
VideoWorld: Exploring Knowledge Learning from Unlabeled Videos

Supplementary Material

A. Implementation Details

Training details. We present the detailed training configu-
rations of latent dynamics model and auto-regressive trans-
former in Tab. A.1. The batch size is set to 256 for Go and
32 for CALVIN, requiring approximately 4 and 2 days of
training on 8 A100 GPUs, respectively.
Latent dynamics model. The decoder can be divided into
three parts based on three functions: i) using an encoder
to causally extract image features; ii) using learnable em-
beddings to extract change information from the extracted
features; iii) using a decoder to causally reconstruct video
frames based on image feature of the initial frame and the
learned embeddings. We present the PyTorch-style pseu-
docodes for the overall LDM and each part in Alg. 1.
Robotics action execution. Our model generates a set of
latent codes {ẑh

t
}H
h=1 and next frame prediction x̂t+1 based

on language instruction and input sequence x1:t. We feed
{ẑh

t
}H
h=1, x̂t+1 and xt into the Inverse Dynamics Model

to obtain corresponding action. The inferred action is ex-
ecuted in an open-loop manner: after predicting each ac-
tion, we input it into the environment engine to obtain a
new observation xt+1, which is then appended to the in-
put sequence for the next prediction cycle. In Fig. B.1, we
visualize the model’s next-frame predictions and the actual
control results of the robotic arm. We find that the model’s
next-frame predictions align with the task’s execution in-
tent and effectively control the robotic arm to complete the
tasks. We visualize the latent codes at different time steps
during testing and analyze them in Sec. 5.5.
Inverse dynamics model. The training objective of IDM
is to predict the control signals for the robotic arm, repre-
sented as a 7-dimensional vector that includes the arm’s dis-
placement along the XYZ axes, Euler angles, and the grip-
per’s open/close state. Specifically, IDM uses a ResNet-18
to process the predicted frame, applying a global average
pooling layer to the penultimate feature map to obtain a fea-
ture vector of size (1, 512). Simultaneously, a shared MLP
transforms the feature vectors of each latent code into a size
of (H , 512), where H , as defined in Sec. 3.2, represents
the number of learnable embeddings or prediction steps in
LDM. Then, the features from the latent codes and the gen-
erated frames are concatenated into a vector of size (H +1,
512), which is then passed through another MLP with di-
mensions (512, 7) followed by a global average pooling
layer to produce the final 7 control signals. IDM is trained
using AdamW with a learning rate of 1e-4 for a total of 1
million steps, with mean squared error as the objective.

Config LDM AR Transformer
optimizer AdamW AdamW
base learning rate 5.4e-5 3.0e-5
weight decay 0.01 0
optimizer monmentum ω1, ω2=0.5,0.9 ω1, ω2=0.9,0.98
batch size 16 256(Go),32(CALVIN)
learning rate schedule WarmipDecayLR WarmipDecayLR
warmup iterations 3e+4 3e+4
max iterations 1e+5 1e+6
augmentations None None
Training Loss L2 loss Cross Entropy loss
Training Target Reconstruction Next token pred.

Table A.1. Training configurations for the latent dynamics model
(LDM) and auto-regressive (AR) transformer.

Prediction
Target

Go CALVIN
Act-Value Act-Acc. Push Open/Close Turn on/off

video 47.5 44.3 12.7 20.8 15.6
code 73.0 78.6 47.2 70.0 65.1

code/video 73.9 80.9 50.3 71.1 69.7

Table A.2. Latent code prediction only with 50M parameters.

RLBench evaluation. In Sec. 5.4, we test VideoWorld’s
ability to perform tasks in two different environments:
CALVIN and RLBench. For CALVIN, we maintain the
original task settings. For RLBench, we generate 20k tra-
jectory data using a script. RLBench uses the same robotic
arm and action space as CALVIN, but the environment ap-
pearance and task settings differ significantly. We use the
combined RLBench and CALVIN datasets to train both the
LDM and Transformer, while IDM is trained separately in
each environment. Fig. D.5 shows VideoWorld performing
robotic tasks in RLBench environment.

