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Supplementary Material

A. Datasets

We provide a more detailed description of the collected
datasets and how we generate the labels for each language-
related dataset.

A.1 Driving dataset - Scenarios

In each Town, we collect data containing different scenar-
ios, which we detail in the following (descriptions are taken
from https://leaderboard.carla.org/scenarios/):

• Control Loss without Previous Action: The ego-
vehicle loses control due to poor road conditions and
must recover.

• Unprotected Left Turn at Intersection with On-
coming Traffic: The ego-vehicle performs an un-
protected left turn at an intersection (can occur at
both signalized and unsignalized intersections).

• Right Turn at Intersection with Crossing Traffic:
The ego-vehicle makes a right turn at an intersec-
tion while yielding to crossing traffic (signalized and
unsignalized intersections).

• Crossing Negotiation at Unsignalized Intersec-
tion: The ego-vehicle navigates an unsignalized in-
tersection by negotiating with other vehicles. The
assumption is that the vehicle entering the intersec-
tion first has priority.

• Crossing Traffic Running a Red Light at an Inter-
section: While the ego-vehicle is traveling straight
through an intersection, a crossing vehicle runs a red
light (signalized and unsignalized intersections).

• Crossing with Oncoming Bicycles: The ego-
vehicle must turn at an intersection while yielding
to bicycles crossing the intersection.

• Highway Merge from On-Ramp: The ego-vehicle
merges into moving traffic on a highway.

• Highway Cut-In from On-Ramp: A vehicle
merges into the ego-vehicle’s lane from an on-ramp.
The ego-vehicle must decelerate, brake, or change
lanes to avoid a collision.

• Static Cut-In: Another vehicle cuts into the ego
lane from a queue of stationary traffic. It must de-
celerate, brake, or change lanes to avoid a collision.

• Highway Exit: To exit the highway the ego-vehicle
needs to cross a lane of moving traffic.

• Yield to Emergency Vehicle: An emergency vehi-
cle is approaching from behind. The ego must create
space for it to pass safely.

• Obstacle in Lane - Same Direction: An obstacle
(e.g., a construction zone, an accident, or a parked
vehicle) is blocking the ego lane. The ego vehicle
must change lanes into traffic moving in the same
direction to bypass the obstacle.

• Obstacle in Lane - Opposite Direction: An obsta-
cle (e.g., construction zone, an accident, or a parked
vehicle) is blocking the ego lane. The ego vehicle
must change lanes into traffic moving in the oppo-
site direction to bypass the obstacle.

• Door obstacle: The ego-vehicle needs to avoid a
parked vehicle with its door opening into the lane.

• Slow moving hazard at lane edge: A slow-moving
hazard (e.g. bicycle) partially obstructs the ego ve-
hicle’s lane. The ego-vehicle must either brake or
carefully bypass the hazard (bypassing on lane with
traffic in the same or opposite direction).

• Vehicle invading lane on bend: On a bend, an
oncoming vehicle invades the ego vehicle’s lane to
avoid an obstacle. The ego-vehicle must brake or
move to the side of the road to safely navigate past
the oncoming vehicle.

• Longitudinal control after leading vehicle’s
brake: The leading vehicle in front of the ego-
vehicle brakes suddenly to avoid an obstacle. The
ego-vehicle must execute an emergency brake or
avoidance maneuver to prevent a collision.

• Obstacle avoidance without prior action: The
ego-vehicle encounters an unexpected obstacle or
entity on the road. It must perform an emergency
brake or avoidance maneuver.

• Pedestrian emerging from behind parked vehi-
cle: A pedestrian suddenly emerges from behind a
parked vehicle and enters the lane. The ego-vehicle
must brake or take evasive action to avoid hitting the
pedestrian.

• Obstacle avoidance with prior action - pedestrian
or bicycle: While in the middle of a turn, the ego-
vehicle encounters an obstacle such as a pedestrian
or a bicycle crossing the road or a stopped vehicle
in the road and must perform an emergency brake or
avoidance maneuver.

• Parking Cut-in: A parked vehicle exits a parallel
parking space into the ego-vehicle’s path. The ego-
vehicle must slow down to allow the parked vehicle
to merge into traffic.

