in this work aims to
generate an initial action that reflects plausible movement
patterns based on the contextual features ct. To achieve this,
the action space is divided into five distinct decision cate-
gories: moving straight, turning left, turning right, making a
U-turn to the left, and making a U-turn to the right. This par-
titioning simplifies the prior generation process while ensur-
ing comprehensive coverage of potential movement behav-
iors.

We utilize a fully connected layer to map the contextual
vector ct into a low-dimensional representation of action-
relevant features to establish the prior. These features ex-
plicitly include the decision category and the predicted path
length d. This mapping effectively encapsulates the essen-
tial elements required for generating an initial action, bal-
ancing the complexity of motion planning with computa-
tional efficiency.

Based on the decision category and path length derived
from the contextual features, the initial direction and length
of the path are determined. To introduce variability and pre-
vent overly deterministic priors, noise is added to the angu-
lar direction and path length. This noise ensures diversity in
the generated prior actions, enabling the model to explore a
broader range of potential actions while maintaining adher-
ence to the underlying behavioral patterns.

The initial action is then constructed following a
parabolic path definition. The parabolic path is formulated
such that it passes through the starting point and the deter-
mined endpoint. By leveraging the properties of parabolic
curves, the path naturally accommodates smooth transitions
and realistic motion patterns. We sample a fixed number of
evenly spaced points along the parabola to represent this
curve, providing a discrete sequence that constitutes the ini-
tial action.

This rule-based approach offers a robust and inter-
pretable framework for generating prior actions, serving as
a foundation for subsequent optimization and refinement.
Integrating decision categories, noise, and parabolic curve
modeling ensures that the priors are both expressive and
adaptable, facilitating effective downstream action genera-
tion. Further details on the mathematical formulation of the
parabolic path and noise modeling can be found in Section
B.2.

f(at, t) g2(t) p(at | a0) SNRt ∇at log p(aT | at)

VP d logαt

dt at
d
dtσ

2
t − 2d logαt

dt σ2
t N (αta0, σ

2
t I)

α2
t

σ2
t

(
αt
αT

aT−at

)
σ2
t (SNRt/SNRT−1)

VE 0 d
dtσ

2
t N (a0, σ

2
t I)

1
σ2
t

aT−at

σ2
T−σ2

t

Table 1. VP and VE instantiations of diffusion bridges.

B.2. Parabolic Constraint Condition Derivation

The desired path is modeled using a family of parabolas
that meet the following constraints: the trajectory passes
through the robot’s origin and a specified endpoint. The
initial direction aligns with the robot’s forward orientation,
transitioning smoothly to the endpoint in a parabolic arc.
The parabola’s vertex lies between the starting point and
the endpoint, with its opening directed toward the robot’s
rear.

The parabolic constraint condition is derived based on
the standard and vertex forms of a parabola, ensuring the
curve passes through two fixed points (x1, y1) and (x2, y2),
with control over its shape and orientation. The standard
form of a parabolic equation is y = ax2 + bx + c, where
a, b, and c are parameters. To uniquely define the parabola,
three conditions are required. By incorporating the axis of
symmetry h as an additional control condition, a family of
parabolas can be generated through the fixed points.

Alternatively, the vertex form, y = a(x − h)2 + k,
provides a parameterization where h represents the axis of
symmetry, k denotes the vertical coordinate of the vertex,
and a determines the parabola’s width and direction. Sub-
stituting the fixed points into the vertex form equations:

y1 = a(x1 − h)2 + k and y2 = a(x2 − h)2 + k, (10)

the parameter a can be derived by eliminating k:

a =
y2 − y1

(x2 − x1)(x2 + x1 − 2h)
. (11)

Substituting a back, the expression for k becomes:

k = y1 − a(x1 − h)2. (12)

This formulation results in a family of parabolas passing
through the fixed points, given as:

y =
y2 − y1

(x2 − x1)(x2 + x1 − 2h)
(x− h)2 + y1

− y2 − y1
(x2 − x1)(x2 + x1 − 2h)

(x1 − h)2
(13)

To ensure the parabola opens downward, the condition
a < 0 must hold. Since a = y2−y1

(x2−x1)(x2+x1−2h) , the nu-
merator and denominator must have opposite signs. The

numerator’s sign depends on the relative magnitudes of
y2 and y1, while the denominator’s sign is determined by
(x2 − x1)(x2 + x1 − 2h).

For cases where y2 > y1, the numerator is positive, re-
quiring the denominator to be negative. If x2 > x1, this
implies h > x1+x2

2 . Conversely, if x2 < x1, h < x1+x2

2 .
Similarly, when y2 < y1, the numerator is negative, neces-
sitating a positive denominator. For x2 > x1, this requires
h < x1+x2

2 , and for x2 < x1, h > x1+x2

2 . These relation-
ships enable precise control over the parabola’s orientation.

