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The Supplemental material contains experiments and de-
tail that could not be included in the main paper due to
length constraints. DynPose-100K results are best viewed
in the Supplemental video. Supplemental videos use 12 fps
so each frame corresponds to an annotated camera pose,
since poses are annotated at 12 fps.

1. DynPose-100K: Dataset Curation Addi-
tional Details

We expand upon the method of §3 from the paper.

1.1. Candidate Selection Criteria

Candidate selection criteria fit into three broad categories,
which can be broken down into sub-categories. These are
visualized in Figure 2 in the main paper and are broken
down further in Figure 1. We detail below:

C1. Real-world and quality video. Videos removed for this
reason are titled in Figure 1 not real and quality / ethi-
cal. Not real videos are described in the main paper
and include cartoons and animated videos, video games,
computer screen recordings, post-processing resulting
in large logos or text appearing on screen or other video
appearing side-by-side. Quality reasons include poor
lighting and blocked or blurred lens. We select Panda-
70M videos [3] with 720p resolution, but in rare cases
a lower-resolution video has been up-sampled to 720p.
Ethical reasons include children, NSFW and violence.

C2. Feasibility for pose prediction. Videos removed for
this reason are labeled not estimable. Subcategories in-
clude long focal length, zoom in or out, non-existent or
out-of-focus static region, shot change, and ambiguous
frame of reference.

C3. Dynamic camera and scene. These correspond to
static camera and static scene in Figure 1.

1.2. Candidate Video Selection

We include videos based on scores coming from the follow-
ing filters. Each filter produces a score between 0 and 1 as to
whether the video should be included. The average of these
is used as the final score, from which we threshold and take
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all videos with scores higher. Thresholds for each filter are
tuned on a 1K validation set Panda-Val, collected in a sim-
ilar manner to the 1K Panda-Test. Validation videos have
no overlap with test videos. Also, long videos containing
val videos have no overlap with the long videos containing
test videos. This is a necessary precaution since Panda-70M
videos are clips from long videos in HD-VILA-100M [23].

1. Cartoons and presenting. We use the classifiers of
Hands23 [4], which predict whether a video is likely to
have interaction; and whether a video contains children,
cartoons or screen recordings, or person sitting in front
of a camera. This uses 4 evenly spaced frames in thumb-
nail size as input to two classifiers, one for if a video
is acceptable, e.g. no cartoons, etc.; and one for if in-
teraction is likely to occur, e.g. not a static scene. Each
predicts a confidence score between 0 and 1. We use a
minimum threshold for 0.55 for acceptable and 0.20 for
interaction, meaning scores are 1 if greater than a thresh-
old and 0 otherwise. Final score is the average of both.

2. Non-perspective distortion. We use DroidCalib [8] to
predict radial distortion at an interval of 6 fps for ef-
ficiency. DroidCalib predicts o from the unified cam-
era model [15]. A maximum threshold of 1.00 is used;
higher outputs receive score 0 as they are likely distorted.

3. Focal length. We use WildCamera [26] to compute the
frame-wise focal length of videos, applying on frames at
6 fps for efficiency. Focal lengths are predicted on 720p
frames. We apply two variance thresholds. First, we
check the difference between 90th and 10th percentile
focal lengths. If this is greater than 40% of the mean
focal length, it receives sub-score 0; 1 otherwise. This
is a good check to see if focal length changes over the
course of the video, sometimes due to shot change. Sec-
ond, we check variance over a sliding window of 1 sec-
ond. If focal length changes by more than 20% over 1
second, it receives sub-score O as there is likely zoom
or shot change; 1 otherwise. Finally, we apply a mean
threshold, giving sub-score 0 if the 80th percentile focal
length is greater than 1400; 1 otherwise. This is because
extremely long focal lengths are often too focused to
clearly see a background, and further have such a small
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Figure 1. Panda-Test breakdown. We add more examples for each category, including further breakdown statistics for non estimable.

Stats reflect human labels on the 1K Panda-Test set, detailed in § 2.1.

field of view localization is hard, even for a human. The
final scores is the average of the three sub-scores.

4. Dynamic object masking. We apply our masking method
(§3 from the paper) to compute the dynamic mask size.
For efficiency, instead of applying masking every 0.5
seconds and propagating forward 0.5 seconds, we apply
masking every 1 second and propagate forward 1 sec-
ond. This is useful since propagation is much faster than
the other components of masking. Dynamic mask size
is computed for each frame, the 90th percentile mask
size is then compared to 80% of the frame size. In other
words, if the 10% of frames with biggest masks have a
mask greater than 80% of frame size, the video receives
masking score of 0; 1 otherwise.

