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A. Domain Descriptor Analysis

To better understand the performance of ProtoDepth in the
agnostic setting, we analyze the relationship between sample
descriptors and learned domain descriptors using the t-SNE
visualization shown in Fig. 1. This analysis is based on the
KBNet model trained on the indoor dataset sequence, and it
reveals insights into how ProtoDepth selects prototype sets
during inference.

Each sample descriptor is computed deterministically
using global average pooling (GAP) over the bottleneck
features of the frozen model. Since the encoder layers are
always frozen during training, the sample descriptors of a
certain dataset are a lifelong deterministic function of the
features present in that dataset. The domain descriptors,
on the other hand, are learned during training to align with
the sample descriptors of their respective datasets, enabling
effective prototype set selection.

The visualization demonstrates that the majority of sam-
ple descriptors for each dataset cluster closely around their
respective domain descriptors. This alignment confirms that
the training process successfully associates each dataset with
its corresponding descriptor at test-time, ensuring accurate
prototype selection in the agnostic setting. However, it
is noteworthy that some sample descriptors are closer to
domain descriptors of other datasets. For example, non-
negligible subsets of VOID sample descriptors appear to
have higher affinity with the NYUv2 and ScanNet domain

Figure 1. t-SNE plot of KBNet sample descriptors for indoor
validation datasets (NYUv2, ScanNet, VOID) and their respective
domain descriptors learned during training in the agnostic setting.
While most sample descriptors align closely with their respective
domain descriptors, some overlap enables cross-domain generaliza-
tion, improving performance in challenging scenarios.

descriptors. This overlap introduces a degree of generaliza-
tion, allowing the model to select prototypes from a different
domain if they better align with the input sample’s features.

This ability to adaptively select domain descriptors ex-
plains why ProtoDepth achieves superior performance in the
agnostic setting than in the incremental setting for certain
metrics. By relaxing the constraint of fixed domain identity
during inference, the agnostic setting enables the model to
exploit cross-domain generalization in cases where overlap-
ping features exist between datasets. While this occurs in
only a minority of scenarios, it underscores the utility of al-
lowing the model to flexibly choose prototypes, particularly
in instances where the distributional characteristics of one
domain may overlap with those of another.

Most importantly, the t-SNE plot clearly illustrates that,
despite the presence of some overlap, the domain descriptors
remain sufficiently distinct to avoid significant performance
degradation due to incorrect prototype selection. Instead, this
overlap even facilitates generalization (see Tab. 4), enabling
the model to leverage features from neighboring domains to
improve depth completion on difficult samples. This balance
between dataset alignment and cross-domain generalization
is central to ProtoDepth’s ability to adapt to the challenging
domain-agnostic setting.

B. Transformer Experiments

In the main paper, we stated that ProtoDepth is applicable
to any model with a latent space, including both CNNs and
transformers. To explore the applicability of ProtoDepth to
transformer-based architectures, we adapted Uformer [21], a
simple encoder-decoder model consisting entirely of trans-
former blocks, for depth completion. The model takes as in-
put patchified versions of the image and sparse depth, where
inputs from each modality are split into 14× 14 patches and
embedded as N × C tokens. We adapted Uformer for depth
completion by implementing a dual-encoder structure, with
one encoder processing image tokens and the other process-
ing sparse depth tokens. Each encoder contains four trans-
former blocks. After being processed by the encoders, the
tokens from both modalities are concatenated and fed into a
shared decoder with four additional transformer blocks. Con-
sistent with the CNN-based models used in the main paper,
skip connections are included between each encoder block
and its corresponding decoder block, allowing multi-scale
features to flow between the encoders and decoder.

