
StarVector: Generating Scalable Vector Graphics Code from Images and Text

Supplementary Material

In the following sections, we provide additional details
on the datasets used in this paper, present further experi-
ments, and describe our baselines in detail. We also dis-
cuss the StarVector architecture, its training process, and the
method for sampling SVG code from the model. Addition-
ally, we provide more insights into SVG-Bench, including
the proposed datasets and the different baselines within the
evaluation setup. Finally, qualitative results are presented to
showcase the strengths and limitations of our foundational
model.

8. SVG Datasets in SVG-Bench
Here we describe available SVG datasets in the recent lit-
erature. We extend our description of the datasets used for
training and evaluating StarVector and other baselines. Ear-
lier SVG datasets proposed in the literature (mainly datasets
of emojis and fonts) were not easily accessible due to bro-
ken URLs and no direct entry point. Therefore, we provide
them as part of SVGBench for easy reproducibility. We in-
troduce splits for train, validation, and testing. The train set
is used to optimize the parameter weights of the network.
The validation is used for tuning sampling hyperparameters,
and the test is used for evaluation. Our model can handle up
to 8k context tokens. Therefore, our datasets only consider
examples with up to 8,192 tokens. See Table 5 for a com-
plete description of the datasets. See Figures 6, 7, 8 for
ground truth examples of the test sets of SVG-Bench.

8.1. Datasets with Simplified SVGs.
We create simplified versions of our four main datasets, i.e.
emojis, icons, fonts, and SVG-Stack. This is done because
DeepSVG [14] requires a simplification of the SVG in its
input. The simplification consists of eliminating complex
primitives and using only vector paths. Also, color and
shapes are abstracted only to use simple line strokes.

8.2. Creating the SVG-Fonts Dataset
To construct the SVG-Font dataset, we replicate the pro-
cedure described in SVG-VAE [47]1, which provides a list
of public URLs containing open font packages. We down-
load these packages, excluding any with broken URLs. The
TTF files are then converted to SFD format, and we fur-
ther use InkScape2 to convert them into SVG code. Sam-
ples from the test set are shown in Figure 7 (bottom-left).
These samples contain only path elements and represent a

1https://github.com/magenta/magenta/tree/main/
magenta/models/svg_vae

2https://inkscape.org/

Server_Response

MegaDatabase_Money query
MegaDatabase_Empty balance

Server_Request

List<Server_Response> query

SVG-Diagrams

wph

impbid

wff ph

wps

|- (ph -> (ps <-> ch))

wff ps

wch wff ch

impcon4bid.1

|- (ph -> (ps -> ch))

con4d

wph
wff ph

wps

|- (ph -> (ch -> ps))

wff ps

wch

wff ch

impcon4bid.2

|- (ph -> (-. ps -> -. ch))

Space Used

101-250 GB (9.2%)
21-50 GB
(11.8%)

1-20 GB (58.0%)

51-100 GB (6.7%)
251-500 GB
(5.0%)

Others
(9.2%)

HH33CC CHCH33

HH33CC CHCH33

CHCH33

HH22NN

HH22NN

NN

NN

NN

HOHO

OHOH

OHOH

OHOH

OO

OHOH

HH

HH

HH HH

HH

«U»
ssas.model_json - U

databasename : (nvarchar(128))

«V»
ssas.model_json_10 - V

«V»
ssas.model_json_20 - V

«V»
ssas.model_json_32_relationships - V

databasename : (nvarchar(128))
relationships_name : (nvarchar(500))

The diagram is interactive and contains links.

Accordion title

Accordion content

Collapsed accordion

Collapsed accordion

Open Sans Semibold 16px

Open Sans Regular 16px

Open Sans Light Italic 16pxThis is the first accordion Additional information

parse_float

GPGGASentenceParser
::parse

GPRMCSentenceParser
::parse

PSTI030SentenceParser
::parse

PSTI032SentenceParser
::parse

Printer Vendor

Samsung Elect...
(6.8%)

Brother Indus...
(13.6%)

Canon
(18.2%)

Seiko Epson (4.5%)

Others (20.5%)

Hewlett-Packard
(36.4%)

06 months

2012 2014 2016 2018

70.0%

72.5%

75.0%

77.5%

80.0%

82.5%

Fully vaccinated six month olds

_mmheap::bubble_up

_mmheap::bubble_up_max

_mmheap::bubble_up_min

_mmheap::has_parent

_mmheap::min_level

_mmheap::parent

_mmheap::has_gparent

_mmheap::gparent

biosample

organismal entity

is_a

thing with taxon

uses id name category related to node property iri full name description systematic synonym has phenotype in taxon

Figure 6. SVG Diagrams examples. These are ground truth SVG
examples from the test set. They are presented as SVG, showing
the challenge of understanding intricate structures and small texts,
with images of variate aspect ratios.

narrow range of images, each consisting of a single char-
acter per image, making them an ideal test case for SVG
generation [13, 14, 47].

8.3. Creating SVG-Diagrams
We introduce a novel SVG dataset, SVG-Diagrams, which
focuses exclusively on diagrams, graphs, workflows, and
other designs characterized by discrete elements such as
boxes, arrows, and text. To construct this dataset, we fil-
tered all SVGs containing the text element. Table 5 provides
detailed statistics about the dataset, and Figure 6 illustrates
test samples from SVG-Diagrams.

This new benchmark for diagram generation is highly
relevant, as it addresses a use case that cannot be tackled by
traditional image-processing models or methods limited to
the path primitive. Only approaches capable of leveraging
SVG code can fully exploit the use of primitives to generate
such structured designs effectively.

8.4. Generating Synthetic Captions on SVG-Stack
To generate textual instructions for vector images, we pro-
cess SVG-Stack images using visual captioning models.

https://github.com/magenta/magenta/tree/main/magenta/models/svg_vae
https://github.com/magenta/magenta/tree/main/magenta/models/svg_vae
https://inkscape.org/

Table 5. Summary of datasets. We offer a summary of statistics about the datasets used in our training and evaluation experiments. This
datasets are included in SVG-Bench. The subscript sim stands for the simplified version of the dataset, as required by some baselines.

Dataset Train Val Test Source Token Length SVG Primitives Annotation
SVG-Stack 2,1M 108k 5,7k

TheStack [35]
1,822 ± 1,808 All Caption

SVG-Stacksim 601k 30,k 1,5k 2k ± 918 Vector path Caption
SVG-Diagrams - - 472 3,486 ± 1,918 All Caption

SVG-Fonts 1,8M 91,5k 4,8k Glypazzn [47] 2,121 ± 1,868 Vector path Font type
SVG-Fontssim 1,4M 71,7k 3,7k 1,722 ± 723 Vector path Font type

SVG-Emoji 8,7k 667 668 OpenMoji, NotoEmoji, TweMoji 2,551 ± 1,805 All Class
SVG-Emojisim 580 57 96 2,448 ± 1,026 Vector Path Class

SVG-Icons 80,4k 6,2k 2,4k DeepSVG [14] 2,449 ± 1,543 Vector path -
SVG-Iconssim 80,435 2,836 1,277 2,005 ± 824 Vector path -

SVG-FIGR ‡ 270k 27k 3k IconShop [94] 5,342 ± 2,345 Vector path Class, Caption

This approach provides a textual description for each im-
age, enabling us to fine-tune our model to follow textual
instructions. For this task, we leverage off-the-shelf AI cap-
tioners, specifically BLIP2 [41] and Llava [45].

Through prompt engineering, we guide these models in
performing the captioning task with reasonable quality. The
prompt we used is shared in Prompt 8.4. After automati-
cally captioning all SVG samples in SVG-Stack, we com-
pute the CLIP Score for the text-image pairs generated by
the two models—producing two captions per image. Using
a CLIP Score threshold of 30, we filter out text captions that
fall below this threshold.

Prompt 1. Utilized with BLIP2 and Llava for SVG
Captioning: You are a helpful assistant. Your task
is to caption the input images with a concise and
clear description that represents what are the con-
tents of the image.

8.5. Data Augmentation for SVG
We introduce several data augmentation operations on
SVGs that aim to perform minor modifications to the SVG
code and rasterize it to get a new sample while training.
We include rotation, color, and curve noise. We evaluate
this setting on datasets with fewer samples, namely SVG-
Emoji and SVG-Icons, as the other two datasets are large
enough to do not overfit. Results are shown in Table 8.
Both datasets display improvements using these augmen-
tations. We see a substantial uplift for SVG-Emoji, which
has limited training data.

We introduce several augmentation operations to SVGs
to apply slight changes that help our model learn to generate
more precise results — for instance, being able to capture

exact colors from the image and encode them in hexadec-
imal code to insert it in the fill attribute of the SVG el-
ement. Applying rotations or adding noise to the curve’s
control points helps the model learn to precisely capture the
position of the edges or thickness of the stroke.

We perform random rotations in an angle range. We per-
form color changes by first parsing the element’s color using
the fill attribute and adding slight white Gaussian noise
to the RGB values. We propose curve noise by injecting
a small Perlin [80] noise into the control points in Bézier
curves. We also experimented with adding Gaussian noise,
which resulted in much less natural results. We apply this
noise by uniformly sampling a scalar from the interval be-
tween 0.01 and 0.05 and use it to scale the noise.

We apply these augmentations directly on the SVG code,
which involves parsing the XML code and accessing the at-
tributes and arguments of the primitives defined. We use
the libraries BeautifulSoup3 and SvgPathTools4.
Some primitives are simplified using our augmentations.

9. SVG Methods and Baselines

Here, we describe the previous methods and baselines
used to compare StarVector’s performance in Image-to-
SVG and Text-to-SVG generation tasks. We consider pre-
vious deep learning-based methods and image-processing
methods. We evaluate the baselines with publicly available
code in our proposed setup.