5. Optical flow. We compute the average magnitude of se-
quential optical flow using RAFT [20], this is applied

at 6 fps. Flow bigger than 2.127% of frame size aver-
age distance is given sub-score 1. This threshold is cho-
sen to correspond to the 80th percentile of optical flow
in the dataset. Low optical flow is removed as it tends
to correspond to static scenes and cameras. Next, two
sub-components handle shot change. First, maximum
sequential-frame flow must be less than the mean plus 4
standard deviations for 1 on the sub-score; else 0. Sec-
ond, sustained flow must not be too high; maximum av-
erage flow over 1 second sliding windows must be less
than a threshold of 15% of frame size to receive 1 on the
sub-score; else 0. The average of all three components
is the final score.

6. Point tracking. We apply an abbreviated version of our
tracking method over the full video. Instead of repeat-
ing tracking, we apply tracking only once for efficiency.



Tracking is done at 3 fps and tracked for 30 frames,
meaning entire videos of 10 seconds or less are tracked
fully. From Figure 5 in the main paper, over 99% of se-
quences are less than 10 seconds. In the case of longer
videos, the first 10 seconds still provides a good estimate
of the tracking metrics. Tracking has three components,
one measuring large disappearance of tracks indicating
shot change, and two measuring lack of movement indi-
cating static camera or scene. Each respective formula
is more complex, but at a high-level, a video scores 0 on
shot change if more than 50% of tracks are lost across a
single frame, while dynamics scores 0 if median tracks
move less than about 5% of frame size.

Component smoothing. A sigmoid is applied to compo-
nent scores for smoothing. While this doesn’t impact clear
positives or negatives in each case, it gives a more informa-
tive ranking of borderline scores. For example, an exam-
ple with average optical flow of 2.126% is marginally less
likely to be included than one with average flow of 2.128%.
Smoothed scoring is more reflective of this rather than the
former scoring 0 and the latter scoring 1.

Generalist VLM. The VLM answers eight questions
overviewed in the main paper. Each question indicates a
reason a video would not be included, so if any answer is
yes, a score of 0 is given. Otherwise, the score is 1.

Filtering efficiency. We find we can often reduce compu-
tation of filtering methods compared to pose estimation, as
not as much precision is required to get an aggregate fil-
tering score. For example, precisely tracking each frame
is important for accurate pose estimation, but to determine
whether the camera is static, we need only check if tracks
sufficiently moved at a few fps. This efficiency is impor-
tant considering filtering is run on many more videos (about
3.2M) than pose estimation (about 100K).

Collection details. During filtering, we remove videos
with average score below a threshold. Final filter scores
are between 0 and 1; the final threshold we use is 0.910,
resulting in 137K videos, corresponding to about 4.3% of
the full 3.2M videos.

Filtering is applied in several stages to reduce compute
cost, as reported in the main paper. After completing a
stage, only a subset of all filters are available to attempt to
remove unsuitable videos. Experiments indicate this is not
as effective as using all filters (Table 1). Nevertheless, this
subset is still a good proxy for whether to filter the video.
We therefore use an average of these filters, but apply a less
strict threshold than the final filter to avoid removing suit-
able videos. Subset thresholds are chosen empirically based
on the evaluation set to avoid removing good candidates.

Filters are applied in the following order for efficiency:
Hands23, flow, focal; then distort; then tracking; then
masking; and finally VLM. Hands23, flow and focal are

lightweight operations, distort is nearly as lightweight, then
tracking, then masking. VLM (GPT-40 [16]) is applied last
to minimize OpenAl API costs. Hands23, flow and focal
were run jointly early in the project to experiment with fil-
tering on a large set.

After running SfM, we drop trajectories with less than
80% of frames registered. This is a typical threshold for a
succeeded trajectory used in evaluation [2, 14]. Early ex-
periments found this to be a good proxy for quality.

1.3. Dynamic Camera Pose Estimation

Dynamic camera pose estimation builds upon Parti-
cleSfM [25]’s calls to TheiaSfM [19] for global bundle ad-
justment given masks and tracks as input. More detail for
dynamic masking and point tracking follow.