For ProtoDepth-A and ProtoDepth, we implemented our
method in the exact same way as we do for CNN-based
models, applying prototype sets to the latent space layers,



Average Forgetting (%) Average Performance SPTO
Setting Method MAE RMSE iMAE iRMSE MAE RMSE iMAE iRMSE MAE RMSE iMAE iRMSE

(1)
KBNet

ANCL [10] 9.73 10.75 5.58 16.38 56.89 120.30 13.77 31.85 47.32 103.42 13.88 32.76
CMP [9] 5.39 5.11 8.25 7.90 55.92 117.83 13.74 31.43 46.03 102.36 13.55 32.03
Ours 3.20 1.30 4.91 2.94 54.25 115.55 13.20 30.50 45.26 101.10 13.28 31.72

(2)
Uformer

Finetuned 87.94 73.61 110.98 852.79 183.24 302.99 51.07 297.92 137.20 238.95 49.54 142.33
L2P [22] 57.07 43.84 50.82 58.24 171.74 273.75 46.90 121.30 139.08 231.88 51.98 156.41
Ours 37.15 25.50 31.86 17.04 161.62 255.54 42.38 79.34 133.36 220.68 44.74 84.31

(3)
KBNet

ANCL [10] 20.49 8.94 23.11 27.73 438.05 1795.76 1.21 3.56 503.53 2203.44 1.18 3.53
CMP [9] 15.95 15.47 6.90 7.39 447.09 1887.14 1.09 3.19 507.90 2262.46 1.06 3.21
Ours 4.51 3.10 2.96 1.88 409.90 1730.72 1.04 3.04 478.79 2138.35 1.01 3.07

(4)
KBNet

ANCL [10] 35.10 35.31 18.13 10.04 313.71 1067.35 18.89 30.39 343.06 1129.85 18.66 30.20
CMP [9] 31.60 36.04 12.63 9.90 307.87 1117.91 16.71 30.41 336.08 1142.94 16.66 30.23
Ours 20.61 18.75 9.79 6.25 277.04 985.58 15.07 28.42 309.57 1035.55 15.05 28.24

(5) L2P [22] 69.28 23.25 81.95 48.78 519.72 1458.78 25.65 36.21 470.84 1407.23 25.38 35.45
Uformer Ours 45.42 7.67 46.18 22.05 451.08 1252.88 22.34 32.00 401.95 1220.67 21.97 31.63

Table 1. Additional quantitative results comparing to recent baselines on indoor, outdoor, and mixed sequences with backbone as denoted:
(1,2) Indoor: NYUv2 → ScanNet → VOID (3) Outdoor: KITTI → Waymo → VKITTI (4,5) Mixed: KITTI → NYUv2 → Waymo

i.e., the bottleneck and skip connections. The prototype sets
learn global (multiplicative) and local (additive) biases for
each layer, adapting the frozen transformer layers to each
new dataset while mitigating forgetting. This demonstrates
that ProtoDepth is fully architecture-agnostic and can be
seamlessly applied to both CNNs and transformers.

A notable inclusion in this section is the prompt-based
method L2P [22] (Learning to Prompt), which serves as a
representative baseline for prompt-based methods. Prompt-
based continual learning methods were not included in the
main experiments because all existing unsupervised depth
completion models are CNN-based, and prompt-based ap-
proaches, which operate by prepending prompts to tokenized
inputs, are not applicable to CNNs, which operate directly
on images without tokenization, which prevents the straight-
forward insertion of prompts into the input space. However,
with the implementation of Uformer, a transformer-based
model, we are now able to evaluate L2P, which is a founda-
tional method for prompt-based continual learning.

For L2P, we implement the method as described in the
original paper. Specifically, we use a prompt pool of size
M = 20 and select N = 5 prompts for each input during
training and inference. To adapt L2P for depth completion,
we implement their loss term, which pulls selected keys
closer to their corresponding queries, and incorporate it into
our overall loss function (Eq. (1) in the main paper) with
a weight of 0.5, as suggested in [22]. To evaluate in the
domain-agnostic setting, where dataset identity is withheld
at test time, we train M = 20 new prompts for each new
dataset during continual training. At test-time, the model
queries all existing learned prompts.