• Parking Exit: The ego-vehicle must exit a parallel
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parking space and merge into moving traffic.

A.2 VQA - DriveLM

For the VQA data, we use the DriveLM-Carla [7] data gen-
eration method. Since we generate a new driving dataset,
we extract questions and answers for our dataset instead of
using the original dataset. For the training set, we gen-
erate in total 28M QA-pairs for 1M frames of Town 12.
For the evaluation set, we use the keyframe extraction of
DriveLM to evaluate on more interesting and less redun-
dant frames. In addition, we balance the validation set to
capture the same amount of samples for each answer type
in the dataset.
Since the labels are auto-generated with a heuristic-based
procedure, the QAs follow the same sentence structures and
wordings. To avoid overfitting to specific phrases we in-
clude data augmentation. For this, we prompt GPT-4 to gen-
erate 20 alternative sentences for each question and answer,
from which we sample during data loading.

A.3 Commentary

We generate language labels for the Commentary task based
on a subset of the simulator state, which we save during the
data collection. The structure of the Commentary labels is
as follows: The first sentence describes the action accord-
ing to the route with its justification (e.g., staying on the
current lane, doing a lane change to go around an obstacle).
It is followed by a description of the speed-related action
(e.g., accelerate, keep the speed, stop), and the reason (e.g.,
because of the pedestrian, to follow the vehicle in front, to
drive closer to the stop sign).
In the following, we detail the steps to obtain each part of
the Commentary labels.
Route action. The default description is “Follow the
route.”. Only in special cases, we change the description.
For this, we check if any scenario is active in the given
frame and get the scenario type. We only change the default
description for the scenarios requiring a deviation from the
center lane of the original route (e.g., obstacle in lane, vehi-
cle invading the lane, door obstacle). Since the ego action
differs depending on the location relative to the scenario,
we extract the relative positioning from the simulator infor-
mation. Those locations are grouped into three phases: (1)
before the lane deviation, (2) during the deviation, and (3)
end of the deviation. Before the deviation, we differentiate
between the scenario types and use a template sentence for
each, for instance:

• Overtake the bikes on your lane.
• Go around the vehicle with the open door.
• Give way to the emergency vehicle.
• Go around the accident in your lane.
• Go around the construction site.

• Move slightly to the right to circumvent the oncom-
ing cars entering your lane because of the construc-
tion cones.

During the deviation, describes the phase in which the ego
already shifted lanes. We reuse the templates from (1) but
add “Stay on your current lane to” before the templates
(e.g., Stay on your current lane to overtake the bikes on your
lane.)
End of the deviation is the phase where the ego vehicle
needs to shift back to its original lane. Since our model is
based on only front-view cameras we use a generic sentence
for this (i.e., “Return to your original route after avoiding
the obstacle.”) as often the type of the obstacle or scenario
is not visible anymore. This template can be easily changed
for a model supporting multi-view inputs.
Speed action. We generate a high-level description of the
ego action based on the current speed, the desired target
speed based on the expert decision, and the current speed
limit. We differentiate between the following types:

• Remain stopped
• Come to a stop now
• Maintain your current speed
• Maintain the reduced speed
• Increase your speed
• Slow down

For the scenarios that are used for the route action descrip-
tion (i.e., where the expert needs to deviate from the route),
we use a different sentence template. This is only the case
for the situation when the ego vehicle is before the devia-
tion and is stopped and remains stopped for the next two
seconds. In this case, we use the template “Wait for a gap
in the traffic before changing lanes”.
Speed Reason. Next, we leverage the Inteligent-Driver-
Model (IDM) features, which the expert algorithm is based
on. IDM identifies leading objects and calculates the opti-
mal target speed for the ego vehicle based on the distance
to the leading object. Leading objects include dynamic ob-
jects like other vehicles or pedestrians and static objects like
traffic lights, stop signs, or construction sites. With this, we
know for any sample in the dataset which object the main
reason is for the given target speed and therefore the speed
action. Based on the type of the leading object, we con-
struct a language description of the object. For vehicles,
this consists of the color of the vehicle, the type (e.g., SUV,
police car), and a rough position relative to the ego (e.g.,
to the front right). For static objects, it is the name of the
object (e.g. traffic light) and in case the object has a state
this is also included (e.g., red traffic light). For pedestrians,
we differentiate between children and adults. Based on the
type of the leading object and the speed action we construct
different sentences, for instance:

• since you’ve already stopped at the stop sign
• to avoid a collision with the object description



• due to the pedestrian crossing in front of you
• to remain behind the red SUV that is slowing down

because of a red traffic light.
• to reach the target speed
• because the traffic light is green

If we are right before a junction we add another no-
tice label regarding the positioning of the other vehicles in
the junction. With this, the model needs to reason about
whether it is safe to enter a junction or not. We collect the
position and driving direction of each vehicle close to the
junction and summarize the situation based on one of the
following sentences:

• the other vehicles are stopped at the junction and the
junction is clear

• the other vehicles are stopped at the junction and the
vehicle in the junction is moving away

• pay attention to the vehicles coming towards the
junction

• pay attention to the vehicle in the junction

A.4 Action Dreamer

We construct an offline, non-reactive simulation based on
the collected dataset to generate alternative ego trajectories
and evaluate their feasibility in terms of collision avoidance
and adherence to traffic rules. For this purpose, we utilize
the Kinematic Bicycle Model in combination with the PID
controllers from the PDM-lite expert algorithm.
The core functionality of the Action Dreamer simulation is
the ego forecasting, which predicts future ego vehicle poses
based on the ego actions in each timestep. There are sev-
eral approaches to generate these ego actions, allowing for
modification to obtain the alternative trajectories. One ap-
proach involves perturbing the ground truth actions to pro-
duce slightly modified trajectories. Another approach uses
the PID controllers to compute actions based on pre-defined
path waypoints and target speeds. In this case, the lateral
PID controller generates steering angles, while the longitu-
dinal PID determines acceleration and braking values based
on the desired target speed. Using these actions, the Kine-
matic Bicycle Model calculates the next vehicle pose. This
process can be iteratively unrolled over multiple time steps
to derive a complete trajectory.
We start with obtaining the current state of the simulator
from the saved dataset. For each dynamic object, we also
get the states for the following 10 timesteps. With this we
can get the non-reactive trajectories for each object and per-
form collision checks with the ego vehicle. As default, we
use the ground truth actions of the ego vehicle. In addi-
tion, we use the ground truth path provided by the experts’
path planner, which includes waypoints spaced every 10
cm, as the default route to be followed. We then change
those default values to obtain alternative trajectories for the

modes: objects (collision), faster, slower, target speed, and
lane changes.
The following steps describe how we obtain the neces-
sary information (e.g., actions, updated paths with desired
speeds, or a combination of both) for the ego forecasting
method for each of the different modes we have.

• Objects (Collision) Mode: Filter all dynamic and
static objects, retaining only those within a 15-meter
radius of the ego route and at least 3 meters ahead of
the ego vehicle. For each object, calculate its posi-
tion, distance to the ego vehicle, and whether the ego
vehicle (given its current speed) could reach the ob-
ject within a given future timestep. Objects that are
too far and unreachable are discarded. For reach-
able objects, we calculate the target speed required
for the ego vehicle to precisely reach the object’s lo-
cation in the required time. For the path, we adjust
the route waypoints to ensure they intersect with the
target object’s position. This modified route, along
with the computed target speed, is then passed to the
ego forecasting process.

• Faster Mode: We use the original path and ac-
tions for steering but set the acceleration to a random
value above 50%.

• Slower Mode: Similar to the faster mode but we set
the acceleration to zero and activate the brake.

• Random Target Speed: We assign a random tar-
get speed between 0 and 35 m/s and directly pass
this together with the default path to the forecasting
method.

• Lane Changes: We exclude frames where the ve-
hicle is already performing a lane change or is in a
junction. To obtain the number of possible options,
we extract information on the number and types of
lanes (e.g., driving lanes, parking lanes, or side-
walks) in both the same and opposite directions. For
each of the options, we change the default path so
that it reaches the specified lane. We randomize the
starting distance of the lane change and the length
of the transition phase. Those parameters are condi-
tioned on the current ego speed.

B. Implementation details

B.1 Hyperparameter

Table 1 shows the hyperparameter we use to train Sim-
Lingo.