Dynamic masking. Dynamic masking combines four
complimentary approaches to motion detection: seman-
tics, for common dynamic classes; object interaction, for
sometimes-dynamic objects that move when interacted
with; motion, for sometimes-dynamic objects that move
even when not in contact with humans; and tracking, to
smoothly and efficiently propagate detected masks. We ap-
ply the former three masks once every six frames and in-
put them into tracking. Tracking then outputs the tracked
masks for the current frame and next five frames, before the
process is repeated at the sixth new frame. Using frames
extracted at 12fps for DynPose-100K, this results in masks
produced and propagated forward for 0.5 seconds. An ex-
ample of dynamic masking in practice can be found in more
detail in Figure 2.

Semantic segmentation. We apply OneFormer [10] to mask
common dynamic classes such as humans and sports equip-
ment. We use the same classes for dynamic masking as Ro-
DynRF [14]: MS-COCO [12] classes 1 (person), 2-9 (vehi-
cle), 16-25 (animal), 26-33 (accessory), 34-43 (sports), and
88 (teddy bear).

Object interaction segmentation. We use Hands23 [4] hand-
object interaction with default parameters. We consider
only masks associated with hand-held objects. This cor-
responds to touch classes 1, 2, 4 and 6. We found masking
objects being touched but not held (3, 5) resulted in mask-
ing too many objects that were not moving. Movement was
highly correlated with the held class.

Motion segmentation. Sampson error [9] is computed both
forward and backward on each sequential frame pair based
on flow [20]. The maximum of forward and backward is
computed for each pixel, after which we normalize and
threshold. Like [14], we mask pixels with errors greater
than (frameheight * framewidth)/8100.

Mask propagation. We use SAM2 [18] video predictor
with sam2-hiera-large checkpoint and config to propagate



Propagation

Semantic Interaction Motion (Output)

Z.

¥

eeoeo - - ee e ° . .
2 B e

Figure 2. Masking composition. Each component of masking
contributes to final masks. Unique contributions for semantics, in-
teraction and motion are circled in red. Semantic segmentation
handles common dynamic objects such as humans (all examples).
Object interaction handles things humans are manipulating such as
paper (top) or accessories (bottom). Motion handles things mov-
ing not by human hands such as swiveling chairs (second from
top) or flying snowballs (third from top). Sometimes objects are
partially segmented by one component but complementary com-
ponents can still give a more complete mask. E.g. in the third
example, flying snowballs are segmented by semantics but motion
helps complete the dynamic mask. All components are combined
and tracked smoothly by propagation (right).

the combination of the three former masks. For efficiency,
we perform segmentation every six frames and use SAM2
to propagate the mask forward for six frames. Since prop-
agation is several times faster than masking, the result is a
substantial overall speedup.

Point tracking. To collect DynPose-100K, we predict
tracks using input resolution (256,256), the default for
BootsTAP [6]. We track a grid of (42,42) = 1764 points.
We apply tracks every 5/12 second and track for 2.5 sec-
onds. Using frames extracted at 12fps, this corresponds
to a stride of 5 frames and tracking length of 30 frames.
Early experiments indicated higher resolution did not mean-
ingfully improve results while reducing efficiency. We
therefore selected these parameters, considering our goal of
large-scale collection.

Repeating tracking later in videos results in sequences
where video is shorter than the number of frames to track.
We find BootsTAP [6] runs far faster when repeating the
same sequence length, as opposed to shortening sequence
length. We therefore pad sequences with empty frames as
needed to keep same sequence length, finding in early ex-
periments this has negligible impact on results while mean-
ingfully speeding up tracking.

2. DynPose-100K: Dataset Analysis Additional
Details

This section adds detail for §4.2 in the paper.

2.1. Filtering Evaluation on Panda-Test

Dataset. Panda-Test consists of 1K randomly selected
videos manually categorized into suitable or one of several
non-suitable categories. These are visualized in Figure 2 in
the main paper and detailed in Figure 1. Manual filtering
goes as follows: a video is first checked to see if it is not
real. If it passes this check, it is checked for quality / ethics,
then if pose is estimable, then if pose is dynamic, then scene
dynamic. If it passes these checks it is considered a target
video. 90 (9%) are considered suitable.

Results. Table 1 shows filtering evaluation in more detail
than Figure 4 from the main paper. Following the Pascal
Visual Object Classes challenge [7], Table I, left shows a
smoothened precision-recall curve for increased visual clar-
ity. In particular, for each data point, we use the maximum
precision of all data points whose recall is greater than or
equal to the current recall. This smooths the curve such that
precision is non-increasing as recall increases. Table 1, right
reports precision values of the non-smoothened curves. Pre-
cision at Recall of 0.40 corresponds to the operating thresh-
old for DynPose-100K.
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Table 1. Expanded detail on video filtering on Panda-Test. Left is Figure 4 from the main paper showing PR curves for baselines and
ablations. Right displays average precision for these curves; along with precision at the threshold of 0.40 recall, corresponding to the

operating threshold of DynPose-100K.