C. Additional Experiments

In Tab. 1-(2), we compare to L2P [Wang et al., CVPR
’22] [22], a prompt-based method, where we adapt Uformer
for unsupervised depth completion as no transformer-based
model currently exists for this task. We have added compar-
isons to ANCL [Kim et al., CVPR ’23] [10], an architecture-
based method, and CMP [Kang et al., CVPR ’24] [9],
a rehearsal-based method, on the indoor Tab. 1-(1) and
outdoor Tab. 1-(3) sequences using the KBNet backbone.
ProtoDepth-A (Ours) outperforms all of these recent meth-
ods, reaffirming our findings.

In Tab. 1-(4,5), we add experiments in a mixed setting,
where the dataset sequence transitions from outdoor to in-
door and back to outdoor. We compare to ANCL, CMP,
and L2P in this mixed setting and show that ProtoDepth-A
outperforms all of these recent methods.

Tab. 2 shows that recent depth estimation uni-
fied/foundation models, Depth Pro [Bochkovskii et al.,
2024] [2] and Depth Anything [Yang et al., CVPR ’24] [33]
(fit to metric scale via median scaling) do not outperform
ProtoDepth-A (NYU → VOID) when evaluated on VOID.
This validates the advantage of our method over direct depth
estimation. Also of note, Depth Pro and Depth Anything are
supervised and semi-supervised, while we are unsupervised.

In continual learning, joint training a larger model (e.g.,
transformer) on all datasets simultaneously serves as a per-
formance upper bound. Tab. 3 shows that ProtoDepth-A
achieves comparable mean performance to this upper bound
on {KITTI, Waymo, VKITTI} using the adapted Uformer.
Importantly, we address the scientific question of learning



MAE RMSE iMAE iRMSE

Depth Anything [33] 49.22 88.74 21.22 51.22
Depth Pro [2] 43.06 93.36 20.80 52.24
Ours 33.66 86.99 17.48 43.02

Table 2. Comparison against depth estimation foundation models.

MAE RMSE iMAE iRMSE

Ours 686.86 2024.42 1.58 3.52
Upper Bound 671.95 2231.97 1.34 3.52

Table 3. Comparison against joint training (upper bound).

MAE RMSE iMAE iRMSE

Joint Training 2800.27 6284.63 6.06 11.23
ANCL [10] 2753.07 6195.09 5.69 10.86
CMP [9] 2885.82 6234.33 7.12 13.57
Ours 2697.47 5966.57 5.40 10.58

Table 4. Zero-shot generalization to nuScenes.

in a sequential manner, where one does not have access to
all data at once or must learn a new dataset without breaking
backwards-compatibility – a common real-world scenario.

Improved generalization to unseen datasets in the inter-
section of observed domains helps to motivate our method.
Tab. 4 shows generalization to nuScenes (outdoor) after
training on KITTI → Waymo → VKITTI. ProtoDepth-A
outperforms joint training, ANCL, and CMP, demonstrating
its ability to leverage domain-specific prototypes to enhance
zero-shot generalization.

D. Dataset Details
Indoor datasets: The NYU Depth V2 [16] (“NYUv2”)

dataset comprises 464 diverse indoor scenes from residen-
tial, office, and commercial environments captured using a
Microsoft Kinect. It contains approximately 400,000 aligned
RGB and depth image pairs with a resolution of 640× 480.
About 1,500 points are sampled for each sparse depth map
using the Harris corner detector [8]. This dataset serves as a
standard benchmark for indoor depth estimation tasks. For
our indoor dataset sequence, we utilize NYUv2 as the ini-
tial dataset D1 for pretraining our depth completion models
that are subsequently applied to indoor continual learning
scenarios. The VOID [26] dataset presents sparse depth
maps with ≈ 0.5% density (≈1,500 points), alongside RGB
frames from various indoor settings such as laboratories,
classrooms, and gardens, totaling approximately 58,000
frames (640 × 480) captured via XIVO [5]. VOID is de-
signed to address challenges in areas with minimal texture
and significant camera motion, key factors for assessing ro-
bustness in indoor depth completion tasks. ScanNet [3], a
comprehensive indoor dataset, encompasses over 2.5 million