B.2 Training buckets

The majority of driving involves straight, uneventful seg-
ments. To maximize the collection of interesting scenar-
ios during data collection, we focus on capturing a diverse
range of challenging situations. However, some ratio of
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Figure 1. SimLingo-BASE architecture. The images are split in two, and each split is independently encoded and then concatenated,
downsampled, and projected before feeding it into a transformer decoder which is based on the LLaMA architecture. The output utilizes
the same output representation as SimLingo.

Epochs 14
Learning Rate 3e-5
Batch Size 96
Optimizer AdamW
Weight decay 0.1
Betas (0.9, 0.999)
LR schduler One cycle cosine
Warmup steps 5% of total steps
LoRA alpha 64
LoRA r 32
LoRA dropout 0.1

Table 1. Hyperparameter choices to train SimLingo.

easy and uneventful data is inevitable. Training models on
the entire dataset revealed that straight driving without haz-
ards is effectively learned in the early epochs, resulting in
wasted computation in later epochs as the models continue
to train on these uninteresting samples. To address this is-
sue, we create data buckets containing only the interesting
samples and sample from these buckets during training in-
stead of the entire dataset. We use (1) five buckets for dif-
ferent amounts of acceleration and deceleration with one
specifically for starting from stop, excluding samples with
an acceleration between -1 and 1, (2) two buckets for steer-
ing, excluding samples for going straight, (3) three buckets
for vehicle hazard with vehicles coming from different di-
rections, (4) one for a stop sign, red light, and walker haz-
ards each, (5) one bucket for swerving around obstacles, (6)
one bucket for “old” Towns commonly used in Leaderboard

1.0 models (Town 01-10) and (7) one bucket that samples
from the whole dataset to keep a small portion of unevent-
ful data such as driving straight.

B.3 SimLingo vs. SimLingo-BASE

Our base model SimLingo-BASE was designed as a
lightweight model to research driving-specific design
choices. With adding language capabilities, we also
changed some of the settings to better match the added re-
quirements. We note that because of the closure of the
CARLA Leaderboard and because of computational over-
head we did not repeat the experiments of the SimLingo-
BASE with the new settings. We believe that the claims and
results can be expected to still hold. Fig. 1 shows the archi-
tecture of SimLingo-BASE. We detail the exact differences
between SimLingo-BASE and SimLingo:
1. Number of epochs: SimLingo-BASE is trained for 30

epochs. For SimLingo we reduce the number of epochs
to 14.

2. Image encoder: SimLingo-BASE uses a Clip-ViT that
is used as default in the LLaVA VLM. SimLingo uses
the original image encoder of the InternVL2-1B. In both
cases, we do full finetuning.

3. Language model: SimLingo-BASE uses a 50M param-
eter transformer decoder based on the LLaMA architec-
ture which we train from scratch. SimLingo uses the
default pretrained LLM from the InternVL2-1B model
which we finetune with LoRA.



4. Loss function: SimLingo-BASE uses L2-Loss. Af-
ter adding the additional Action Dreaming data we ob-
served instabilities during training with the L2-Loss so
we changed to the SmoothL1-Loss.

B.4 Metric descriptions

Leaderboard 2.0.
The Leaderboard uses the official CARLA metrics: Driv-
ing Score, Route Completion, and Infraction Score. Each
metric is calculated for each route independently. After all
routes are completed, the final metrics are derived by taking
the arithmetic mean of the metrics across all routes. The
overall driving score, calculated using the global values, is
the primary metric for ranking methods.
Driving Score. The primary evaluation criterion is the Driv-
ing Score, denoted as:

DSi = RCi · ISi,

where RCi represents the percentage of the i-th route com-
pleted, and ISi is a penalty factor accounting for infractions
incurred during the route.
Route Completion. This metric quantifies the proportion of
the route successfully completed by the agent, expressed as
a percentage.
Infraction Penalty. The penalty due to infractions, ISi, is
calculated as a product of all infractions:

ISi =

NI∏
j=1

(pj)
#infractionsj ,

where pj denotes the penalty coefficient for the j-th type of
infraction out of a total of NI infraction types, which we
specify int following. #infractionsj is the number of times
this infraction occurred. The calculation begins with a base
score of 1.0, which decreases with each infraction.
Infractions are categorized by severity, each associated with
a penalty coefficient that reduces the driving score. Key
infractions include:

• Collisions with pedestrians: pj = 0.50.
• Collisions with vehicles: pj = 0.60.
• Collisions with static objects: pj = 0.65.
• Running a red light: pj = 0.70.
• Ignoring a stop sign: pj = 0.80.
• Failure to yield to emergency vehicles: pj = 0.7.
• Failure to maintain minimum speed: Up to pj =
0.7.