B. Extended Analysis and Ablative Studies
B.1. Understanding Learned Knowledge with LDM
In Sec. 5.5 of the main text, we analyze the role of LDM
in the Go scenario, showing that latent codes contain in-
formation about board changes and can model long-range
changes progressively. Similar findings are observed in the
robotic scenario. We visualize the predicted latent codes
during inference across different tasks in Fig. B.1. Here,
H = 9, meaning the transformer generates 9 latent codes
per time step, corresponding to 9 prediction steps. As
shown, the latent codes for different prediction steps are
grouped by task type, indicating that they capture task-
relevant dynamics. Codes for steps 1–4 show greater over-
lap, likely because they focus on fine-grained displacements
shared across tasks. In contrast, steps 5–9 show more dis-
tinct separation by task type, highlighting the model’s abil-

Figure B.1. Illustration of robotic manipulation and UMAP pro-
jection of the predicted latent code during inference. Latent codes
are visualized through the LDM decoder. The UMAP projection
illustrates the 9 predicted latent codes (i.e. H = 9) across differ-
ent tasks, with each point color-coded by task type. Visualizations
with a yellow background show the model’s actual robotic arm
control during inference, while those with a green background rep-
resent the model’s next-frame predictions during training.

ity to progressively capture long-range changes specific to
each task. LDM increases TFlops by only 3.8% as its codes
are far fewer than frame tokens.

B.2. Ablative Studies

Latent code prediction only. To demonstrate the neces-
sity of jointly predicting the latent code {ẑh

t
}H
h=1 and next

frame x̂t+1 given x1:t, we remove the supervision for the
next frame x̂t+1 during training. In this setup, frames are
only used as input, and only the latent codes are subject to
the CE loss. In this case, we retrain an IDM that only re-
ceives latent code inputs. As shown in Tab. A.2, for both
Go and robotic scenarios, using codes alone significantly
improves performance, and incorporating next-frame pre-
diction further enhances it. We hypothesize this is because
next-frame prediction enhances the model’s understanding
of the environment and helps generate more accurate codes.

Algorithm 1: Pseudo codes of LDM.
Inputs: video:The first frame and its subsequent

H frames [1+H, h, w, 3];

Variables: ldm q: Learnable embeddings for H

time spans [H,C]; image pe:position embedding of

image features;

Functions: CrossAttention();MLP(); up scale();

down scale(); FSQ(); Causal3DCNN()

1 def encoder(video):

video:video sequences.[1+H,h,w,3]

The encoder consists of a set of encoder

layers, composed of Causal3DCNN and

down scale layers.

2 f = Causal3DCNN(video);# f:[1+H,h,w,C]

3 for layer in encoder layers:

process and downsample features using

Causal3DCNN and down scale.

4 f = layer(f)

Capture dynamic changes in video.

5 z = ldm qformer(f)

6 return z, f[:0];# f:[1+H,h’,w’,C]. z:[H,C]

7 def ldm qformer(f):

f:features of each frame.[1+H, h’, w’, C]

8 q list = []

9 for h in range(H):

10 query = ldm q[h];# query:[1,C]

11 f h = f[:(1+h)];# f h:[1,h’,w’,C]

12 key = f h + image pe;# key:[1,h’,w’,C]

13 q h = CrossAttention(q=query, k=key,

v=f h);# q h:[1,C]

14 q h = MLP(q h);# q h:[1,C]

15 q list.append(q h)

16 q list = stack(q list);# q list:[H,C]

17 return q list

18 def decoder(z, first f):

z:ldm query embeddings that captures change

information in video frames.[H, C];

first f:image features of first frame.[1, h’,

w’, C]

The decoder consists of a set of decoder

layers, composed of Causal3DCNN and up scale

layers.