frames paired with RGB-D data. Depth frames in ScanNet
are captured at a resolution of 640× 480 pixels, whereas the
color frames have a higher resolution of 1296× 968 pixels.
Again, we use the Harris corner detector [8] to subsample ≈
1,500 points for the sparse depth maps. We use a subset of
the dataset with approximately 250,000 frames across 706
scenes. For all indoor datasets, we use a training crop size of
416× 576. For evaluation, depth values across all of these
indoor datasets are constrained between 0.2 and 5 meters.

Outdoor datasets: The KITTI [19] dataset is an estab-
lished benchmark in autonomous driving that comprises over
93,000 stereo image pairs with a resolution of 1240× 376
and sparse LiDAR depth maps (≈ 5% density), all synchro-
nized and captured across diverse urban and rural landscapes
using a Velodyne LiDAR sensor. KITTI is the initial dataset
D1 for pretraining our depth completion models for the out-
door dataset sequence. The Waymo Open Dataset [18]
(“Waymo”) provides roughly 230,000 high-resolution frames
(1920 × 1280 and 1920 × 1040) along with LiDAR point
clouds, captured from scenes that encompass a broad spec-
trum of driving scenarios and conditions. For Waymo, the
depth values during evaluation are capped between 0.001
and 80 meters and during training, a crop size of 800× 640
is employed. The Virtual KITTI [6] (“VKITTI”) dataset of-
fers synthetic, altered re-creations of KITTI scenes captured
from virtual worlds created in Unity, with over 21,000 frames
at 1242× 375 resolution and dense ground truth depth, facil-
itating the study of domain adaptation. We apply synthetic
weather conditions and view rotations to simulate domain
shifts that lead to forgetting. For KITTI and VKITTI, we
restrict the depth values during evaluation to between 0.001
and 100 meters and utilize a depth cropping of 240× 1216.
During training, we use a crop size of 320× 768.

Given the differences in image resolutions, crop sizes,
and evaluation depths, in addition to the different types of
scenes captured and sensors used to collect the datasets, we
observe large domain gaps between datasets within each
sequence, motivating the need for continual learning. We
will release code for reproducibility.

E. Depth Completion Metrics
When we reference depth completion metrics in the main
paper, we specifically mean the error metrics outlined be-
low and formulated in Tab. 5. The metrics include Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE),
Inverse Mean Absolute Error (iMAE), and Inverse Root
Mean Squared Error (iRMSE). MAE measures the average
L1 difference between predicted and ground-truth depths,
providing a straightforward indication of prediction accuracy.
RMSE measures L2 difference which gives higher weight to
larger errors, making it sensitive to outliers and thus a robust
measure for practical applications. iMAE and iRMSE, on the
other hand, are particularly useful for scenarios where errors



in smaller depth values are more critical, as they focus on
the relative error in inverse depth. Collectively, these metrics
allow for a comprehensive evaluation of a model’s capability
to predict depth from input data under varied environmental
settings, e.g., indoor and outdoor. We note that lower values
indicate better performance for all four error metrics. All
results are reported in ‘mm’ (millimeters) unless otherwise
specified, providing a clear metric standardization.