9.1. Image-to-SVG Baselines
We reproduce all previous approaches on our proposed
SVG-Bench benchmark, as the available results stem from
an unclear version of the fonts, emojis, and icons datasets.
For theImage-to-SVG task, we consider several baseline

3https://www.crummy.com/software/BeautifulSoup/
bs4/doc/

4https://github.com/mathandy/svgpathtools

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://github.com/mathandy/svgpathtools

SVG-Stack

SVG-Fonts

SVG-Emoji

SVG-Icons

RAM Size

4.01-8.0 GB
(16.9%)

8.01-16.0 GB
(18.0%)

16.01-24.0 GB (15.7%)

64.01-256.0 GB
(6.7%)

Others
(7.9%)

32.01-64.0 GB (34.8%)

C M
KY

Figure 7. Datasets in SVG-Bench. Ground truth test examples from the test sets of SVG-Stack, SVG-Emoji, SVG-Fonts, and SVG-
Icons. We show SVG images.

methods across deep learning and image processing ap-
proaches.

In the deep learning methods category, we start with

DeepSVG[14], Im2Vec[67], and LIVE[50], using the of-
ficial implementations with the hyperparameters proposed
by the authors, and applying their pre- and post-processing

SVG-Stack-Simple SVG-Emoji-Simple

SVG-Fonts-simple

SVG-Icons-Simple

Figure 8. Simplified Datasets in SVG Bench. Ground truth test examples from the simplified test sets of SVG-Stack, SVG-Emoji,
SVG-Fonts, and SVG-Icons. We show SVG images.

code as required. Additionally, we incorporate the recent
GPT-4 Vision[56], which is capable of processing images
as input and generating corresponding SVG code as output.

For the image processing-based methods, which do not

rely on data-driven learning, we consider VTracer[87],
Autotracer[51], and Potrace [59], running them on the test
sets of SVG-Bench.

Table 6. Summary of SVG Methods. We compare SVG generation methods based on Image Processing, Latent Variable, Differentiable
Rendering, and Multimodal LLM, evaluating their performance in SVG Generalization and SVG Generation Tasks. The SVG Generalization
column shows whether a model generates diverse SVG types (e.g., icons, logos, complex shapes) with ✓ or specializes in a subtype (e.g.,
emojis, fonts) with ✗. The SVG Primitive Coverage column indicates access to all SVG primitives. The table also evaluates Image
Vectorization, Text to SVG, and Diagram Generation, using ✓ for support and ✗ for limitations. ∗DeepSVG requires modifications for
image input.

SVG Coverage and Generalization SVG Generation Tasks
Method Type Model Input Train

Supervision
SVG

Generalization
SVG Primitive

Coverage
Image

Vectorization
Text to SVG Diagram

Generation

Image Processing
Vtracer Image Image ✓ ✗ ✓ ✗ ✗
Autotrace Image Image ✓ ✗ ✓ ✗ ✗
Potrace Image Image ✓ ✗ ✓ ✗ ✗

Latent Variable
Im2Vec Image Image ✗ ✗ ✓ ✗ ✗
DeepSVG SVG Vector ✗ ✗ ✓∗ ✗ ✗
SVGFormer SVG Vector ✗ ✗ ✓ ✗ ✗

Diff. Rendering

DiffVG Image Image ✓ ✗ ✓ ✗ ✗
LIVE Image Image ✓ ✗ ✓ ✗ ✗
SAMVG Image, Text Image ✓ ✗ ✓ ✗ ✗
SVGDreamer Image, Text Image ✓ ✗ ✗ ✓ ✗

Multimodal LLM

GPT-4 V Image, Text SVG ✓ ✓ ✗ ✓ ✓
CodeLlama Image SVG ✓ ✓ ✗ ✓ ✓
IconShop Text SVG ✗ ✗ ✗ ✓ ✗
StarVector Image, Text SVG ✓ ✓ ✓ ✓ ✓

Autotrace5 [51] is a tool designed for converting images
to vector graphics, similar to Potrace. It supports various
input formats and can output to several vector formats. Au-
totrace’s key feature is its ability to transform pixelated im-
ages into smooth, scalable vectors, making it ideal for up-
grading images for various applications without losing de-
tail or clarity. Our experiments leverage the Python bind-
ings6 implementation of AutoTrace.

Potrace7 [59] is a utility designed to convert images into
refined, scalable vector graphics. It accepts input in vari-
ous bitmap formats and outputs to a selection of vector for-
mats. This functionality is particularly valuable for generat-
ing SVG of scanned imagery, such as logos and handwritten
documents. We employ a Python library8, which acts as a
wrapper around the original C implementation of Potrace.

VTracer9 [87] is an image processing algorithm to con-
vert images to SVGs. This 3-step pipeline algorithm relies
on the hierarchical clustering of images, which are traced
into vectors. First, pixels are converted into paths and then
simplified into polygons. In the last step, polygons are
smoothened and approximated with a Bezier curve fitter.
We use the Python library10 for experiments, a wrapper over
the Rust implementation. Similar to Im2Vec, we scale down

5https://potrace.sourceforge.net/
6https://github.com/lemonyte/pyautotrace
7https://potrace.sourceforge.net/
8https://github.com/tatarize/potrace
9https://github.com/visioncortex/vtracer

10https://github.com/etjones/vtracer_py

all the images to 128X128 resolution. We use all the default
values for the image processing engine, which generates a
multi-colored SVG.

Im2Vec [67] uses an end-to-end VAE, trained using only
image supervision to produce vector graphics. The input
rasterized image is encoded to a ‘global’ latent vector and
passed to an RNN to produce latent code for each path. The
path decoder decodes these codes into Bezier paths to gen-
erate the output SVG. We used the publicly available code11

to report the results.
We scaled all the images to 128 × 128 resolution to be

compatible with the Im2Vec model. We used a learning rate
of 5×10−4 and a batch size of 8. We implemented a custom
post-processing operation for converting the vector parame-
ters obtained during Im2Vec inference to obtain compilable
SVG code.

LIVE, (Layer-wise Image Vectorization) [50] is a method
for progressively generating SVGs that closely fit a given
raster image by recursively adding and optimizing closed
vector paths. Using a differentiable renderer (based on Dif-
fVG [43]), LIVE enables direct optimization of paths under
raster image supervision while controlling shape complex-
ity by adjusting the number of path segments. It introduces
component-wise path initialization, identifying key visual
components to ensure efficient topology extraction and min-
imize redundant shapes. LIVE achieves high-quality recon-
structions with fewer paths, reducing SVG file size com-

11https://github.com/preddy5/Im2Vec

 https://potrace.sourceforge.net/
https://github.com/lemonyte/pyautotrace
https://potrace.sourceforge.net/
https://github.com/tatarize/potrace
https://github.com/visioncortex/vtracer
https://github.com/etjones/vtracer_py
https://github.com/preddy5/Im2Vec

pared to other approaches. Nevertheless, its test time op-
timization approach makes it time-consuming during gen-
eration. We utilized their official open-source implementa-
tion 12 with the proposed hyperparameters. This method re-
quires to define a constant number of paths; the more paths
defined, the more accurate. We have performed an abla-
tion on the number of paths (see Table 3) and found that
paths=32 is an optimal value that brings good visual results.
However, it takes more than 10 minutes to generate a single
SVG, which makes it slow for a professional use case.

DiffVG [43] is a landmark in vector graphics research, pi-
oneering deep learning-based methods with the first differ-
entiable vector graphics rasterization pipeline. By leverag-
ing a combination of anti-aliasing techniques and gradient-
based optimization, DiffVG ensures differentiability. Un-
like methods relying on non-differentiable curve-to-mesh
conversions, DiffVG employs a forward-backward raster-
ization process, where the forward pass generates anti-
aliased images and the backward pass computes gradients
with respect to vector graphic parameters. Using the of-
ficial implementation13 and proposed hyperparameters, we
ablate the number of paths, finding paths=60 to be optimal.
DiffVG balances versatility and performance, achieving ap-
proximately 30 seconds per generation while excelling in
differentiable rendering tasks.

DeepSVG [14] was introduced as a hierarchical path-based
VAE encoder-decoder transformer architecture. Here, input
paths are encoded separately using a path encoder and ag-
gregated using a second encoder to produce a latent vector.
The decoder uses this latent vector to output the path rep-
resentations, which provide actual draw commands and ar-
guments. We used the open-source code14 to reproduce the
results on different datasets. However, since the DeepSVG
framework only allows simplified SVGs, we report results
on the ‘simplified’ test sets (see Table 1).

This model can only handle simplified SVGs composed
of simple line strokes and splines (see examples in Fig-
ure 9). Further, it can only process SVGs with eight groups
(i.e., groups of shapes or parent nodes) and vector paths of
at most 30 commands. To reproduce the DeepSVG base-
line, we use the original hyperparameters, including a learn-
ing rate of 1e − 3 and a number of epochs of 50. We use
a batch size of 200, except for the smaller emoji dataset,
where we experiment with a batch size of 50.

12https://github.com/ma-xu/LIVE
13https://github.com/BachiLi/diffvg
14https://github.com/alexandre01/deepsvg

GPT-4 Vision. We use GPT-4V [56] by inserting an image
and zero-shot prompting to generate SVG code. Here, we
show how one can use prompt engineering [10, 11, 56] to
condition the model to generate executable SVG code rep-
resenting the given image. Prompt 9.2 was used for this
endeavor. We use the OpenAI library15.

Figure 9. Image-to-SVG results on simplified SVG-Icons and
SVG-Fonts test set.

Figure 10. Image-to-SVG results on SVG-Icons test set.

Figure 11. Image-to-SVG results on SVG-Stack test set. We show
cherry-picked failure examples of StarVector.

15https://platform.openai.com/docs/libraries

https://github.com/ma-xu/LIVE
https://github.com/BachiLi/diffvg
https://github.com/alexandre01/deepsvg
https://platform.openai.com/docs/libraries

Figure 12. Image-to-SVG results on SVG-Emoji test set. We
show cherry-picked failure examples of StarVector.

9.2. Text-to-SVG Generation Baselines
For the Text-conditioned SVG generation task, we select
baselines based on works that contain reproducible method-
ologies in public datasets or public code repositories. We
reproduce baseline models from their official repositories,
respecting the proposed hyperparameters.