• Off-road driving: Reduces route completion score
proportionally.

When one of the following events occurs, the route stops
immediately:

• Route deviation (more than 30 meters off route).

• Blocked agent (more than 180 simulation seconds
without action).

• Communication timeout (more than 60 seconds).
• Route timeout (exceeding allowed simulation time).

Leaderboard 2.0 metric discussion.
The Driving Score is calculated in a way, that it can be ad-
vantageous not completing the whole route. This is the case
if the infractions incurred during a segment of the route re-
duce the driving score more than the potential gain from
continuing the route. In this case stopping early to avoid
further penalties leads to an overall higher driving score.
This tradeoff only occurs for long routes. We refer to [11]
for a mathematical description of this tradeoff, a detailed
discussion and a proposal for a better metric calculation.
Bench2Drive.
Driving Score. The Driving Score is calculated similarly
to the Leaderboard 2.0. The only difference to the origi-
nal Driving Score is that the penalty “Failure to maintain
minimum speed” is ignored. To take the driving speed into
account the authors of the benchmark introduced the “Ef-
ficiency” metric. Since Bench2Drive uses short routes the
discussed trade-off does not occur on this benchmark.
Success Rate. The Success Rate measures the percentage
of completed routed without any infractions (ignoring the
minimum speed penalty).
Efficiency. This uses the ratio of the ego vehicle speed to the
speed of the surrounding actors. Since there was no penalty
in Leaderboard 1.0 for low speeds most models used a very
low speed, which makes driving and reacting to other dy-
namic actors much easier. The higher this efficiency metric
the faster the model drives, making the driving task harder.
Comfortness. The comfortness metric takes the jerk mag-
nitude, lateral and longitudinal acceleration, yaw accelera-
tion, longitudinal jerk, and the yaw rate into account. If the
mean of the ego vehicles measurement over the full route
falls into the following thresholds it is treated as success.

• Jerk Magnitude: Maximum absolute magnitude of
jerk is 8.37m/s3.

• Lateral Acceleration: Maximum absolute lateral
acceleration is 4.89m/s2.

• Longitudinal Acceleration:
– Maximum longitudinal acceleration is
2.40m/s2.

– Minimum longitudinal acceleration is
−4.05m/s2.

• Yaw Acceleration: Maximum absolute yaw accel-
eration is 1.93 rad/s2.

• Longitudinal Jerk: Maximum absolute longitudi-
nal jerk is 4.13m/s3.

• Yaw Rate: Maximum absolute yaw rate is
0.95 rad/s.

The thresholds are taken from the Bench2Drive repository.
Vision-Language Understanding.



Method Ability (%) ↑
Merging Overtaking Emergency Brake Give Way Traffic Sign Mean

w
/d

is
t.

TCP [9] 16.18 20.00 20.00 10.00 6.99 14.63
TCP-ctrl 10.29 4.44 10.00 10.00 6.45 8.23
TCP-traj 8.89 24.29 51.67 40.00 46.28 28.51
ThinkTwice [4] 27.38 18.42 35.82 50.00 54.23 37.17
DriveAdapter [3] 28.82 26.38 48.76 50.00 56.43 42.08

w
/o

di
st

.

AD-MLP [10] 0.00 0.00 0.00 0.00 4.35 0.87
UniAD-Tiny [2] 8.89 9.33 20.00 20.00 15.43 14.73
UniAD-Base [2] 14.10 17.78 21.67 10.00 14.21 15.55
VAD [5] 8.11 24.44 18.64 20.00 19.15 18.07
TCP-traj w/o distillation 17.14 6.67 40.00 50.00 28.72 28.51

SimLingo-BASE (LB2.0 model) 60.00 60.00 78.33 50.00 77.89 65.25
SimLingo 54.01±2.63 57.04±3.40 88.33±3.34 53.33±5.77 82.45±4.73 67.03±2.12

Table 2. Multi-Ability Results of Bench2Drive. We outperform the existing methods in all abilities and can improve in average by 25
percentage points.