19 z = repeat interleave(z, h’, dim=-2)

20 z = repeat interleave(z, w’, dim=-1)

21 rec video = cat(first f, z); # [1+H, h’, w’, C]

22 for layer in decoder layers:

process and upsample features using

Causal3DCNN and up scale.

23 rec video = layer(rec video)

24 rec video = Causal3DCNN(rec video)

25 return rec video;# rec video:[1+H, h, w, C]

Main Function

26 def latent dynamics model(video):

video:video sequences

extract change information from video frames

27 z, first f = encoder(video)

28 z = FSQ(z); # quantize z using FSQ

LDM training stage

29 if is train:

obtain reconstructed video frames.

30 rec video = decoder(z, first f)

we train ldm using mse loss.

31 loss = MSE(rec video, video)

32 return loss

33 return z

C. Details on Video-GoBench

In this section, we systematically analyze Video-GoBench.
The benchmark includes many unique board states, offering

(a) Distribution of board state count in training set

(b) Repetition rate during online battle.

Figure C.2. Dataset statistics. Best viewed digitally.

extensive references for the model to learn from. Moreover,
due to the combinatorial explosion effect, the proportion of
repeated board states—those encountered during inference
that also appear in the training set—decreases sharply as
the game progresses when our model competes against re-
inforcement learning agents. This ensures that good perfor-
mance cannot rely on memorizing training scenarios, high-
lighting the model’s generalization ability.
Board state count. The Video-GoBench training set con-
tains approximately 400M unique board states. We analyze
their distribution based on move numbers, i.e., the num-
ber of stones each state contains. As shown in Fig. C.2a,
the data features a diverse range of board states, primarily
concentrated within the first 100 moves, with significantly
fewer states beyond that.
Board state repetition rate. We collect 400 game records
between our model and KataGo-9d, calculating the over-
lap rate of board states with the training set across differ-
ent move numbers. As shown in Fig. C.2b, the repetition
rate drops sharply as the games progress. By move 30, it
reaches zero, with all games continuing beyond this point.
This eliminates the possibility of relying on memory alone
to achieve high performance.

D. Additional Visualizations
We provide more visualizations of VideoWorld performing
Go and robotic tasks in Fig. D.3 and Fig. D.4, respectively.
The Go visualizations are from matches between our 300M
VideoWorld and KataGo-5d. With comparable Elo scores,
these matches fairly demonstrate of how the model applies
its learned knowledge. In Fig. D.3a, our model captures op-

(a) Capture opponent’s stones

(b) Sacrificing short-term gains to capture more opponent stones.
Figure D.3. Visualizations of learned Go Strategies. our model
captures opponent stones using the squeeze tactic and self-sacrifice
tactic. New black stones are red, new white stones are blue.

Figure D.4. Visualizations of performing CALVIN tasks.

Figure D.5. Visualizations of performing RLBench tasks.

ponent stones using the squeeze tactic. In Fig. D.3b, Vide-
oWorld deliberately sacrifices a single stone, prompting the
opponent to capture it, thereby creating an opportunity to
capture more of the opponent’s stones. This highlights the
model’s ability to prioritize long-term planning over short-
term gains. For the robotic scenario, we show the model’s
actual control results for the robotic arm, demonstrating its
understanding of manipulation tasks and ability to execute
them effectively.

	Introduction
	Related Work
	Video Generation
	Learning Knowledge
	Latent Actions

	VideoWorld
	Basic Video Generation Framework
	Learning with Latent Dynamic Model

	Video-GoBench
	Dataset Generation
	Evaluation

	Experiment
	Implementation Details
	Benchmarks
	Key Findings with The Basic Framework
	Results with LDM
	Understanding Learned Knowledge with LDM
	More Ablations

	Conclusion and Limitation
	Implementation Details
	Extended Analysis and Ablative Studies
	Understanding Learned Knowledge with LDM
	Ablative Studies

	Details on Video-GoBench
	Additional Visualizations

