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Supplementary Material

In this supplementary material, we first provide a de-
tailed description of the datasets (Sec. 1) used in the
manuscript. Next, we outline the details of our infer-
ence pipeline (Sec. 2), including UV completion and UV
stitching. Then, we present additional experimental results
(Sec. 3) to demonstrate the effectiveness of our method. Fi-
nally, we discuss the limitations of our current work and
our plans for future research (Sec. 4). We provide a sup-
plementary video demonstrating how our generated facial
reflectance maps can be directly applied in CG pipelines for
realistic relighting.

1. Datasets

Captured Data. We use Light Stage system to capture
our reflectance raw data. Our system based on photomet-
ric stereo, achieves high-precision geometric reconstruction
and pore-level reflectance map asset reconstruction. Our
system is composed of 46 DSLR cameras with 12MP res-
olution and 7 DSLR cameras with 25MP resolution. Dur-
ing capturing, the system performs 15 types of lighting in 2
seconds, including one full-light scenario where all cameras
capture images for high-precision geometric reconstruction;
the other 14 types of polarized light are captured only by
the 5 cameras with 25MP resolution, used for comput-
ing pore-level diffuse, tangent normal, specular, roughness,
hemoglobin, melanin. The original capture under different
polarized light is shown in Fig. 1. Our captured dataset con-
tains 20160 images for each reflectance domain.
3D Scan Store Albedos. We buy 142 albedo maps from the
3D scan store, including 50 males and 92 females. These
albedos have a balanced distribution regarding races.
VISIA Skin Data. To further validate the accuracy of our
method in predicting hemoglobin and melanin, we collected
skin analysis images from 128 real patients using the VISIA
skin analyzer. The VISIA skin analyzer is a skin detec-
tion device widely used in medical aesthetics institutions,
dermatology clinics, and the cosmetics industry. It utilizes
cross-polarized light imaging and advanced image analysis
techniques to detect and evaluate various skin characteris-
tics, including surface pigmentation, capillary dilation, and
inflammation conditions. Given that its imaging principle
aligns with our acquisition system, we can use these real pa-
tient data for evaluation. As shown in Fig. 2, our method is
able to accurately synthesize hemoglobin and melanin im-
ages. The inflammatory areas in the hemoglobin map and
the pigmented areas in the melanin map are highly consis-
tent with the ground truth.

Figure 1. Raw data plots from 7 DSLR cameras with 25 MP reso-
lution under different polarized light.

Domain PSNR↑ SSIM↑ LPIPS↓
Diffuse Albedo 38.26 0.9169 0.0171
Specular Albedo 35.13 0.8748 0.0279
Normal 32.75 0.8477 0.0542
Hemoglobin 36.79 0.9099 0.0186
Melanin 36.29 0.8528 0.0230

Table 1. Demonstration of pre-trained VAE reconstruction capa-
bility for each reflectance domain.

2. Inference Details
UV Completion. For single-view input, we use OSTeC [3]
for UV completion. This method uses a StyleGANv2 [4]
model as a generator, iteratively predicts faces from differ-
ent views through an iterative process, and then maps the
results back into UV space for completion.
UV Stitching. For multi-view inputs, we obtain UV maps
by stitching together the generated multi-view reflectance
images. Experiments show that our stitching method per-
forms robustly when the face angles in the input multi-
view images are in the range of approximately -45° to +45°.
Fig. 3 illustrates the visualization of the masks used in our
stitching process across different views.

3. More Experimental Results
We present additional experimental results to validate the
effectiveness of our model. First, we validated the re-
construction capability of the Variational Autoencoder [6]
(VAE) in Stable Diffusion [5]. Tab. 1 demonstrates that
SD’s VAE achieves excellent reconstruction quality, accu-
rately capturing and reproducing details of the input images.
This finding provides a solid foundation for our method.

Then, we verified the generalization ability of the model.
Our model can not only effectively infer facial images but
also process UV texture maps. Notably, our model demon-
strated a powerful ability to handle UV textures with various
topological structures, as shown in Fig. 4. This flexibility
allows our method to adapt to different input formats and



Figure 2. Comparison of hemoglobin and melanin images. The
first and third rows show the GT data, while the second and fourth
rows are our estimated results. The first row presents two Rosacea
cases, and the third row shows two Chloasma cases.

Figure 3. Example of three-view UV stitching masks in the infer-
ence pipeline. please note that these mask are generated by face
shape unwrapping.

structures, greatly expanding its range of applications.

Besides, we showcase how the model generates the final
UV reflectance maps from multi-angle inputs. As shown in
Fig. 5, this not only verifies the robustness of our method
but also showcases its advantages in handling complex and
diverse inputs.

Finally, we showcase additional relighting results using
various HDRI environments in Fig. 7. Our approach gener-
ates high-quality UV reflectance maps from input images,
producing impressive rendering outcomes. We also include
video demonstrations to highlight the dynamic nature of our
relighting effects.

Figure 4. Examples of multiple UV texture inference with differ-
ent topologies. The topological structures shown are: HiFi3D [1]
(first row), FLAME [2] (second row), and OSTeC [3] (third row).

Figure 5. Example of multi-view inference. Given input images
from multiple views, we predict all reflectance domains for each
viewpoint separately, then stitch them together to obtain the final
reflectance map.

Figure 6. Limitations of our method. We demonstrate how bright
spots and noise in input images affect our estimation results, both
of which lead to errors in the hemoglobin and melanin maps.

4. Limitation and Future Works

Although our method can achieve excellent results, input
images under extreme lighting conditions still pose a chal-
lenge. For example, our method struggles to remove bright
spots in diffuse albedo, which in turn affects the estimation
of hemoglobin and melanin. Given that our method is a
pixel-level aligned estimation, low-quality or blurry images



Figure 7. More relighting results. Each row of images maintains the same HDRI illumination.

may also lead to errors in reflectance estimation, such as
misinterpreting noise as melanin, as shown in Fig. 6.

In the future, we will introduce more high-quality data
to improve the model performance and explore more appli-
cations in the field of dermatology.
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