The position of the vertex relative to the fixed points is
governed by the axis of symmetry h. To place the vertex
between x1 and x2, x1 < h < x2 or x2 < h < x1 must
hold. Conversely, for the vertex to lie outside this range,
h < min(x1, x2) or h > max(x1, x2) is required. Ad-
justing h accordingly provides flexibility in the parabola’s
configuration while satisfying the desired constraint condi-
tions.

B.3. Noise Modeling Description

In this framework, the standard deviation of Gaussian
noise is adaptively adjusted based on prediction confidence.
Higher confidence leads to lower noise, ensuring precision,
while lower confidence increases noise to encourage explo-
ration. The relationship is defined by:

σ = min std+(max std−min std)·(1−confidence), (14)

where confidence ranges from 0 to 1. This linear interpo-
lation maps confidence to a noise level between predefined
minimum min std and maximum max std values.

The adaptive noise is applied to both angular direction
and path length. For angular direction, the noise is cen-
tered on the midpoint of the decision interval, while for path
length, it is centered on the predicted value, with variability
scaled by the corresponding confidence.

C. Detailed Analysis of Error Bound

The key goal is to bound the mean squared error (MSE),
represented as Eat,a0

[
∥at − a0∥2

]
.

This error is driven by the difference between the source
distribution πs(aT) and the target distribution π(a0). The
DDBM framework is designed to reduce this discrepancy

S
te

p
=

0
S

te
p

=
2

S
te

p
=

1
S

te
p

=
3

S
te

p
=

4
S

te
p

=
5

S
te

p
=

6
S

te
p

=
7

S
te

p
=

8
S

te
p

=
9

S
te

p
=

1
0

NoMaD Noise Prior
Rule-based

Prior

Learning-based

Prior

Figure 1. The figure visualizes feature correspondences over ten steps for four methods: NoMaD, Noise Prior, Rule-Based Prior, and
Learning-Based Prior, in the context of on-device RGB observations. From top to bottom, the rows represent the progression of steps (Step
0 to Step 10). At the same time, from left to right, the columns correspond to the four method types—NoMaD, Noise Prior, Rule-Based
Prior, and Learning-Based Prior—showcasing the impact of each prior on the feature-matching process across the sequence.

(a) Basic (b) Adaptation (c) Basic (d) Adaptation (f) Finetune

(e) Zero-shot

Figure 2. Simulation Tasks and Zero-Shot vs. Fine-Tuned Model

through a diffusion process and a drift term in its probability
flow ODE.

The initial difference between the source and target dis-
tributions is fundamental to the bound. As shown in Sec-
tion 4.2, we represent this discrepancy using the Kullback-
Leibler (KL) divergence:

DKL (πs(aT)∥π(a0)) =
∫

πs(aT) log
πs(aT)

π(a0)
daT . (15)

This KL divergence measures how much information is
”lost” if we approximate π(a0) by πs(aT). A smaller di-
vergence indicates that the source and target distributions
are close, implying that a smaller amount of drift and noise
adjustment will be necessary for the DDBM to match the
target.

The evolution of samples in a DDBM is controlled by
a probability flow ODE that includes a drift term and a
noise term. The ODE has the form which is equal to Equa-
tion 2:

dat
dt

=f(at, t)−g2(t)

(
1

2
∇at log π(at|a0)−∇at log π(a0|at)

)
,

(16)
where f(at, t) is a deterministic part of the drift that ensures
gradual movement from the source to the target distribution.
g2(t) controls the level of noise at time t, modulated by the
signal-to-noise ratio (SNR).

The term 1
2∇at log π(at|a0)−∇at log π(a0|at) is a cor-

rection factor that adjusts the position of at to bring it closer
to a0. This adjustment term is critical for reducing error in
the final output and directly depends on the initial discrep-
ancy DKL(πs(aT)∥π(a0)).

The initial discrepancy contributes a fundamental limit
to how close the source and target can be through the evo-
lution process. The noise g(t) and the signal-to-noise ratio
SNRt at each time step both affect how much control we
have over the diffusion process. Higher g(t) implies more
noise, making it harder for the model to accurately adjust
the path toward the target. Higher SNR (meaning a larger
signal relative to noise) allows for more precise alignment
with a0 as the process evolves.