CodeLlama, [82, 83] has shown great success in general
coding benchmarks. To the best of our knowledge, CodeL-
lama has seen SVGs during training. Hence, it is reason-
able to consider it a strong baseline for text-conditioned
SVG generation. We use Anyscale endpoints16 to generate
CodeLlama results.

GPT 4, is a closed source LLM that shows state-of-the-art
results in many NLP sceneraios [11, 55, 71]. We evaluate
GPT-4’s 0-shot ability in generating SVGs when prompted
with text inputs. We use OpenAI API17 to generate results
for GPT-4 in the 0-shot setting. Prompt 9.2 was used for the
Text-to-SVG task.

Prompt 2. Used on GPT4-V VLM for Image-
to-SVG Translation: You are a helpful assistant.
Your task is to help researchers write SVG code to
reconstruct the provided image as accurately as pos-
sible. You should also provide a caption for the im-
age. You are dedicated to solving the task of Image-
to-SVG conversion for a robust system. Therefore,
you must always respond with the best SVG code
you can create. Feel free to use multiple paths to
generate a compliant SVG code within a maximum
of 8000 tokens. You should present the SVG code
that best reconstructs the input image enclosed in
triple quotes.

16https://app.endpoints.anyscale.com/
17https://platform.openai.com/docs/guides/gpt

Prompt 3. Used on GPT4 and CodeLlama for
Text-to-SVG Generation: You are a helpful assis-
tant assisting researchers in generating SVG code
from textual descriptions. You will be provided
with details to guide your SVG creation. Your task
is to write SVG code that accurately represents the
given textual information to the fullest extent possi-
ble. You are committed to solving the task of SVG
generation for a robust system, so always strive to
produce the best SVG code you can. Feel free to
use multiple paths and any necessary shapes, colors,
or lines to generate compilable SVG code within a
maximum of 9000 tokens. The goal is to ensure
the resulting SVG, when rasterized, best represents
the described content. Respond only with the SVG
code, enclosed in triple quotes, that directly corre-
sponds to the provided textual description. Avoid
adding any explanation or commentary.

IconShop IconShop [94] uses a transformer-based archi-
tecture to encode path commands and learn to model SVG
path sequences autorregressively. It has shown excellent re-
sults in simplified icon scenarios and provides a good so-
lution to Text-to-SVG generation by extending the FIGR-
SVG dataset with captions. We have access to their dataset
and original splits and have trained our model on that data
using a pre-trained checkpoint (trained on SVG-Stack). We
have extracted the results from IconShop and included them
here to compare our method.

10. Additional Experiments and Results

10.0.1. Image-to-SVG Results

We show additional Image-to-SVG results from StarVector.
Figures [13 - 18] show substantial qualitative samples gen-
erated by StarVector on all the proposed datasets. All results
are computed in the test sets. We can observe the weak-
nesses and strengths of our model. Simplified datasets (Fig-
ures 16) are near-perfectly converted to SVG. In the case of
icons, in Figure 18, sometimes the model runs out of SVG
code tokens, and the image is incomplete. Results on SVG-
Emoji 17 show impressive performance in estimating the
shape’s color and semantics. However, it lacks fine-grained
and accurate positioning of objects, i.e., in some examples,
the model loses track of the coherent position and form of
shapes. These problems result from insufficient emoji sam-
ples, i.e., less than 10,000 training examples. This prob-
lem can be alleviated by scaling up the current model in the
number of parameters (currently 1.4 billion), training data
for pre-training, and computing resources.

https://app.endpoints.anyscale.com/
https://platform.openai.com/docs/guides/gpt

Ground
truth Generated

Ground
truth Generated

Ground
truth Generated

Ground
truth Generated

Ground
truth Generated

Ground
truth Generated

Ground
truth Generated

Ground
truth Generated

Display Manager

SDDM (42.9%)

Unknown (51.2%)

LightDM
(3.6%)
GDM (2.4%)

Display Manager

SDDM (42.9%)

Unknown (51.2%)

LightDM
(3.7%)
GDM (2.4%)

Figure 13. Image-to-SVG Results on SVG-Stack. We present vectorizations of StarVector-1B on the test set of SVG-Stack. Left is input
raster image, right is the SVG image (in SVG format).