The results of our experiments are shown in Tab. 1, which
compares ProtoDepth, ProtoDepth-A (agnostic setting), L2P,
and full finetuning (“Finetuned”) on the indoor dataset se-
quence. ProtoDepth achieves superior performance across
all metrics, with zero forgetting in the incremental setting,
with one exception: ProtoDepth-A outperforms ProtoDepth
in one measure, SPTO for iRMSE, highlighting the benefits
of its generalization capability. This result is consistent with
our earlier observations: by allowing the model to select
domain descriptors and prototype sets dynamically at test
time, ProtoDepth-A can leverage features from overlapping
domains to improve performance on ambiguous samples.
This flexibility enables better generalization, which, in cer-
tain scenarios, can lead to improved outcomes compared to
the fixed domain identity approach used in ProtoDepth.

Notably, ProtoDepth-A outperforms L2P in the agnostic
setting, demonstrating the strength of prototype-based adap-
tation compared to prompt-based approaches. While L2P
shows improvements over finetuning, it performs less well
than ProtoDepth, which can be attributed to a fundamental
limitation of prompt-based methods. These methods rely
on learnable prompts or tokens to adapt frozen vision trans-
former models for continual learning, but there is no natural
scale at which to discretize images or choose an appropriate
prompt size, unlike the discrete text tokens used in natural
language processing. In contrast, ProtoDepth’s prototype-
based approach eliminates the need for tokenized inputs,
enabling it to operate directly in the latent feature space.
This flexibility not only enhances its adaptability across di-
verse datasets but also allows it to be applied seamlessly to
both transformers and convolutional neural networks, which
are prevalent in unsupervised depth completion.

Metric Definition

MAE ↓ 1
|Ω|

∑
x∈Ω |d̂(x)− d(x)|

RMSE ↓
(

1
|Ω|

∑
x∈Ω |d̂(x)− d(x)|2

)1/2
iMAE ↓ 1

|Ω|
∑

x∈Ω |1/d̂(x)− 1/d(x)|
iRMSE ↓

(
1
|Ω|

∑
x∈Ω |1/d̂(x)− 1/d(x)|2

)1/2
Table 5. Error metrics for depth completion. These metrics
evaluate the accuracy of predicted depth values d̂(x) compared to
ground truth depth values d(x) over the set of pixels Ω.

F. Outdoor Prototype Set Sizes

We extend our investigation of prototype set sizes (i.e., num-
ber of prototypes) for the image and sparse depth layers (de-
noted as N (I) and N (z), respectively) to the outdoor dataset
sequence. The results of these experiments are presented
in Tab. 6. Based on the findings, we select N (I) = 25 and
N (z) = 10 for the main experiments on the outdoor dataset
sequence. Smaller set sizes demonstrate suboptimal perfor-
mance, as they lack the capacity to adequately capture the
diversity of features across datasets. Larger set sizes also re-
sult in performance degradation, likely due to the additional
parameters learning noise and overfitting to the training data.
The best performance is achieved when N (I) > N (z), align-
ing with our observations in the indoor experiments. This
can be attributed to the larger distributional shift between
scenes in the image modality compared to the sparse depth
modality [14]. For the bottleneck layer, which fuses features
from both modalities, we again use N (I) as the prototype
set size. As a baseline, we also report the performance of
the frozen base model pretrained on KITTI (“Pretrained”),
which has no additional parameters or further training. The
poor results highlight the necessity of continual learning
to adapt to non-stationary data distributions. For both in-
door and outdoor settings, the prototype set size analysis
is conducted using the KBNet model; we adopt the same
prototype set sizes for all other models, as they all have a
similar number of parameters.

G. Additional Qualitative Analysis

To illustrate the reduced forgetting achieved by ProtoDepth,
we provide a qualitative comparison of depth predictions
and error maps for all baseline methods on input samples
from NYUv2 after continual training on ScanNet (Fig. 2
and Fig. 3). These figures demonstrate how ProtoDepth and
ProtoDepth-A consistently outperform the baselines, specifi-
cally in reconstructing crowded indoor scenes with sparse
depth measurements and challenging lighting conditions.