To incorporate these elements into the error bound, we
arrive at the following formula:

Eat,a0

[
∥at − a0∥2

]
≤ 1

2
· g

2(t)

SNRt
·DKL(πs(aT)∥π(a0)),

(17)
where 1

2 arises from the specific form of the adjustment term

in the probability flow ODE. g2(t)
SNRt

shows how the noise and
signal-to-noise ratio affect the error bound. Because it is
invariant under a fixed schedule, it can be expressed as a
constant C.

D. Detailed Experimental Settings and Results
The experimental setup in the simulation environment is il-
lustrated in Fig. 2, where (a) and (c) represent indoor and
outdoor base tasks, while (b) and (d) show their adapta-
tion counterparts. For adaptation tasks, significant envi-
ronmental differences exist between the target image col-
lection phase and navigation execution phase: randomly
placed boxes (b) and vehicles (d) along paths are absent in
target images but present during algorithm operation, vali-
dating environmental adaptability. Subfigures (e)-(f) evalu-
ate zero-shot generalization capabilities. Given the substan-
tial domain gap between our publicly available real-world
training dataset and simulation/test-bed environments (par-
ticularly in visual appearance), (e) demonstrates pure zero-
shot performance without simulation data, while (f) shows
improved results after fine-tuning with limited simulation
trajectory data unrelated to target tasks. Experimental re-
sults confirm the algorithm’s strong zero-shot transfer ca-
pability, with notable performance gains achieved through
minimal fine-tuning.

The metrics in Table 3 and Fig. 5 are derived from adap-
tation tasks in indoor scenarios, while the real-world results
in Fig. 4 are based on on-device experiments. All the simu-
lation experiments were deployed on a Nvidia RTX2080Ti
GPU, utilizing a Jackal move robot. The on-device exper-
iments utilized the wheeled-legged robot Diablo, equipped
with an Intel Realsense D435i and relying solely on RGB
observations as shown in Fig. 4. As mentioned in the main
text, the model was deployed on a Nvidia Jetson Orin AGX.
The complete navigation process relies on a high-level plan-

Figure 3. The figure presents navigation trajectories from experiments in both simulated and real-world environments. The top row shows
obstacle navigation in a simulated corridor with visual observations and trajectory curves, while the bottom row displays outdoor navigation
on tiled pathways with real camera observations. The columns highlight different test scenarios, illustrating the robot’s ability to adapt and
maintain consistent navigation strategies across varied environments.

ner based on a topological map. Sub-goals on the topolog-
ical map are used as target image inputs for the network,
guiding the policy toward the destination and enabling long-
distance navigation.

Nvidia Jetson Orin AGX

Diablo

D435i Camera

Figure 4. The wheeled-legged robot named Diablo, equipped with
an Intel RealSense D435i camera and an Nvidia Jetson Orin AGX,
was utilized for on-device experiments relying solely on RGB ob-
servations.

Fig. 1 illustrates the complete denoising process for No-
MaD and NaviBridger with different prior actions based on
DDPM. It can be observed that NaviBridger achieves higher
denoising efficiency, requiring only a few steps to complete
the process, whereas NoMaD based on DDPM needs more
steps. Moreover, as the prior action becomes closer to the
target action, the difference between the source and target

distributions decreases, reducing the difficulty of the de-
noising network and leading to better action results.

Fig. 3 illustrates the results of navigation experiments
using the learning-based prior approach in both simulated
and real-world environments, highlighting its zero-shot
generalization capabilities. The top row demonstrates the
robot navigating a simulated corridor with static obstacles,
where smooth and collision-free trajectories are achieved
without prior data collection from similar test environments.
The rendered visualizations and robot perspectives further
emphasize the system’s ability to adapt seamlessly to struc-
tured indoor scenarios. The bottom row presents the robot
navigating outdoor real-world environments on tiled path-
ways, showcasing consistent and effective trajectories de-
spite differences in terrain and environmental context. The
learning-based prior method excels in adaptability, exhibit-
ing robust performance across diverse scenarios and robot
configurations. This zero-shot capability demonstrates its
ability to generalize navigation strategies without needing
domain-specific data or adjustments for different robots.
The video is available in the supplementary materials.

References
[1] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elu-

cidating the design space of diffusion-based generative mod-
els. Advances in neural information processing systems, 35:
26565–26577, 2022. 1

[2] Linqi Zhou, Aaron Lou, Samar Khanna, and Stefano Ermon.
Denoising diffusion bridge models. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. 1

	. Details of DDBM in Imitation Learning
	. Rule-based Prior Design and Derivation
	. Rule-based Prior Design
	. Parabolic Constraint Condition Derivation
	. Noise Modeling Description

	. Detailed Analysis of Error Bound
	. Detailed Experimental Settings and Results