Input Image StarVector-8B LIVE VTracer PoTrace AutoTrace

DinoScore: 0.9871
MSE: 0.0075

DinoScore: 0.8325
MSE: 0.0019

DinoScore: 0.8750
MSE: 0.0026

DinoScore: 0.7806
MSE: 0.0062

DinoScore: 0.8243
MSE: 0.0034

DinoScore: 0.9941
MSE: 0.0052

DinoScore: 0.7835
MSE: 0.0026

DinoScore: 0.8687
MSE: 0.0033

DinoScore: 0.9006
MSE: 0.0100

DinoScore: 0.7814
MSE: 0.0040

DinoScore: 0.9988
MSE: 0.0071

DinoScore: 0.8420
MSE: 0.0069

DinoScore: 0.9195
MSE: 0.0119

DinoScore: 0.9014
MSE: 0.0446

DinoScore: 0.9060
MSE: 0.0159

DinoScore: 0.9960
MSE: 0.0150

DinoScore: 0.8670
MSE: 0.0060

DinoScore: 0.8624
MSE: 0.0066

DinoScore: 0.8014
MSE: 0.0094

DinoScore: 0.7757
MSE: 0.0082

DinoScore: 0.9887
MSE: 0.0532

DinoScore: 0.8513
MSE: 0.0159

DinoScore: 0.7943
MSE: 0.0196

DinoScore: 0.8560
MSE: 0.0842

DinoScore: 0.7922
MSE: 0.0309

DinoScore: 0.9974
MSE: 0.0210

DinoScore: 0.7979
MSE: 0.0083

DinoScore: 0.8366
MSE: 0.0104

DinoScore: 0.8128
MSE: 0.0147

DinoScore: 0.8001
MSE: 0.0116

DinoScore: 0.9891
MSE: 0.0093

DinoScore: 0.8584
MSE: 0.0035

DinoScore: 0.8542
MSE: 0.0049

DinoScore: 0.8462
MSE: 0.0056

DinoScore: 0.8987
MSE: 0.0058

DinoScore: 0.9690
MSE: 0.0316

DinoScore: 0.8433
MSE: 0.0166

DinoScore: 0.8202
MSE: 0.0164

DinoScore: 0.7061
MSE: 0.0243

DinoScore: 0.8119
MSE: 0.0209

DinoScore: 0.9980
MSE: 0.0085

DinoScore: 0.9050
MSE: 0.0049

DinoScore: 0.9099
MSE: 0.0082

DinoScore: 0.9012
MSE: 0.1465

DinoScore: 0.9400
MSE: 0.0048

DinoScore: 0.9662
MSE: 0.0446

DinoScore: 0.8076
MSE: 0.0216

DinoScore: 0.8401
MSE: 0.0222

DinoScore: 0.9015
MSE: 0.0277

DinoScore: 0.8374
MSE: 0.0293

DinoScore: 0.9986
MSE: 0.0055

DinoScore: 0.9493
MSE: 0.0022

DinoScore: 0.8036
MSE: 0.0043

DinoScore: 0.8336
MSE: 0.0102

DinoScore: 0.8010
MSE: 0.0061

DinoScore: 0.8929
MSE: 0.0994

DinoScore: 0.9115
MSE: 0.0490

DinoScore: 0.8773
MSE: 0.0899

DinoScore: 0.9831
MSE: 0.0692

DinoScore: 0.9308
MSE: 0.0686

DinoScore: 0.9871
MSE: 0.0075

DinoScore: 0.8325
MSE: 0.0019

DinoScore: 0.8750
MSE: 0.0026

DinoScore: 0.7806
MSE: 0.0062

DinoScore: 0.8243
MSE: 0.0034

DinoScore: 0.9941
MSE: 0.0052

DinoScore: 0.7835
MSE: 0.0026

DinoScore: 0.8687
MSE: 0.0033

DinoScore: 0.9006
MSE: 0.0100

DinoScore: 0.7814
MSE: 0.0040

DinoScore: 0.9988
MSE: 0.0071

DinoScore: 0.8420
MSE: 0.0069

DinoScore: 0.9195
MSE: 0.0119

DinoScore: 0.9014
MSE: 0.0446

DinoScore: 0.9060
MSE: 0.0159

DinoScore: 0.9960
MSE: 0.0150

DinoScore: 0.8670
MSE: 0.0060

DinoScore: 0.8624
MSE: 0.0066

DinoScore: 0.8014
MSE: 0.0094

DinoScore: 0.7757
MSE: 0.0082

DinoScore: 0.9887
MSE: 0.0532

DinoScore: 0.8513
MSE: 0.0159

DinoScore: 0.7943
MSE: 0.0196

DinoScore: 0.8560
MSE: 0.0842

DinoScore: 0.7922
MSE: 0.0309

DinoScore: 0.9974
MSE: 0.0210

DinoScore: 0.7979
MSE: 0.0083

DinoScore: 0.8366
MSE: 0.0104

DinoScore: 0.8128
MSE: 0.0147

DinoScore: 0.8001
MSE: 0.0116

DinoScore: 0.9891
MSE: 0.0093

DinoScore: 0.8584
MSE: 0.0035

DinoScore: 0.8542
MSE: 0.0049

DinoScore: 0.8462
MSE: 0.0056

DinoScore: 0.8987
MSE: 0.0058

DinoScore: 0.9690
MSE: 0.0316

DinoScore: 0.8433
MSE: 0.0166

DinoScore: 0.8202
MSE: 0.0164

DinoScore: 0.7061
MSE: 0.0243

DinoScore: 0.8119
MSE: 0.0209

DinoScore: 0.9980
MSE: 0.0085

DinoScore: 0.9050
MSE: 0.0049

DinoScore: 0.9099
MSE: 0.0082

DinoScore: 0.9012
MSE: 0.1465

DinoScore: 0.9400
MSE: 0.0048

DinoScore: 0.9662
MSE: 0.0446

DinoScore: 0.8076
MSE: 0.0216

DinoScore: 0.8401
MSE: 0.0222

DinoScore: 0.9015
MSE: 0.0277

DinoScore: 0.8374
MSE: 0.0293

DinoScore: 0.9986
MSE: 0.0055

DinoScore: 0.9493
MSE: 0.0022

DinoScore: 0.8036
MSE: 0.0043

DinoScore: 0.8336
MSE: 0.0102

DinoScore: 0.8010
MSE: 0.0061

DinoScore: 0.8929
MSE: 0.0994

DinoScore: 0.9115
MSE: 0.0490

DinoScore: 0.8773
MSE: 0.0899

DinoScore: 0.9831
MSE: 0.0692

DinoScore: 0.9308
MSE: 0.0686

DinoScore: 0.9871
MSE: 0.0075

DinoScore: 0.8325
MSE: 0.0019

DinoScore: 0.8750
MSE: 0.0026

DinoScore: 0.7806
MSE: 0.0062

DinoScore: 0.8243
MSE: 0.0034

DinoScore: 0.9941
MSE: 0.0052

DinoScore: 0.7835
MSE: 0.0026

DinoScore: 0.8687
MSE: 0.0033

DinoScore: 0.9006
MSE: 0.0100

DinoScore: 0.7814
MSE: 0.0040

DinoScore: 0.9988
MSE: 0.0071

DinoScore: 0.8420
MSE: 0.0069

DinoScore: 0.9195
MSE: 0.0119

DinoScore: 0.9014
MSE: 0.0446

DinoScore: 0.9060
MSE: 0.0159

DinoScore: 0.9960
MSE: 0.0150

DinoScore: 0.8670
MSE: 0.0060

DinoScore: 0.8624
MSE: 0.0066

DinoScore: 0.8014
MSE: 0.0094

DinoScore: 0.7757
MSE: 0.0082

DinoScore: 0.9887
MSE: 0.0532

DinoScore: 0.8513
MSE: 0.0159

DinoScore: 0.7943
MSE: 0.0196

DinoScore: 0.8560
MSE: 0.0842

DinoScore: 0.7922
MSE: 0.0309

DinoScore: 0.9974
MSE: 0.0210

DinoScore: 0.7979
MSE: 0.0083

DinoScore: 0.8366
MSE: 0.0104

DinoScore: 0.8128
MSE: 0.0147

DinoScore: 0.8001
MSE: 0.0116

DinoScore: 0.9891
MSE: 0.0093

DinoScore: 0.8584
MSE: 0.0035

DinoScore: 0.8542
MSE: 0.0049

DinoScore: 0.8462
MSE: 0.0056

DinoScore: 0.8987
MSE: 0.0058

DinoScore: 0.9690
MSE: 0.0316

DinoScore: 0.8433
MSE: 0.0166

DinoScore: 0.8202
MSE: 0.0164

DinoScore: 0.7061
MSE: 0.0243

DinoScore: 0.8119
MSE: 0.0209

DinoScore: 0.9980
MSE: 0.0085

DinoScore: 0.9050
MSE: 0.0049

DinoScore: 0.9099
MSE: 0.0082

DinoScore: 0.9012
MSE: 0.1465

DinoScore: 0.9400
MSE: 0.0048

DinoScore: 0.9662
MSE: 0.0446

DinoScore: 0.8076
MSE: 0.0216

DinoScore: 0.8401
MSE: 0.0222

DinoScore: 0.9015
MSE: 0.0277

DinoScore: 0.8374
MSE: 0.0293

DinoScore: 0.9986
MSE: 0.0055

DinoScore: 0.9493
MSE: 0.0022

DinoScore: 0.8036
MSE: 0.0043

DinoScore: 0.8336
MSE: 0.0102

DinoScore: 0.8010
MSE: 0.0061

DinoScore: 0.8929
MSE: 0.0994

DinoScore: 0.9115
MSE: 0.0490

DinoScore: 0.8773
MSE: 0.0899

DinoScore: 0.9831
MSE: 0.0692

DinoScore: 0.9308
MSE: 0.0686

DinoScore: 0.9871
MSE: 0.0075

DinoScore: 0.8325
MSE: 0.0019

DinoScore: 0.8750
MSE: 0.0026

DinoScore: 0.7806
MSE: 0.0062

DinoScore: 0.8243
MSE: 0.0034

DinoScore: 0.9941
MSE: 0.0052

DinoScore: 0.7835
MSE: 0.0026

DinoScore: 0.8687
MSE: 0.0033

DinoScore: 0.9006
MSE: 0.0100

DinoScore: 0.7814
MSE: 0.0040

DinoScore: 0.9988
MSE: 0.0071

DinoScore: 0.8420
MSE: 0.0069

DinoScore: 0.9195
MSE: 0.0119

DinoScore: 0.9014
MSE: 0.0446

DinoScore: 0.9060
MSE: 0.0159

DinoScore: 0.9960
MSE: 0.0150

DinoScore: 0.8670
MSE: 0.0060

DinoScore: 0.8624
MSE: 0.0066

DinoScore: 0.8014
MSE: 0.0094

DinoScore: 0.7757
MSE: 0.0082

DinoScore: 0.9887
MSE: 0.0532

DinoScore: 0.8513
MSE: 0.0159

DinoScore: 0.7943
MSE: 0.0196

DinoScore: 0.8560
MSE: 0.0842

DinoScore: 0.7922
MSE: 0.0309

DinoScore: 0.9974
MSE: 0.0210

DinoScore: 0.7979
MSE: 0.0083

DinoScore: 0.8366
MSE: 0.0104

DinoScore: 0.8128
MSE: 0.0147

DinoScore: 0.8001
MSE: 0.0116

DinoScore: 0.9891
MSE: 0.0093

DinoScore: 0.8584
MSE: 0.0035

DinoScore: 0.8542
MSE: 0.0049

DinoScore: 0.8462
MSE: 0.0056

DinoScore: 0.8987
MSE: 0.0058

DinoScore: 0.9690
MSE: 0.0316

DinoScore: 0.8433
MSE: 0.0166

DinoScore: 0.8202
MSE: 0.0164

DinoScore: 0.7061
MSE: 0.0243

DinoScore: 0.8119
MSE: 0.0209

DinoScore: 0.9980
MSE: 0.0085

DinoScore: 0.9050
MSE: 0.0049

DinoScore: 0.9099
MSE: 0.0082

DinoScore: 0.9012
MSE: 0.1465

DinoScore: 0.9400
MSE: 0.0048

DinoScore: 0.9662
MSE: 0.0446

DinoScore: 0.8076
MSE: 0.0216

DinoScore: 0.8401
MSE: 0.0222

DinoScore: 0.9015
MSE: 0.0277

DinoScore: 0.8374
MSE: 0.0293

DinoScore: 0.9986
MSE: 0.0055

DinoScore: 0.9493
MSE: 0.0022

DinoScore: 0.8036
MSE: 0.0043

DinoScore: 0.8336
MSE: 0.0102

DinoScore: 0.8010
MSE: 0.0061

DinoScore: 0.8929
MSE: 0.0994

DinoScore: 0.9115
MSE: 0.0490

DinoScore: 0.8773
MSE: 0.0899

DinoScore: 0.9831
MSE: 0.0692

DinoScore: 0.9308
MSE: 0.0686

DinoScore: 0.9871
MSE: 0.0075

DinoScore: 0.8325
MSE: 0.0019

DinoScore: 0.8750
MSE: 0.0026

DinoScore: 0.7806
MSE: 0.0062

DinoScore: 0.8243
MSE: 0.0034

DinoScore: 0.9941
MSE: 0.0052

DinoScore: 0.7835
MSE: 0.0026

DinoScore: 0.8687
MSE: 0.0033

DinoScore: 0.9006
MSE: 0.0100

DinoScore: 0.7814
MSE: 0.0040

DinoScore: 0.9988
MSE: 0.0071

DinoScore: 0.8420
MSE: 0.0069

DinoScore: 0.9195
MSE: 0.0119

DinoScore: 0.9014
MSE: 0.0446

DinoScore: 0.9060
MSE: 0.0159

DinoScore: 0.9960
MSE: 0.0150

DinoScore: 0.8670
MSE: 0.0060

DinoScore: 0.8624
MSE: 0.0066

DinoScore: 0.8014
MSE: 0.0094

DinoScore: 0.7757
MSE: 0.0082

DinoScore: 0.9887
MSE: 0.0532

DinoScore: 0.8513
MSE: 0.0159

DinoScore: 0.7943
MSE: 0.0196

DinoScore: 0.8560
MSE: 0.0842

DinoScore: 0.7922
MSE: 0.0309

DinoScore: 0.9974
MSE: 0.0210

DinoScore: 0.7979
MSE: 0.0083

DinoScore: 0.8366
MSE: 0.0104

DinoScore: 0.8128
MSE: 0.0147

DinoScore: 0.8001
MSE: 0.0116

DinoScore: 0.9891
MSE: 0.0093

DinoScore: 0.8584
MSE: 0.0035

DinoScore: 0.8542
MSE: 0.0049

DinoScore: 0.8462
MSE: 0.0056

DinoScore: 0.8987
MSE: 0.0058

DinoScore: 0.9690
MSE: 0.0316

DinoScore: 0.8433
MSE: 0.0166

DinoScore: 0.8202
MSE: 0.0164

DinoScore: 0.7061
MSE: 0.0243

DinoScore: 0.8119
MSE: 0.0209

DinoScore: 0.9980
MSE: 0.0085

DinoScore: 0.9050
MSE: 0.0049

DinoScore: 0.9099
MSE: 0.0082

DinoScore: 0.9012
MSE: 0.1465

DinoScore: 0.9400
MSE: 0.0048

DinoScore: 0.9662
MSE: 0.0446

DinoScore: 0.8076
MSE: 0.0216

DinoScore: 0.8401
MSE: 0.0222

DinoScore: 0.9015
MSE: 0.0277

DinoScore: 0.8374
MSE: 0.0293

DinoScore: 0.9986
MSE: 0.0055

DinoScore: 0.9493
MSE: 0.0022

DinoScore: 0.8036
MSE: 0.0043

DinoScore: 0.8336
MSE: 0.0102

DinoScore: 0.8010
MSE: 0.0061

DinoScore: 0.8929
MSE: 0.0994

DinoScore: 0.9115
MSE: 0.0490

DinoScore: 0.8773
MSE: 0.0899

DinoScore: 0.9831
MSE: 0.0692

DinoScore: 0.9308
MSE: 0.0686

Figure 14. We compare the results from StarVector-8B with those from the most powerful baselines. Notably, StarVector is the only method
capable of producing acceptable results that preserve both structural integrity and textual content by utilizing a variety of SVG primitives.
In contrast, other methods tend to generate blobs and curves that merely attempt to fit the structure and color of the original image. We
present two metric scores for each sample: DinoScore and MSE. MSE consistently yields higher scores for other methods, as they focus
on fitting vectors to the image as accurately as possible. While StarVector may not achieve perfect reconstruction, its results are preferred
for their semantic fidelity. This highlights the limitations of MSE and the importance of DinoScore in capturing these aspects.