In Fig. 2, baseline methods such as Finetuned and EWC
exhibit substantial forgetting, resulting in high error concen-
trations. Finetuned, in particular, struggles to retain pho-
tometric priors learned from NYUv2, evident in the poor
reconstruction of furniture edges and flat areas with depth
gradients. Replay performs marginally better but still fails to
recover fine details, as its rehearsal mechanisms are insuffi-
cient to address the large distributional shift between NYUv2
and ScanNet. LwF shows improved performance, with fewer
errors compared to Finetuned, EWC, and Replay. However,
it fails to accurately reconstruct regions with sparse depth
measurements (see Sparse Depth), such as the curtain.

ProtoDepth and ProtoDepth-A, on the other hand, pro-
duce high-fidelity depth predictions. ProtoDepth benefits
from its prototype-based adaptation, effectively preserving



Waymo VKITTI

Method N(I) N(z) # Params MAE RMSE iMAE iRMSE MAE RMSE iMAE iRMSE

Pretrained - - 0M (0%) 3930.68 6405.75 9.55 14.34 10527.70 18086.22 17.45 31.50

ProtoDepth

1 1 0.24M (3.5%) 587.92 1900.96 1.41 2.96 937.18 4027.53 1.92 5.82
±61.20 ±145.34 ±0.12 ±0.17 ±60.31 ±47.08 ±0.38 ±0.42

10 10 0.25M (3.7%) 524.76 1667.74 1.28 2.74 686.22 3638.20 0.90 3.50
±37.18 ±27.98 ±0.06 ±0.03 ±3.42 ±12.29 ±0.04 ±0.07

25 10 0.27M (3.9%) 483.92 1656.33 1.19 2.68 676.28 3608.42 0.80 3.25
±27.59 ±16.34 ±0.04 ±0.02 ±4.64 ±16.61 ±0.07 ±0.24

25 25 0.28M (4.0%) 508.60 1688.09 1.23 2.72 680.65 3614.61 0.87 3.51
±20.36 ±10.88 ±0.04 ±0.03 ±3.40 ±14.82 ±0.05 ±0.19

100 100 0.38M (5.5%) 522.39 1711.44 1.27 2.76 686.89 3635.01 0.93 3.53
±50.06 ±72.41 ±0.10 ±0.09 ±5.45 ±27.57 ±0.09 ±0.08

Table 6. Sensitivity study of prototype set sizes (N (I) and N (z)) on ProtoDepth using KBNet for outdoor datasets (Waymo and VKITTI).
KBNet is pretrained on the initial dataset (KITTI). Parameter overhead is reported as a percentage of the full KBNet model’s parameters.
Smaller set sizes show suboptimal performance due to insufficient capacity to capture feature diversity, while larger set sizes also degrade
performance, likely from overfitting and learning noise.

features from NYUv2 while adapting to ScanNet. Notably,
ProtoDepth-A exhibits comparable performance and even
outperforms ProtoDepth in reconstructing certain regions,
such as the smooth surface of the curtain. This improvement
is due to ProtoDepth-A’s generalization capability, which
allows it to dynamically select prototype sets from overlap-
ping domains based on the affinity of domain descriptors,
thereby enhancing its ability to handle ambiguous inputs.

Fig. 3 reinforces these observations with a second ex-
ample. Once again, baseline methods exhibit significant
forgetting, with Finetuned, EWC, and LwF producing poor
depth predictions. In contrast, ProtoDepth and ProtoDepth-
A produce high-fidelity reconstructions. The well-defined
edges between the furniture, floor, and walls in their pre-
dictions highlight their ability to preserve learned features
while adapting to new domains. ProtoDepth-A, in particular,
demonstrates its generalization strength by leveraging over-
lapping domain features to improve predictions in certain
areas, such as the bedpost edges.

Overall, these qualitative results underscore the ability of
ProtoDepth to mitigate catastrophic forgetting and produce
high-fidelity depth predictions. By effectively combining
domain-specific adaptation and cross-domain generalization,
ProtoDepth-A outperforms baseline methods, even under
significant domain shifts between NYUv2 and ScanNet.