DS ↑ Stat ↓

WPs 3.21 0.68
+Path 4.49 0.0

(a) Output.

DS ↑

Clip ViT 6.87
w/o pretr. 0.45
Resnet-34 2.71

(b) Vision encoder.

DS ↑

1300 3.93
1800 4.49
2100 6.87
2400 6.35

(c) Early stopping.

Table 3. Ablations of different parts of SimLingo-BASE, showcas-
ing the superiority of the disentangled output representation and
the large impact of the correct threshold for early stopping. The
score of the default configuration is highlighted in gray. All num-
bers are official Leaderboard 2.0 scores.

For the tasks of VQA and Commentary, we use SPICE [1]
and DriveLM’s GPT Score [7] as metrics. SPICE is a metric
used for image captioning with a higher correlation to hu-
man judgment than other automatic language metrics like
Cider [8] or Meteor [6]. The GPT Score is based on the
DriveLM implementation with two smaller changes. Since
we could not directly compare to their numbers, because
of a different evaluation set those changes should not have
any impact on the conclusions drawn. The first change is
using GPT-4 (gpt-4o-2024-08-06) instead of GPT-3.5. In
addition, we add “Just rate the similarity of the content not
the sentence structure. If the content is completely differ-
ent rate with 0.” to the prompt as we found this to be more
accurate.
Action Dreaming.
For the Action Dreaming evaluation, we use Success Rate
as the metric. Each category has its own definition of suc-
cess, which we detail in the following:

• Slow down: We calculate the target speed for each
waypoint of the predicted speed waypoints. Those
target speeds represent the target speeds for future
timesteps. We do linear regression to get the slope.
Success is defined as the slope being smaller than
−0.05 ∗ v, with v being the current ego speed.

• Speed up: Same calculation as for Slow down but
we use slope > 0.05 ∗ v.

• Target Speed: Since we do not know if the target
speed can be reached in the prediction horizon of
the waypoints we compare the predictions with the
ground truth actions instead of directly comparing to
the target speed. We use two rules defining success:
First, if the predicted target speed inferred from the
last two waypoints is in a 20% range of the instructed
target speed. Second, if the predicted target speed
inferred from the last two waypoints is in the 20%
range of the speed of the last two waypoints of the
ground truth speed waypoints. This can be different
from the instructed target speed due to limitations in
the acceleration rates of the vehicle.

• Lane Change: We compare the final waypoint of
the predicted path waypoint with the ground truth
dreamer path and the ground truth expert path way-
points. We define the lane change as successful
when the predicted final location is closer to the
dreamer’s final location than the expert final loca-
tion.

• Objects (Collisions): This describes the task of
driving towards or crashing into specific objects. We
first look at the path. If the path of the expert trajec-
tory and the ground truth dreamer trajectory is dif-
ferent (Average Displacement Error ADE > 1.0)
we count it as success if the predicted path is closer
to the ground truth dreamer path than to the expert
path (ADEpred2expert > ADEpred2dreamer). If the
dreamer path is nearly identical to the expert path
(ADE < 1.0) the instruction is about correct speed
predictions (e.g., if the instruction is “drive towards
a dynamic object” it is important to get the speed
right and not just the path. The success is then de-



fined as ADEpred2dreamer < 1.0 and the average
predicted speed is within 30% of the ground truth
dreamer speed.