Figure 15. Image-to-SVG results on SVG-Fonts test set. Results are remarkably good, obtaining perfect font reconstructions. Intricate
details are preserved. This is because the dataset is very large, above 1M samples. This shows that if having access to a large dataset,
StarVector can learn high-quality SVG generation.

Figure 16. Image-to-SVG results on SVG-Fonts simplified test set.

Figure 17. Image-to-SVG results on SVG-Emoji test set. Results are mostly wrong in this benchmark, due to the small training dataset
of approximately 8k examples.

Figure 18. Image-to-SVG results on SVG-Icons test set.

Comparing parameter count of models . The num-
ber of learnable parameters in deep learning based models
often correlates with performance. Pre-LLM models like
Im2Vec and DeepSVG use significantly fewer parameters
(up to 5M) compared to StarVector and GPT-based mod-
els, which operate in the billions. While pre-LLM models
can produce accurate results, they lack the generalization
ability of LLM-based approaches. Comparing StarVector
with GPT models reveals that high-fidelity SVG genera-
tion is achievable with just 1B parameters, whereas GPT-
4V lacks specific training for this task. Future models will
likely incorporate SVG data in training, but current results
already demonstrate that LLM-based approaches offer su-
perior generalization and scalability for SVG generation, at
the cost of utilizing more parameters.

Context Length Limitation. The model’s architecture
imposes a clear limitation on context length, which signifi-
cantly impacts training and testing data pipelines, as well as
the skills the model can learn. Our experiments show that
the model scales effectively with increasing context lengths,
from 8k to 16k, indicating that this limitation must be ad-
dressed with techniques for handling longer contexts—an
area LLMs are expected to improve. For fair comparisons,
we restricted our benchmark tests to a context length of 8k
and evaluated all baselines within this setting. However,
the benchmarks also provide versions with longer context
lengths to assess future models, as increased length gener-
ally correlates with more complex SVGs. We did not ob-
serve substantial differences in scores between the 4k and
10k token settings, primarily because the data in our bench-
mark can typically be represented using an average of 3k
tokens.

Limitations on Complex SVG Structures. StarVector
encounters challenges with complex SVG structures, intri-
cate shapes, and detailed illustrations primarily due to limi-
tations in its architecture. Currently, the model’s image en-
coder handles images by simply padding and resizing them
to fixed dimensions of 224 or 384 pixels. This approach
may not adequately capture the nuances of complex dia-
grams. A potential improvement would be to implement a
dynamic image processing system akin to those found in
newer Vision-Language Models (VLMs), which could en-
hance the model’s ability to interpret and generate intricate
SVGs more effectively. Additionally, improving data clean-
ing processes is crucial, as the model sometimes produces
hallucinated information due to noise in the input data, such
as URLs or base64-encoded images. Addressing these is-
sues through architectural enhancements and more robust
data preprocessing could significantly improve StarVector’s
performance on complex SVG tasks.

Generalization to Non-Standard SVGs. StarVector’s
ability to generalize to non-standard SVGs—those not rep-
resented in its main training distribution—poses a signifi-
cant challenge. While the model performs well on common
styles and primitives encountered during training, it strug-
gles with more unique or unconventional SVGs. This is pri-
marily due to the model’s training data, which tends to focus
on widely used shapes and designs. As a result, StarVector
may exhibit a bias towards these common styles, leading to
suboptimal performance when faced with SVGs that feature
unusual structures or less frequent elements.

To assess StarVector’s generalization capabilities, we
evaluated its performance on various datasets that in-
clude non-standard SVGs. The results indicate that while
the model can produce reasonable outputs for some non-
standard examples, it often falls short in accurately captur-
ing the intricacies of less familiar styles. This limitation
suggests that the model’s training set lacks sufficient diver-
sity to encompass the full range of potential SVG designs.

To address these concerns, future work should focus
on expanding the training dataset to include a wider vari-
ety of SVG styles and structures. Incorporating data from
niche applications and artistic domains could enhance the
model’s ability to generate SVGs across a broader spec-
trum of design elements. Additionally, techniques such as
domain adaptation and transfer learning could be explored
to improve generalization to non-standard SVGs, allowing
StarVector to adapt more effectively to unfamiliar inputs.

10.1. Ablation Studies

We performed ablations on the image encoder type, the data
augmentation pipeline, inference techniques, and genera-
tion parameters. Most of our ablations were performed on
the StarVector-1B model for faster iteration, and we empir-
ically find they work well on the larger StarVector-8B.

Image Encoder Ablation. The choice of image encoder
for the problem of Image-to-SVG is highly impactful, as
it determines how well visual information from raster im-
ages can be preserved in a representation suitable for pre-
cise reconstruction in the SVG space. We ablated the vi-
sual encoders by replacing them with VQGAN [23], Con-
vNext [46], and CLIP ViT-B/32 [62], in our StarVector-1B
proposed architecture. This setup evaluates three commonly
used approaches in visual representation learning [23, 62,
73]. In our experiments, CLIP consistently outperformed
across all metrics for various datasets (see Table 9). Figures
[19–22 further illustrate how VQGAN and ConvNext tend
to lose local details during generation, even while maintain-
ing semantic relevance.

SVG-Fonts SVG-Emojis SVG-Icons SVG-Stack

Sampling technique LPIPS ↓ SSIM ↑ MSE ↓ LPIPS SSIM MSE LPIPS SSIM MSE LPIPS SSIM MSE

Greedy 0.019 0.969 0.013 0.251 0.731 0.071 0.059 0.912 0.028 0.157 0.797 0.067
+ Beam Search (B=5) 0.018 0.970 0.012 0.250 0.732 0.070 0.058 0.913 0.027 0.156 0.798 0.066
Nucleus Sampling (T=0.5) 0.013 0.976 0.008 0.202 0.778 0.051 0.043 0.923 0.022 0.153 0.785 0.072
Nucleus Sampling (T=1.0) 0.015 0.975 0.009 0.244 0.742 0.067 0.053 0.917 0.025 0.161 0.786 0.069
+ Beam-Search (B=5) 0.034 0.948 0.027 0.244 0.742 0.068 0.065 0.913 0.027 0.195 0.766 0.089
+ Beam-Search (B=10) 0.040 0.943 0.031 0.251 0.742 0.072 0.071 0.910 0.028 0.175 0.762 0.079

Table 7. Ablation study on sampling strategies. We experimented using greedy decoding and added a beam search with B=5. We
test nucleus sampling [31] using top p=0.9, with temperatures T=0.5 and T=1.0. The two final rows describe beam search with nucleus
sampling at T=1.0. See huggingface.com/blog/how-to-generate for reference on these sampling techniques.

Pre-training on SVG-Stack. Pre-training on the SVG-
Stack is highly beneficial for the downstream datasets with
small data. Table 8 shows the uplift on all the metrics for
different datasets. Qualitatively, we can also see that pre-
training helps the model to identify the nuanced details from
the images. For the case of SVG-Emoji, pre-training is a vi-
tal requirement, as it overfits without it due to limited data.
Figure 17 shows that the model relies on colors and shapes
to generate the SVG.

Ablation on Generation Hyperparameters. We explore
the impact of different generation hyperparameters on the
StarVector-1B model. After an initial exploration to em-
pirically determine the most relevant hyperparameters, we
focus our ablation on these. We find that temperature and
the number of beams in beam search significantly affect per-
formance. The model is evaluated across various configu-
rations (see Table 7 and Figure 23). Our results show that
a beam search size of 5 achieves the best outcomes, albeit
with increased memory usage and runtime. Similarly, nu-
cleus sampling with a top-p of 0.9 and a temperature of 0.5
delivers the best overall performance.

10.2. Text-to-SVG Results

Figures [25 - 28] show additional qualitative results of
StarVector when performing the task of text-conditioned
SVG generation, performed on SVG-Stack and FIGR-SVG
test sets. Our samples show reasonable effectiveness at this
task, consistently grasping features like colors, shapes, and
semantic concepts. However, sometimes some details re-
quired in the prompt are lost, e.g., an exact number of cir-
cles, shapes inside other shapes, or the direction of arrows.
In some cases, some vector graphics shapes lose coherence,
which we attribute to our model’s current scale in terms of
model parameters and context length. We suspect that these
mistakes are due to the limited quality of the textual descrip-
tions, sometimes lacking precision and grounding on the

Figure 19. Ablation of Image Encoders Image vectorization re-
sults using different visual encoders on SVG-emoji test set. CLIP
is the image encoder that delivers the best results, whereas VQ-
GAN and ConvNet often miss relevant semantics of the image.
No SVG-Stack Pretrain (CLIP) refers to an ablation where we use
CLIP out of the box, without unfreezing its weights.

Figure 20. Ablation of Image Encoders Image vectorization re-
sults using different visual encoders on SVG-Stack test set. CLIP
offers the best results. VQ-GAN and ConvNet often miss relevant
semantics of the image.