3. Experimental Details

We expand upon experimental details from §5 in the paper.

3.1. Pose Evaluation on Lightspeed

We run all methods on Lightspeed dataset extracted at full
24 fps due to the short nature of clips, following prior pro-
tocol on synthetic data evaluation [2, 14, 25].

Dataset. Additional sequences of Lightspeed are displayed
in Figure 4. They have resolution (2560, 1440).

Metrics. We follow [2, 14, 25] in defining failing to register
a sequence as registering less than 80% of frames. We fill
failed trajectories with random translations so they can be
aligned with ground truth trajectories to compute ATE; i.e.
the identity sequence cannot be transformed to align with
another sequence. Unlike Panda-Test, we did not find it
necessary to repeat SfM: our method succeeded on all se-
quences, while repeating SfM on failed sequences for other
methods e.g. COLMAP made minimal or no difference.

Implementation details. Our pose estimation method pre-
dicts tracks using input resolution (480, 854) and a grid of
(56, 32) = 1792 points, and tracks for 40 frames. This com-
bination is the maximum fitting in 40G memory, and is cho-
sen as a balance of local precision via high-resolution and
robustness via long-term tracking. The 24 fps frame-rate
means 40 frames is 1.67 seconds, shorter than the 2.5 sec-
onds on DynPose-100K and Panda-Test (detailed in § 1.3).
Nevertheless, we find this tracking results in competitive fi-

nal results (Table 2, Figure 8 in the main paper, Figure 8).
We use tracking applied both forward and backward, though
found this had minimal impact on results compared to track-
ing only forward.

3.2. Pose Evaluation on Panda-Test

We use the same settings as DynPose-100K and apply
masking and tracking upon video frames extracted at 12fps.

Metrics. We select correspondences with small depth
(closer to the camera) if possible to make correct pose re-
projection error more discernible from incorrect pose es-
timates. Sample correspondences used for evaluation are
plotted in Figure 5. Both human correspondences and cor-
responding SuperPoint [5]+LightGlue [13] (SP+LG) corre-
spondences are displayed. While human correspondences
are annotated by two expert annotators and are reliable at a
coarse level, SP+LG allows more precise correspondence.
In addition, we require a SP+LG correspondence to exist
within 10 pixels (on 720p images) of both human points
in correspondence. This is a fail-safe against a missed an-
notation from the human. In practice, we collect 11,866
pairs, about 86.0% (10,210) of which have agreeing cor-
respondence. We note SP+LG alone would be difficult to
annotate correspondence, since correspondences could po-
tentially belong to a dynamic object or be incorrect.
Non-registered predicted frames are replaced by nearby
frames, while non-registered sequences are replaced by the
identity matrix. Both can result in identity relative pose
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Figure 4. Additional Lightspeed videos. High resolution (2560, 1440) sequences span indoor and outdoor; light and dark; close-up
dynamic object and far-away dynamic object; forward and backward movement.

across image pairs. Identity relative pose results in a singu-
lar fundamental matrix, used to compute reprojection error.
In this case, instead of reprojection error measuring distance
to an epipolar line, distance is computed to the location of
the ground truth corresponding point in the opposite image.
This can be thought of transforming the correspondence by
the identity. We experimented alternatively adding small
random perturbations to enable computation of the funda-
mental matrix, but this resulted in larger error.

Baselines and ablations. We find across methods, SfM oc-
casionally fails on challenging Internet video on the same
sequence on which it may succeed. To better analyze per-
formance difference between methods, we therefore repeat
failed SfM; defined as registering less than 80% of frames.

Results. In addition to superior pose estimates, we observe
our pose estimation method is faster than ParticleStM [25].
On an A40 GPU, it averages 11 minutes, while ParticleStM
averages 44 minutes, using the same 10 video samples be-
tween 48 and 93 frames, with mean length 62.6 (all at
12fps). The speed difference is a result of ParticleSfM’s re-
liance on propagated dense optical flow for tracking, requir-
ing expensive flow matching to create point tracks. These
dense points also result in more correspondences, slowing
StM. Ours takes about 3.3 minutes for tracking, 4.2 minutes
for masking and 3.5 minutes for SfM. ParticleSfM takes 26
minutes for tracking, 2 for masking and 16 for SfM. Our
quality pose estimates show such dense correspondence is
not necessary. A different setup can provide faster speed
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Panda-Test correspondence annotation.
Point+LightGlue [5, 13] correspondences (green points and line) provide precision. We search for SP+LG matches within 10 pixels

Figure 5.

of human correspondences on 720p frames (

across methods. On an A100 40G GPU in a different infra,
we saw our inference in as fast as 4 minutes for a video.