H. Training Time Comparison
Tab. 7 presents the training time per epoch for each continual
learning method on both indoor (ScanNet and VOID) and
outdoor (Waymo and VKITTI) datasets using KBNet. These
experiments were conducted with a fixed batch size of 12
for indoor datasets and 8 for outdoor datasets, on a single
NVIDIA GeForce RTX 3090 GPU. This standardized setup
ensures a fair comparison across all methods. The training

times vary across datasets because they are measured per
epoch, and each training set contains a different number of
frames, as detailed in Sec. D.

ProtoDepth and ProtoDepth-A demonstrate significant im-
provements in computational efficiency, with training times
roughly half those of the baseline methods. This efficiency
can be attributed to ProtoDepth’s approach of freezing the
backbone model and training only the prototype sets, which
are applied to the latent space layers (i.e., bottleneck and
skip connections). Thus, backpropagation computations are
restricted to parameters from the output layer back only to
the latent space layers. Since the parameters involved are
approximately half of the total parameters, ProtoDepth re-
quires fewer gradient computations compared to methods
like EWC, LwF, and Replay that calculate gradients and
update parameters across the entire model.

ProtoDepth achieves slightly faster training times than
ProtoDepth-A. This difference arises because ProtoDepth-A
requires additional computations to train the domain de-
scriptors, which involves calculating and optimizing cosine
similarity between sample descriptors and domain descrip-

Training Time per Epoch (mins)

Method ScanNet VOID Waymo VKITTI

Finetuned 165.8 35.4 84.7 17.3
EWC 168.2 35.9 85.0 18.5
LwF 170.7 38.1 85.4 20.3
Replay 182.9 40.4 88.8 23.0
ProtoDepth-A 92.5 17.9 40.3 10.7
ProtoDepth 85.3 15.7 37.9 9.6

Table 7. Training times (minutes per epoch) using KBNet for each
continual learning method on both indoor and outdoor datasets.
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Figure 2. Qualitative comparison (1 of 2) of ProtoDepth and baseline methods using FusionNet on NYUv2 after continual training on
ScanNet. Top row: Input sample from NYUv2. Following rows: Output depth and error maps (relative to ground-truth) of same sample
from NYUv2 after continual training on ScanNet using each continual learning method.

tors during training. ProtoDepth avoids this step, resulting
in a small yet consistent reduction in training time.

Among the baseline methods, Finetuned is the fastest,
training slightly faster than EWC, LwF, and Replay. This
is because finetuning does not involve the additional regu-
larization or distillation used by EWC and LwF, nor does it
use a memory buffer like Replay. However, the simplicity
of full finetuning comes at the cost of increased catastrophic
forgetting, as evidenced by its consistently poor performance
in the main experiments.

The reduced training times of ProtoDepth and
ProtoDepth-A are particularly important for real-world ap-
plications, where computational efficiency is crucial. By
restricting updates to the latent space, ProtoDepth not only re-
duces computational overhead but also does so while achiev-
ing state-of-the-art performance. This efficiency is critical

for resource-constrained environments, or scenarios requir-
ing fast adaptation to new datasets. These results highlight
ProtoDepth’s ability to deliver both high performance and
practical advantages in training time, underscoring its suit-
ability for continual learning tasks.

I. More Ablation Studies

To further evaluate the importance of prototype sets in Pro-
toDepth, we conduct additional ablation studies to assess the
impact of removing prototype sets from different modalities
and latent space layers. Specifically, we analyze the role of
prototype sets applied to the image features, sparse depth
features, and the bottleneck features. The results, shown
in Tab. 8, are evaluated on ScanNet (indoor dataset) and
Waymo (outdoor dataset) using KBNet.