SVG images. See Figure 24 for successful cases of Text-to-
SVG generation on SVG-Stack. Figure 29 highlights some
failure modes of StarVector-8B. These figures illustrate the
impact of different generation temperatures. We rank the
outputs generated at different temperatures based on their
CLIP Score in relation to the text instruction.

Nevertheless, the StarVector approach of using LLMs
for SVG code generation is the only method among base-
lines that allows us to create diverse vector graphics unre-

huggingface.com/blog/how-to-generate

Figure 21. Ablation of Image Encoders Image vectorization re-
sults using different visual encoders on SVG-Icons test set. CLIP
brings the best visual results. VQ-GAN and ConvNext are not able
to capture correctly the details for correct vectorization. No SVG-
Stack Pretrain (CLIP) refers to an ablation where we use CLIP
out of the box, without unfreezing its weights. Notably, better re-
sults are obtained when training the CLIP image encoder on SVG-
Stack.

Figure 22. Ablation of Image Encoders Image vectorization re-
sults using different visual encoders on SVG-Fonts test set. As
in the other datasets tested, CLIP brings the best visual results, as
others are not able to provide perfect vector reconstruction when
intricate details are present. No SVG-Stack Pretrain (CLIP) refers
to an ablation where we use CLIP out of the box, without unfreez-
ing its weights. Notably, better results are obtained when training
the CLIP image encoder on SVG-Stack.

strainedly, paving the way for more challenging and intri-
cate designs.

10.3. Results on SVG-Diagrams
Figure 2 presents the results of StarVector-8B, along with
comparisons to LIVE, VTracer, Potrace, and AutoTrace.
StarVector-8B is the only approach that produces plausible
results, as it effectively leverages appropriate SVG primi-
tives. DinoScore aligns well with this visual assessment,
accurately reflecting the quality of StarVector-8B’s outputs.

In contrast, MSE consistently favors other baselines de-
spite their limitations. This is because MSE prioritizes exact
pixel matching, favoring models designed to fit curves and
colors to the input image. However, these baselines fail to
preserve the semantics of the original diagrams, resulting
in outputs where the meaning and structure are completely
lost.

Table 8. Results of SVG Data Augmentation. We ablate both our
data augmentation pipeline and the use of a pretraining stage with
SVG-Stack. These experiments are conducted on smaller datasets
that are more susceptible to overfitting, using the StarVector-1B
model. Vanilla refers to the StarVector model trained directly on
the given dataset without SVG-Stack pretraining. Next, we intro-
duce our data augmentation pipeline. Finally, we initialize train-
ing from an SVG-Stack pretrained checkpoint and fine-tune on the
given dataset. The “+” symbol indicates that the methods from the
previous rows are also included.

SVG-Emojis SVG-Icons

Method LPIPS ↓ SSIM ↑ MSE ↓ LPIPS↓ SSIM↑ MSE↓

StarVector (vanilla) 0.355 0.683 0.108 0.104 0.845 0.047
+ Data Augmentation 0.329 0.706 0.097 0.057 0.905 0.029
+ SVG-Stack Pretrain 0.225 0.748 0.061 0.057 0.894 0.031

Table 9. Ablation of Image Encoders. We ablate different image
encoders with StarVector-1B, namely CLIP ViT-B/32 [62], VQ-
GAN [23], and ConvNext [46]. We experiment with training ex-
periments on SVG-Fonts and SVG-Emojis datasets. CLIP gives
the best results on all reconstruction metrics.

SVG-Fonts SVG-Emojis

Encoder LPIPS ↓ SSIM ↑ MSE ↓ LPIPS ↓ SSIM ↑ MSE ↓
CLIP 0.026 0.955 0.021 0.202 0.778 0.051
VQGAN 0.092 0.854 0.072 0.345 0.688 0.099
ConvNext 0.085 0.854 0.073 0.311 0.708 0.088

10.4. Analysis of SVG Primitives
This section examines how StarVector leverages SVG prim-
itives to produce more compact and semantically accurate
SVGs. In contrast to prior models constrained to using
only path primitives, StarVector effectively utilizes the en-
tire range of SVG primitives, including parametrically de-
fined shapes, gradients, and text elements.

This enhanced capability stems from its ability to operate
directly within the SVG code space, facilitated by its mul-
timodal, transformer-based architecture [2, 45], which inte-
grates visual and textual inputs. StarVector generates SVG
code that closely resembles the input raster image while
maintaining semantic awareness, enabling the use of sym-
metry, parametric shapes, and text. Prior methods, limited
to first-order path primitives, lack this semantic understand-
ing, resulting in less compact and less expressive SVG rep-
resentations.

Qualitative Analysis of SVG Primitives Table 10
presents tests conducted on StarVector-8B and VTracer us-
ing simple designs composed of basic shapes such as cir-
cles, rectangles, and triangles, with variations in color,
transparency, and levels of overlap. StarVector-8B demon-
strates the ability to precisely identify the primitives that

Figure 23. Ablation study on sampling temperature. We tested the performance impact of StarVector-1B when changing the sampling
temperature. Results are computed for SVG-Emoji and SVG-Icons validation sets.

make up each design, producing visually accurate results
while maintaining compact, concise, and interpretable SVG
representations.

SVG Tag Distribution Here, we show how StarVector
can generate complex SVGs using the full syntax of the
SVG language, in contrast with most of the literature meth-
ods, which are restricted to using only the path command.
Figure 30 displays the distribution of SVG tags in the SVGs
generated by StarVector along with the distribution in the
SVG-Stack dataset, showcasing the strength of our method
in using SVG tags and syntax in a similar way to the origi-
nal in-the-wild dataset. We have computed the exact statis-
tics on previous methods and found that they cannot come
close to StarVector in this metric, as they are limited to us-
ing paths and basic primitives. The effective usage of the
large array of SVG tags and syntax makes our method the
first SVG model to support these complexities.

10.5. Human Evaluation
We conducted a human evaluation to compare the outputs
of StarVector-8B, our best model, with those of the most
powerful baselines. Participants were selected from diverse
backgrounds and carefully screened for conflicts of interest,
with none of the key authors involved. The evaluation was
performed through a web interface (shown in Figure 31)
that provided anonymized outputs and randomized sample
presentations to prevent pattern recognition or bias.

The results, presented in Figure 5, demonstrate a strong
preference for StarVector-8B across all settings, especially
in SVG-Diagrams tasks. This highlights a disconnect be-
tween pixel-based metrics (e.g., MSE, SSIM) and human
visual perception of SVGs. While baseline models of-
ten prioritize pixel-perfect reconstruction, human evaluators
preferred StarVector’s sharp, well-defined shapes and its ef-
fective use of primitives (Figure 30).

Spearman correlation analyses between model metrics
and human evaluations further emphasize this gap. MSE
shows weak correlations (0.0596 and -0.1002), indicating

its inadequacy as a predictor of human preferences. In con-
trast, DinoScore exhibits significantly stronger correlations,
with values of -0.6193 and 0.6214. Moreover, a robust cor-
relation of 0.7577 between differences in DinoScore and
human evaluation scores highlights DinoScore as a more
reliable metric for assessing SVG quality in alignment with
human judgment.

10.6. Comparing StarVector with Baselines
Here, we discuss the results of each baseline individually
and compare them to our proposed approach.

1. DeepSVG [14] is an elegant approach to learning a la-
tent variable model for SVG. It proves effective at learn-
ing the task for the simplified datasets (Figure 9). It can
accurately represent corners and edges. However, it only
works in simplified datasets. This limitation restricts it
from being a suitable solution in real applications.

2. Im2Vec [67] proposes a training procedure that does not
require having SVG ground truth. It uses only pixel-
based reconstruction loss with the input image, finding
the optimal SVG parameters using a differentiable ras-
terizer like DiffVG [43]. This framework is appealing,
as it aims to be used in images without SVG supervi-
sion. However, it requires hundreds of epochs with a
reduced dataset to overfit the model to those examples,
only working on modeling training examples, as seen
in [67]. Im2Vec results on the datasets presented SVG-
Bench are quite poor as it has bad generalization. There-
fore, qualitative samples are not presented.

3. GPT-4 Vision [56] excels at capturing the semantics
of images and generating captions that accurately de-
scribe them. The SVG generated from this description

Ground Truth Temp = 0.0 Temp = 0.125 Temp = 0.5Temp = 0.25 Temp = 0.375Text Instruction

Generate an SVG of x
icon in black circle on
white background

Generate an SVG of a
green check mark in a
flower

Design an SVG of
pencil icon vector

Design an SVG of a
colorful square logo
with a blue background.

Draw an SVG image of
four square black and
white icons.

Create an SVG of a
large orange bell,
positioned in the center
of the image.

Generate an SVG of a
folder with a fan on it.

Draw an SVG picture of
a black and white icon
of a paper document

Draw an SVG image of
a blue and white train
icon.

Create an SVG for a
logo of a company
with a gold triangle

Figure 24. Text-to-SVG Results. We show successful Text-to-SVG results using StarVector-8B. We sample 5 different temperatures as an
ablation, showing the sensitivity of this parameter during generation. Results are presented in SVG (not raster images)

Caption Svg Gen. Caption Svg Gen. Caption Svg Gen. Caption Svg Gen. Caption Svg Gen. Caption Svg Gen.

A black and
white image of

a cross

A circle with
dots on it in
black and

white Tv icon vector

A file icon
with a white
square on it

The japanese
flag is shown

in a white
background

Chinese font
design for the

word 'love'

A black and
white icon of a
pen and paper.

A black circle
with a play

button in the
center.

Memory size
pie chart

Memory Size

16384 (22.2%)

4096 (22.2%)

2048 (16.7%)

32768 (5.6%)

8192 (33.3%)

A knife is
shown on a

white
background

An i symbol in
a black circle

A pink light
bulb icon.

A purple and
white striped

logo

A white arrow
on an orange
background.

A white cross
on a white

background.

A square shape
is shown in the

image.

A gray circle
with a question

mark in the
center.

A green smiley
face with a
smiley face

Folder icon
with a person

icon

A fork and a
leaf icon on a

white
background

An eye icon
with a triangle

shape

A yellow star
is displayed on

a white
background.