On an A100 40G GPU, filtering one video takes about
0.2min for each of Hands23, flow, focal, VLM, and distort;
tracking takes 0.8min and masking takes 1.4min. Filtering
is performed sequentially to reduce compute and cost.

Fine-tuning experiment. We compare fine-tuning
DUSt3R [21] on DynPose-100K against MonST3R [24].
To do so, we follow a similar experimental setup to
MonST3R, replacing synthetic data used with DynPose-
100K. For depth supervision, we use pixelwise predictions
from Depth-Pro [1]. We use median depth values to rescale
DynPose-100K translations to meters. We use only 2K
of the 100K videos from DynPose-100K for this experi-
ment, finding it produced sufficient performance and high-
lighted supervision efficiency. We hypothesize using the
full dataset could improve performance. We remove videos
not containing all registered frames. We also remove those
with high reprojection error to improve pose accuracy, in-
spired by Table 2. We use a reprojection threshold of 1.37,
chosen to provide a balance of quantity and quality at about
1.2K videos for training. We train for 250K iterations with
batch size 8, which takes about 4 days on 2 A40 GPUs.

Human matches (

) provide coarse accuracy while Super-

). If no match exists, we do not include the match in testing.

4. DynPose-100K: Dataset Analysis Additional
Results

We visualize DynPose-100K filtering process and output.

4.1. Filtering Evaluation on Panda-Test

Figure 6 breaks down scores for high and low scoring ex-
amples on Panda-Test. The minimum average score for
DynPose-100K is 0.91, meaning all filters must score rel-
atively high. Low scoring examples may still have some
filters with high scores. This is consistent with the Selec-
tion Process from §3.1 in the main paper: only one reason
for exclusion is needed for a video to be considered non-
target. This also helps visualize why each single filter is
not sufficient: R1C6 shows the VLM may not catch zoom-
in, R2C2 shows Hands will not handle shot change, R2C5
shows masking will not handle static cameras.

4.2. Dataset Overview

Figure 7 displays sample videos and pose annotations on
DynPose-100K. These videos are diverse and face chal-
lenges for pose annotation, including varied lighting, move-
ment and apparent dynamic object sizes. Despite this chal-
lenge, pose annotations are of high quality.
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Figure 6. Panda-Test filtering score samples. High scoring (top), moderate scoring (middle) and low scoring (bottom) examples from
Panda-Test. Ground Truth 1 indicates suitable video, O is unsuitable. The minimum average score in DynPose-100K is 0.91, meaning all
filters must produce a relatively high score. G indicates correct classification based on 0.91 threshold; R are sample failure cases. Reasons
for exclusion: R1C6: zoom-in, R2C1: static camera, R2C2: shot change, R2C4: not real, R2C5: static camera, R2C6: distortion, R3C1:
ambiguous frame of ref, R3C2-C3: not real, R3C4-CS5: insufficient clear static region, R2C6: long focal.



Figure 7. Sample videos on DynPose-100K. DynPose-100K collects a diverse set of videos with challenging trajectories and dynamics.
It pairs these videos with high-quality pose annotations. The dataset is best viewed via the Supplemental video.

DROID-SLAM  DUSt3R MonST3R LEAP-VO COLMAP CM + Mask  ParticleStM Ours Ground Truth

Fail

Figure 8. Additional comparison on Lightspeed. Ours has more accurate poses than baselines in challenging settings. Top: a dynamic
object is static relative to the camera and of similar color to the background. Bottom: dynamic object quickly moves by at night while
camera moves and turns. In both cases, baselines are either incorrect or do not have continuous, smooth trajectories. Top: MonST3R
curves upward towards the end, while COLMAP+Mask has a large turn.