C. Quantitative Results

C.1 Ablations on CARLA Leaderboard 2.0

We provide additional results on SimLingo-BASE. Output
representation. Tab. 3a compares the DS on the Leader-
board for the different output representations. As the goal
of the additional path prediction is improved lateral con-
trol, we also report the collisions with static layout as this
is mainly caused due to bad steering. With the disentangled
representation, we can reduce the layout collision from 0.68
to 0 showing the strength of additional path predictions.
Vision-Language and CLIP pretraining. We ablate the pre-
training of the vision encoder and train the same model from
scratch. Tab. 3b ’w/o pretr.’ shows that the pretraining stage
is essential for good driving performance (longer training
can further improve the performance but is unlikely to reach
the performance of the pretrained model). Additionally,
we show a comparison to the widely used Resnet-34 pre-
trained on ImageNet. The decreased performance (2.71 vs.
6.87 DS) indicates the importance of the larger ViT and the
internet-scale image-language pretraining.
Early stopping. As described in the metric section the DS
on long routes is not optimal and favors models that do not
complete the full route. We ablate the thresholds for the
early stopping as it is not trivial to calculate the perfect
trade-off as the routes and density of scenarios are secret
(however a rough function of the expected DS can be calcu-
lated, which we used to get a rough range). Tab. 3c shows
the Leaderboard DS for a given traveled distance in meters.
This hyperparameter has a big impact on the final score.
Leaderboard variance. We submitted our base model
SimLingo-BASE with an early stopping threshold of 2100
and 2400 three times to the leaderboard to get an estimate
of the evaluation variance. For the 2100 model, we obtain
the following scores: 6.9, 5.5, and 5.3 resulting in a mean
DS of 5.9 with a standard deviation of 0.87. The base model
with a threshold of 2400 obtained 6.4, 6.3, and 4.8 resulting
in a mean of 5.83 with a standard deviation of 0.90.

C.2 Bench2Drive Multi-Ability Results

Tab. 2 shows the Bench2Drive Multi-Ability metrics. Con-
sistent with the findings in the main paper SimLingo out-
performs existing works. Especially in the abilities Merg-
ing, Overtaking, Emergency Brake and Traffic Sign we get
a large boost in performance. Give way is still challenging.

Bench2Drive
DS ↑ SR(%) ↑

w/o CoT 84.41±1.76 64.84±2.42

with CoT 85.07±0.95 67.27±2.11

Table 4. Inference Mode. BEnch2Drive results for using Sim-
Lingo with chain-of-thought (CoT) during inference and without.
We see a small improvement when using CoT.

C.3 Chain-of-Thought Inference Mode

We ablate the Chain-of-Thought (CoT) inference mode of
SimLingo in Tab. 4. When using the Commentary task as
CoT we see a small improvement so we decided to use this
as the default mode. However, since without CoT the per-
formance does not drop much, using the model without CoT
is a feasible option especially when inference speed is im-
portant.

D. Qualitative Results

We provide more qualitative results of different navigational
commands in Fig. 2. Red dots are the predicted path way-
points and green are the predicted speed waypoints. Each
row is captured from a closed-loop run while changing
the navigation command. The second row shows how the
model can successfully differentiate between different situ-
ations and adapt its behavior given a certain command. The
vehicle starts in the right lane. When giving the instruc-
tion “Turn left...” the model initiates a lane change to the
left lane. After finishing this lane change it stays on this
lane even though the command is still “Turn left...”. So the
model learns to reason about the meaning of the different
lanes, that it is forbidden to go on an oncoming lane, and
that “Turn left” not always mean to do a 90-degree turn.
In the third row, we prompt the model with a misleading
instruction: “Turn right” on an intersection without a lane
going to the right. The third and fourth image shows that the
model is slightly confused but when unrolling closed-loop
the car still goes straight and stays on the road. In the fourth
row, we show out-of-distribution commands. The model is
still able to choose a valid path when using a command that
does not make sense like “I really like my dog”. When us-
ing the command “Why is there a tree on the right side?”
the model still picks the left turn, indicating that it does not
just overfit on single words like left or right but also takes
the context into account. The last image with the command
“Do a U-Turn” shows that the model is not capable of fol-
lowing concepts it has never seen during training.
Fig. 3, Fig. 4, Fig. 5, Fig. 6 and Fig. 7 shows qualitative
results for the different Dreamer modes. In most cases, the
model correctly follows the instructions even if it clearly
goes against the expert driving behavior (e.g., accelerating
at a red traffic light). We also include some of the failure
cases of the model in the red boxes where the model ignores
the instructions.
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"Go right at the 

next intersection."

"Go left at the

 next intersection."

"Go straight."

Navigation Commands

<TARGET_POINTS> "Turn left at the 

next intersection"

"Turn left at the 

next intersection"

"Turn right at the 

next intersection"

"Go straight."

<TARGET_POINTS>

<TARGET_POINTS>

<TARGET_POINTS>

"Turn left." "Turn right." "Turn right." "Turn left."