Sun icon in a
circle on a

white
background

An open book
icon on a white

background

A black and
white

microphone
icon.

A black star on
a white

background

A black and
white icon of a
no entry sign

A green button
with a gray

arrow pointing
to it

A black and
white icon of
an envelope.

A black and
white sun
symbol.

A black and
white square
with a black

border.

A black and
white map

marker
symbol.

A green and
black circle
with a white
background

A black and
white image of

a game
controller

A video player
icon is

displayed in a
square.

The s logo in
black and

white

A black and
white headset

icon.

A graph of the
number of
people in a

class

A black and
white icon of a

trophy cup

A red square
with a white

letter A in the
center.

An eye icon in
a circle with a

black dot

A blue and
white icon of a

camera.

A pink pen on
a white

background
vector

Standard js
logo

JS A black and
white logo of a
curved shape

A blue and
white paper
clip icon.

A black and
white

illustration of a
cell phone

A speech
bubble with an
x symbol on it

A blue and
white sign that
says "continue

setup".

A gray square
with four

squares on it

The facebook
logo, with a
white letter f Apple pay logo

The flag of
france and the
flag of france

A yellow star
with a black

outline.

A black and
white triangle

shape with two
lines

A black and
white icon of a
lightning bolt

A yellow sign
with the

number 10 on
it.

A black and
white image of

a japanese
symbol

Chinese font
for the word

love

A pie chart
with the words
ethernet model

Ethernet Model
82579LM Gigab...

(5.6%)
Ethernet

Conn... (5.6%)
I211 Gigabit...

(5.6%)
RTL810xE PCI

... (11.1%)

Others (27.8%)

RTL8111/8168/... (44.4%)

A blue square
with a black
line in the
middle.

A white and
gray checkered

pattern

The icon for
the instagram

app

A black circle
is placed on a

white
background.

A cross symbol
with four lines

The facebook
logo is shown

on a white
background

A black and
white arrow

pointing to the
right

A red heart
with a

lightning bolt
through it.

A black cross
on a white

background.

A person
avatar icon on

a white
background

A black and
white airplane

icon.
A heart with a

cross in it

An envelope
icon on a white

background

The facebook
logo in black

and white

A white square
with a black

border

A black heart
shape on a

white
background.

A blue button
with the word

stata on it

The flag of
oman is shown

in red and
green

A black cross
on a white

background

A blue bar is
displayed on a

white
background.

A black and
white logo
with two
arrows

A black square
is placed on a

white
background.

A black circle
with a white
square in the

middle.

A clock icon is
displayed in a

white
background.

A black circle
with a white

outline.

A blue square
with white text

on it

A yellow
square with a

light bulb icon

Twitter logo
with a blue

bird

Chinese
character for

the word
'fortune'

A purple car
icon on a white

background

A blue triangle
shape on a

white
background.

A crosshair
icon on a white

background

A black and
white fidgetr

with four
circles

An orange
arrow pointing
up in a folder

A green arrow
pointing to the

right

A yellow
emoticion with

a black eye

A black and
white arrow

pointing to the
right.

Four square
black and

white icons
Youtube video

player icon
Glasses icon
for a website

A black and
white image of

a file icon

A yellow
arrow pointing

upwards.

Figure 25. Text-to-SVG Generation results using StarVector-1B on SVG-Stack test set (i).

Caption Svg Gen. Caption Svg Gen. Caption Svg Gen. Caption Svg Gen. Caption Svg Gen. Caption Svg Gen.

Square icon
vector

A red
emoticion with
an angry face

The letter v is
shown in black

and white

A pink speech
bubble on a

white
background Whatsapp logo

A black and
white icon of a

sun

A black and
white image of

a large X.
Twitter logo in

a circle

A yellow and
black shield

with a rooster
on it.

A black star
with a white

outline.

A grey and
white image of
a lock and key.

A white X is
displayed on a

pink
background.

A yellow
triangle with a
black outline.

A black and
white logo

with a white
eye

A black and
white icon of a

document
Headphones
icon vector

A black and
white icon of a

radio wave.

A black and
white light
bulb icon.

A black and
white cloud

with a rain icon

A pixel style
image of a
brown box

A black and
white logo for

JPG.

A purple circle
with an

envelope icon Pixel heart png

A black circle
with a smiling

face on it.

Three stacked
white boxes
with green

lines

The v logo
with a blue

arrow

Ethereum logo
with a blue
background

A blue cloud is
displayed on a

white
background.

A black and
white coffee

cup icon.

A black and
white YouTube

icon.

A letter a logo
with a red and

black letter

A purple circle
with a down
arrow in the

center.

A black and
white crescent

on a white
background

A black and
white logo of a

drop

A black and
white pizza

icon.
A phone icon

in a heart shape

The s logo in a
black and

white circle

A black circle
with a white
circle in the

middle.

A black and
white cloud

icon.
The c logo in a
green square

A black and
white logo of a

letter G.

A hand holding
a bag with the

letter r

A blue arrow
pointing up on

a white
background

The letter c in
black and

white

A phone icon
with a plus

sign

Youtube logo
with a play

button

A yellow
emoticion with

glasses on it

Chinese
character for

cross

A black and
white shopping

cart icon.

A black and
white

magnifying
glass icon.

A brown and
white battery

icon.

A black and
white clock
with a blue
hour hand.

Clipboard icon
with a square
and a square

The html5 logo
with the word

html5

A purple
square icon

with two
circles on it

A black and
white image of
a hamburger.

A black and
white film reel

icon

A green circle
with an arrow

pointing
upwards.

A black and
white sign with

the letter e
Sun icon

vector

A blue circle
with a white V
in the center.

Credit card
icon vector

A dollar sign
icon on a white

background

A black and
white square
with a white

border

A black and
white key
symbol.

A red triangle
with a white
background

Cross symbol
clip art

A black and
white icon of a

refrigerator.

A purple and
gray circle

with a crescent
moon

A white and
purple logo of

a letter C.

A purple circle
with a knife

icon

A black and
white image of

a question
mark.

A blank white
card with a

green border

A blue square
with an x in the

middle

A black and
white smiley

face icon

A black and
white icon of a

trash can.

A diagram of
the heartbeat

api IStream device_stream< IStream >

A red power
button with an
arrow pointing

up

Sun icon clip
art

Google plus
logo

Youtube logo
with a red play

button

A blue circle
with a white

center

A black and
white mouse
cursor icon

A black and
white icon of a

x

Figure 26. Text-to-SVG Generation results using StarVector-1B on SVG-Stack test set(ii).

Caption Svg Gen. Caption Svg Gen. Caption Svg Gen. Caption Svg Gen. Caption Svg Gen. Caption Svg Gen.

I love
Halloween skul

l-and-bones
emoji.

A necktie is a
formal

neckwear for a
uniform.

A square is a
quadrilateral

shape in
geometry.

The abstract
square is

distorted by a
third. Map pin.

The lorry is a
delivery truck
for transport.

The rupee is
currency.

Weight
dumbbell.

Remove
groceries from

shopping
basket.

Cleaning
laundry with a

washing
machine.

The soup
spoon is

tableware.
A square and a

cube.

Hand-drawn
sad emoticon

upset and
angry.

Player
interface for
video play.

A good idea is
thinking about

a light bulb.

The up arrow
directs the

move.

The arrow sign
shows the
three-way
direction.

Wifi-router is
an electronic

device.

A frozen sweet
treat, popsicle

ice-cream.
Wifi is online
through w-lan.

Unlock your
smartphone

screen
notification. Mustache.

Pinpoint your
music interests

on the map.

The gear
wheel's

configuration
is set by the

cog.

There is a
signpost with a

direction
arrow.

Search with a
magnifier to
explore and

view.
A square is a

shape.
Bell

notification.
A bar chart is a
type of chart.

A tank-top is a
type of shirt or

undershirt.

A necktie is an
accessory for

clothes.

The smiley
emoji

represents
happy

emotions.

The milk bottle
is a dairy
beverage.

The chef wore
a toque in the

kitchen.
Man has a
mustache.

The arrow
points down to
the heart with

love.

I like the social
like with a
thumbs-up.

The Holy
Cross is a
Christian
symbol.

Create new
cloud server

plus.

Upload bag
shopping

arrow.

The pin marks
the location

with a pointer.

A hexagon is a
shape with 6

sides.

The map pin
marks the
location.

Move in the
direction of the

sharp turn
arrow.

The sun is a
solar emoji
emoticon.

The user's
avatar is a map

pin on their
profile. Right arrow.

The idea
invented

electricity's
light bulb.

Search using a
magnifying

glass. Wifi.

Protect the
privacy of a

private
document/file.

Letter or email
message.

Data charted
on a graph

shows market
statistics.

I drive my
backpack with
flash storage.

Search and
find with a
magnifying

glass.

A medal,
award, badge,
prize, or star.

Admin shields
star.

The anchor
stopped the
heavy navy

ship.

A rhombus is a
symmetrical di
amond-shaped

figure.

Money is
currency or

cash, such as
the euro.

Chat using a
speech bubble.

The unhappy
face emoji.

I wore a
necktie.

Check the
checklist for a

checkmark.

The audio cord
connects to the
microphone.

A rupee coin is
currency used
for payment.

Aircraft,
missile, rocket,

spacecraft.

Web hosting
on the cloud

server.

Search with
magnifying

glass tool and
zoom. A beer mug. Apple is a fruit.

The pound
bulb is an idea
for a light bulb.

Usb flash
drives store

data in
memory.

Move the
arrow to

expand and
drag to drop.

Search with
magnifier.

One dice is
used in the

game of luck. Favorite star.

The bus is a
vehicle for

transportation.

The arrow
indicates the
up direction

where. Candle.
A trapezoid is

a shape.

Find location
with GPS map

pin.

Follow the
arrow for
direction.

The cassette
tape contains
music sound

on tape.

Navigate using
the down

arrow.
Turn left at the

junction.

Christian faith
has a cross in
the church.

Download data
from cloud

database with
arrow.

I need a
coffee-to-go in

a paper cup.