The results highlight that removing prototype sets from
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Figure 3. Qualitative comparison (2 of 2) of ProtoDepth and baseline methods using FusionNet on NYUv2 after continual training on
ScanNet. Top row: Input sample from NYUv2. Following rows: Output depth and error maps (relative to ground-truth) of same sample
from NYUv2 after continual training on ScanNet using each continual learning method.

any of these components significantly degrades performance.
When image prototype sets are ablated, we observe a sharp
increase in both MAE and RMSE, particularly for ScanNet,
where MAE rises from 14.59 to 35.06. This degradation
demonstrates the importance of capturing domain-specific
biases in image features, as images undergo larger distri-
butional shifts between domains compared to sparse depth,
such as changes in lighting, textures, and color distributions.

Similarly, removing the sparse depth prototype sets also
results in noticeable performance drops, with MAE increas-
ing from 14.59 to 32.07 for ScanNet. While sparse depth
features may exhibit smaller distributional shifts compared
to image features, these features are crucial for anchoring the
model to the metric scale of the depth predictions. Without
the sparse depth prototypes, the model struggles to adapt
effectively to the unique distribution of sparse point clouds

in each new dataset.

The bottleneck prototype sets play a critical role as well,
as they adapt the fused representations of both image and
sparse depth modalities. Ablating the bottleneck prototypes
leads to performance degradation, although the impact is
less severe than removing the image or sparse depth proto-
types. For instance, MAE increases from 14.59 to 19.03
for ScanNet when bottleneck prototypes are removed. This
suggests that while the bottleneck prototypes contribute to
the overall performance, much of the adaptation occurs in
the modality-specific layers.

Notably, when all prototype sets are included (no abla-
tions), ProtoDepth achieves the best performance across both
datasets, with significantly lower error metrics compared to
any ablated configuration. These results validate the design
choice of applying prototype sets to both modality-specific



ScanNet Waymo

Ablated Component MAE RMSE MAE RMSE

image prototype sets 35.06 88.23 542.16 1703.01
sparse depth prototype sets 32.07 84.39 537.37 1762.31
bottleneck prototype sets 19.03 60.32 502.21 1680.87

no ablations 14.59 42.20 486.95 1664.18

Table 8. Ablation studies on prototype sets for different modalities
using KBNet for indoor (ScanNet) and outdoor (Waymo).

features (image and sparse depth) and their fused representa-
tions (bottleneck).

J. Discussion
Accurate 3D reconstruction [11, 20, 32] is crucially impor-
tant for applications that rely on precise perception of sur-
rounding environments [31, 37]. One key challenge in this
domain is monocular depth estimation (MDE) [2, 12, 23, 25,
30, 33], which aims to recover metric depth from a single
image. However, MDE is fundamentally challenging due to
scale ambiguity, making it an inherently ill-posed problem.
To overcome this challenge, synchronized complementary
modalities—such as LiDAR [4, 24, 26], radar [15, 17], in-
ertial sensors [5], additional cameras [1, 29], and even lan-
guage [35, 36]—can provide additional cues to resolve scale
ambiguity. In particular, LiDAR offers high-precision depth
measurements that are relatively dense compared to other
time-of-flight sensors such as radar, making it a valuable
modality for resolving scale ambiguity and enhancing met-
ric depth estimation accuracy. This task of LiDAR-Camera
depth estimation, specifically, is commonly referred to as
depth completion [13, 27, 28, 34]. In our work, ProtoDepth,
we introduce an unsupervised continual depth completion [7]
framework that leverages prototypes to continuously learn
in challenging and dynamic environments. Unlike tradi-
tional approaches that rely on fully supervised training on
stationary datasets, ProtoDepth adapts continuously across
domains, demonstrating improved generalization without
the need for expensive, inaccurate ground truth. Our com-
prehensive results demonstrate that ProtoDepth effectively
mitigates catastrophic forgetting for depth completion, mak-
ing it a promising solution for real-world applications in
autonomous driving, augmented/virtual reality, robotics, and
general scene understanding.
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