Reprojection error  %Datat % <51 % <10t Mean | Reprojectionerror % <57 % <101t % <307 Mean|
Full test set 100. 72.2 84.4 5.76 Ours 72.2 84.4 98.9 5.76
Reproj. err.< 1.37 71.1 78.1 84.4 5.04 + CoTracker [11] 66.7 78.9 97.8 7.11
Reproj. err.< 1.18 41.1 81.1 83.8 4.49

Reproj. err.< 1.00 244 81.8 86.4 3.85 Table 3. Tracking ablation on Panda-Test. CoTracker produces

Table 2. Identifying high-quality poses. Reprojection error is
effective in identifying low error videos in Panda-Test. It is use-
ful to produce high-quality subsets of DynPose-100K e.g. we use
reprojection error to help filter data to fine-tune DUSt3R (§ 3.2).

DynPose-100K rotation distribution DynPose-100K rotation distribution
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Densit
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Figure 9. Dataset statistics. Top left: distribution of final hor-
izontal rotation. Top right: distribution of final vertical rotation.
Bottom left: distribution of sequential sum of absolute value of
horizontal rotation. Bottom right: distribution of sequential sum
of absolute value of vertical rotation.

4.3. Reprojection Error Analysis

Reprojection error is produced during SfM and is saved for
each video in DynPose-100K. It can be used to filter high-
quality poses. Table 2 reports pose accuracy results of the
proposed method before and after filtering by videos with
low reprojection error. Retaining only videos with low re-
projection error reduces error significantly. Future users of
DynPose-100K may consider filtering by reprojection error.

4.4. Dataset Rotation Analysis

Figure 9 shows video trajectory rotation statistics. Horizon-
tal rotations are particularly diverse, often ending over 30
degrees from the initial rotation with over 75 degrees of to-
tal horizontal rotation, measured sequentially.

5. Additional Pose Results
We show additional results on Lightspeed and Panda-Test.

5.1. Pose Evaluation on Lightspeed

Figure 8 displays additional comparisons on Lightspeed.
Both examples show all alternatives struggle, while Ours
can handle challenges in a large dynamic object that is static
relative to the camera (top) and of a dynamic object spin-
ning and kicking up dust (bottom).

10

overall worse camera pose estimates than BootsTAP.

Reprojectionerror % <51 % <101 % <307 Mean|

Ours 72.2 84.4 98.9 5.76
- Semantic 65.6 86.7 97.8 8.14
- Object Interaction 72.2 85.6 97.8 5.79
- Motion 67.8 81.1 94.4 7.95
- Propagation 68.9 86.7 94.4 6.93

Table 4. Masking ablations on Panda-Test. Each component is
important to final performance: any component removed reduces
results on average.

Reprojectionerror % <51 % <101 % <301 Mean|
Ours 72.2 84.4 98.9 5.76
+ GLOMAP [17] 81.1 90.0 95.6 8.86

Table 5. Bundle adjustment ablation on Panda-Test. GLOMAP
offers competitive precision, but Ours has lower mean error.

5.2. Pose Evaluation on Panda-Test

Figure 11 shows additional comparisons to baselines on
Panda-Test. Ours best handles challenges in large dynamic
objects and large variations in appearance and lighting. Fig-
ure 10 shows additional pose results on Panda-Test. Ours
produces reasonable trajectories on a wide variety of videos,
agreeing with quantitative results.

Tracking ablation. Table 3 compares our tracking to alter-
native method CoTracker [11]. We find our tracking pro-
duces better pose accuracy.

Masking ablation. Table 4 displays each of the four com-
ponents to masking. Each component is important to final
performance: any component removed reduces results on
average. This is also apparent in Figure 2.

Bundle adjustment ablation. Table 5 compares Ours to
alternative bundle adjustment method GLOMAP [17]. We
find GLOMAP improves precision, but Ours, using Theia-
SFM [19], has better mean error. We note in the GLOMAP
paper the method does not outperform Theia-SfM across
all scenes. Further, the paper measures percentage accu-
racy within a threshold; our finding on Internet video is
GLOMAP failures tend to be more severe than Theia-SfM,
which is most clearly reflected in mean error.



Figure 10. Additional poses on Panda-Test. Ours produces sensible poses on a variety of videos, further validating quantitative results.

DROID-SLAM

2t
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Figure 11. Additional comparison on Panda-Test. Ours best handles challenging lighting and large dynamic objects (top), and handling
scale variation resulting from moving very close to objects (bottom). In the top sequence, Our trajectory is accurate, while alternatives do
not reflect the consistent, fast and mostly straight backward movement of the camera. COLMAP and COLMAP+Mask register most of the

bottom sequence, but miss the movement at the end of the trajectory (down and to the left).
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