"I need to go right at the 

next junction please."

"Sorry, I was wrong. 

I need to go left instead."

"I really like my dog." "My cat walked 

on the left side."

"Why is there a tree 

on the right side?"

"Turn left at the 

next option."

"Go right at the 

next option."

"Straight ahead." "Straight ahead."

"You should go left 

at the next possibility."

"Do a U-Turn.""Turn right."

Figure 2. Navigational Commands. We show closed-loop results for different in-distribution and out-of-distribution commands. Red:
path waypoints, green: speed waypoints.



Language/Vision -> Action (Dreaming - Faster)

"Go faster now." "Speed up your driving."

"Move faster." "Speed up your driving." "Go faster now."

"Go ahead and drive faster." "Accelerate now."
Accelerate the car."

Accelerate your driving."

Figure 3. Dreamer mode - Faster. We show in blue the predicted speed curve (inferred from the speed waypoints). Inside the red border
are examples where the model does not follow the command correctly. Red: path waypoints, green: speed waypoints.

Language/Vision -> Action (Dreaming - Slower)

"Gently press the brakes.""Gently press the brakes." "Take it eaasy on the speed."

"Drive more sowly."Apply the brakes.""Ease up on the gas."

"Bring your speed down." "Apply the brakes." "Ease up on the gas."

Figure 4. Dreamer mode - Slower. We show in blue the predicted speed curve (inferred from the speed waypoints). Inside the red border
are examples where the model does not follow commands correctly. Red: path waypoints, green: speed waypoints.



Language/Vision -> Action (Dreaming)

"Settle at a speed of 3.06 m/s."

"Maintain a speed of 41.4 km/h." "Drive with a steady 1.59 m/s.""Keep your speed at 27.02 m/s."

"Try to reach 22.25 m/s."

Figure 5. Dreamer mode - Target speed. We show in red line plot the ground truth speed curve and in blue the predicted one (inferred
from the speed waypoints). Inside the red border are examples where the model does not follow commands correctly. Red: path waypoints,
green: speed waypoints.

Language/Vision -> Action (Dreaming - Object)

"Ram into the

 construction cone."

"Guide the car in the

 direction of the stop sign."
"Impact the

 construction cone."

"Advance towards 

the stop sign."

"Drive into the vehicle 

chevrolet impala."
"Hit the vehicle 

mercedes coupe."

"Guide the car in the

direction of the traffic

light."

"Hit the vehicle ford 

crown."

"Crash into the object 

at x: 12.49m, y:6.202m."

"Drive into the object at

x: 2.173m, y:3.25m."
"Strike the object at the

location x: 4.985m,

y: 3.078m."

"Drive towards the 

object at x: 17.377m,

y: -3.368m."

Figure 6. Dreamer mode - Object (Collision). Inside the red border are examples where the model does not follow dreamer mode
command correctly. Red: path waypoints, green: speed waypoints.



Language/Vision -> Action (Dreaming - Lane change)

"Drift one lane towards

the left."

"Drive towards the 3rd 

lane from the right."

"Transition one lane to 

the right."

"With a transition of 16 

meters, change one 

lane to the right 

starting in 1 meters."

"Shift one lane to the 

right starting in 1 

meters with a transition 

of 5 meters."

"Transition to the left by

one lane in 0 meters, 

with a 2-meters phase."

"In 5 meters, transition

one lane to the left with 

a 7-meter transition."

"To the left, veer 

one lane."
"Direct one lane to 

the left."

"Veer one lane to 

the right."

"Glide one lane in 

the right direction."

"Navigate to the 

rightmost lane located 

in the same direction."

"Transition to the 

2nd lane from the left 

in the same direction."

"In the opposite 

direction, transition to 

the 3rd lane from 

the right."

"Steer towards the 

rightmost lane of the 

opposite direction."

"Position the vehicle 

in the 2nd lane from 

the right."

"Navigate to the 2nd 

lane from the left

located in the same 

direction."

"Get into the 1st lane 

from the right."

Figure 7. Dreamer mode - lane changes. Inside the red border are examples where the model does not follow dreamer mode commands
correctly. Red: path waypoints, green: speed waypoints.
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