The arrow
indicates the

direction.

Figure 27. Text-to-SVG generation on FIGR-SVG test set (i).

Caption Svg Gen. Caption Svg Gen. Caption Svg Gen. Caption Svg Gen. Caption Svg Gen. Caption Svg Gen.

Left arrow
points

backward.
A people group

network.

Women have a
female gender

symbol.

Spruce, pine,
and Christmas

trees are all
plants.

Download the
signpost arrow

direction.

Flat brush used
for painting

flat illustration.

Shop for a cart
while

shopping.

Sweep with a
broom to clean

the floor.

The bowl is a
food container
in the kitchen

set.

The tool has
options and
settings with

cogs.

The atom has a
proton link in

physics
science. Boat or ship.

Map-pin marks
a location on a

map.

The map pin
shows the

location with
GPS.

The
erlenmeyer
flask is a
chemistry

equipment.

Bug is an
insect that can
have a virus or

error.

The modern
thick arrow
points right.

Male restroom
sign.

The pill bottle
contained
drugs for
health.

Snowflakes fall
in winter
weather.

The pointer
points to the
arrow right. Tie. Service bell. Anchor.

Wifi is
wireless

connectivity to
a network.

The pharmacy
uses a mortar

and pestle.

The ace of
clubs is a poker

card.

Move in the
direction of the

right arrow
square. Map-pin.

Minimal
trophy.

Watch TV on
monitor.

Connect to the
Wi-Fi. Crown.

Lightning has
electricity and
high voltage.

Music sound
files contain

musical notes.

Find and focus
by zooming

with a
magnifier.

Media player
plays movie,
music, and

video.

Buy a home
online using a

laptop.

Record sound
with a

microphone for
voice audio.

Water in a
plastic bottle is

a beverage
drink.

Up arrow
indicates
direction. Cylinder.

Boxer-briefs
are a type of
underwear.

Withdraw cash
from ATM for
euro money.

A smartwatch
displays the

time.

Calculate math
using a

calculator for
accounting.

Target in
crosshair.

A spoon is
silverware.

Arrow points
up at junction
for navigation.

The MKV file
extension is a
type of video

file.

Search for
glass with mag
nifying-glass

view.
Christmas ball
is a decoration.

Find location
using GPS
search and

pins.

Secure euro
payment with
money lock.

The up arrow
indicates the
top direction.

My favorite
documents are
starred on my

computer.
Drawers in
wardrobe.

Wifi is a
network for

internet
connection.

Erlenmeyer
flask and
beaker.

Play videos on
YouTube using

the video
player.

Place a map
pin.

The receiver
follows the

direction of the
arrow.

Buy cart or
basket from
market for
shopping.

The wise owl
has evil eyes.

Chat or
message when

talking in a
conversation.

Online video
on desktop PC.

Snowflakes
have

symmetry.

The mpg file is
a document

format.

Download the
pointer arrow
down using
technology.

I rate a half
star. Euro.

The pitcher
holds a

beverage.

Ice cream is a
dessert food
popped in a

popsicle.

Christianity
revolves

around Jesus
and the cross.

Sort tiles in a
grid.

A file is a
document,

paper, or sheet
with pages.

A QR code is a
type of general

barcode.

Search and
find tools

magnify and
zoom.

Online
shopping

trolley/cart
finance.

Camera takes
photos with

lens for
multimedia.

The
magnifying
glass can

indicate an
enlargement.

The
thermometer

measures
temperature in

Celsius.
Picture camera
photography.

A Wi-Fi
network signal.

The ball is a
Christmas tree

decoration.

Bus is a public
transport
vehicle.

The piano has
keys that

produce sound.

Search using
the magnifying

glass icon.

The arrow
points in a
direction.

The left arrow
is a back arrow

symbol.

Wi-fi signal is
wireless. Cocktail.

The dot-smiley
angry emoji

face is a
sticker.

A map pin
marks the
location.

Buy cart for
ecommerce
shopping.

Write with a
pen or pencil,
edit as needed.

Figure 28. Text-to-SVG generation on FIGR-SVG test set (ii).

gitgit

Design an SVG of a
black cat in tears.

Make an SVG of HC
logo in a white circle

Make an SVG of a
black arrow pointing
upwards.

Generate an SVG of a
black and white image
of a box with a square
shape.

Design an SVG of a
black and white image
of three dots

Draw an SVG image
of a green recycling
symbol, three arrows
pointing inward.

Design an SVG of the
tesla logo

Make an SVG of a
black and white icon of
a computer program
called "GIT".

Generate an SVG of a
blue and gray square
with a blue arrow
pointing to it.

Ground Truth Temp = 0.0 Temp = 0.125 Temp = 0.5Temp = 0.25 Temp = 0.375Text Instruction

Design an SVG of a
woman wearing a
yellow shirt and blue
jeans.

Figure 29. Text-to-SVG Results. We show failure Text-to-SVG results using StarVector-8B (cherry picked examples that show limita-
tions). We sample 5 different temperatures as an ablation, showing the sensitivity of this parameter during generation. Results are presented
in SVG (not raster images)

Table 10. Usage of SVG Primitives. Image vectorization results of StarVector and VTracer applied to images containing basic shapes,
such as circles, rectangles, and polygons, with varied colors and transparencies. The leftmost column shows the input images prompted
for vectorization, and other columns show the output SVG code, with the SVG primitives in red color. StarVector accurately identifies and
generates SVG code for each primitive, preserving their distinct characteristics. In contrast, VTracer relies on the path primitive, resulting
in SVG code that captures the input image in terms of pixels, with less fidelity to individual shapes. Due to the length of VTracer’s SVG
output, only the initial lines are shown. VTracer serves as a baseline model, representative of other baselines, which are omitted for space
but exhibit similar behavior, primarily using path without shape recognition.

Test Example StarVector VTracer

<svg width="150" height="150" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink">
<rect x="35" y="0" width="114" height="132"
style="fill:rgb(255,50,50);stroke-width:1;stroke:rgb(0,0,0)"/>
<polygon points="56.25,49.5 112.5,147.75 0,147.75"
style="fill:rgb(200,0,200);stroke-width:1;stroke:rgb(0,0,0)"/>
</svg>

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" width="530"
height="460">

<path d="M0 0 C174.9 0 349.8 0 530 0 C530 151.8 530 303.6 530 460 C355.1
460 180.2 460 0 460 C0 308.2 0 156.39999999999998 0 0 Z "
fill="#FE3232" transform="translate(0,0)"/>

<path d="M0 0 C4.06429570258797 3.6330418563035494 6.775718865918918
7.966461775462079 9.71484375 12.50390625 C10.273576812744153
13.357300872802739 10.832309875488278 14.210695495605478..."
fill="#A95869" transform="translate(343,60)"/>

<path d="M0 0 C40.260000000000005 0 80.52000000000001 0 122 0
C123.16960912291928 66.0224184213402 123.16960912291928
66.0224184213402 123.416015625 93.876953125
C123.47276957931317..." fill="#A95869"
transform="translate(343,60)"/>

...
</svg>

<svg version="1.1" id="Layer_1"
xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"

width="64px" height="64px" viewBox="0 0 64 64"
enable-background="new 0 0 64 64" xml:space="preserve">

<ellipse fill="none" stroke="#CD2A2A" stroke-width="2.5"
stroke-miterlimit="10" cx="32.333" cy="32.083" rx="29.333"
ry="31.25"/>

<polygon fill="#CD2A2A" stroke="#CD2A2A" stroke-width="0.25"
stroke-miterlimit="10" points="32.333,3.833 55.167,46.333
9.5,46.333 "/>

<line fill="none" stroke="#000000" stroke-width="0.25"
stroke-miterlimit="10" x1="0" y1="0.167"x2="64"y2="0.167"/>

</svg>

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" width="1196"
height="1140">

<path d="M0 0 C394.68 0 789.36 0 1196 0 C1196 376.20000000000005 1196
752.4000000000001 1196 1140 C801.3199999999999 1140 406.64 1140 0
1140 C0 763.8 0 387.5999999999999 0 0 Z " fill="#FEFEFE"
transform="translate(0,0)"/>

<path d="M0 0 C1.8671875 0.24609375 1.8671875 0.24609375 4 1 C5.1328125
2.722656250000071 5.1328125 2.722656250000071 6.125 5.0625
C8.342476699064719 9.859072675207557 10.955923466443437
14.196311705833779 13.8125 18.625 C17.369173047863796 ..."
fill="#A95869" transform="translate(343,60)"/>

<path d="M0 0 C1.3488281421188617 2.6976562842377234 0.8033826481469646
4.151643338387942 0 7 C-0.6599999999999682 7.329999999999984
-1.3199999999999932 7.660000000000025 -2 8 C-2.6555511917654258
10.527332350510733 -2.6555511917654258 10.527332350510733 ..."
fill="#A95869" transform="translate(343,60)"/>

...
</svg>

<svg width="300" height="300"
xmlns="http://www.w3.org/2000/svg" version="1.1">
<rect x="110" y="10" width="160" height="230" fill="pink"

stroke="red"/>
<circle cx="160" cy="120" r="120" fill="tan" stroke="green"/>
<polygon points="110,20 280,125 175,280 5,180"
fill="blue" fill-opacity="0.25" stroke="blue" stroke-width="2" />
</svg>

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" width="910"
height="934">

<path d="M0 0 C300.3 0 600.6 0 910 0 C910 308.22 910 616.44 910 934
C609.7 934 309.4 934 0 934 C0 625.78 0 317.55999999999995 0 0 Z "
fill="#928299" transform="translate(0,0)"/>

<path d="M0 0 C1.4849999999999994 0.9900000000000091 1.4849999999999994
0.9900000000000091 3 2 C3 2.659999999999968 3 3.32000000000005 3 4
C3.7296093749999955 4.103124999999977 ..." fill="#A95869"
transform="translate(343,60)"/>

<path d="M0 0 C1.32000000000005 0.6599999999999966 2.6399999999999864
1.3200000000000003 4 2 C3.009999999999991 2 2.019999999999982 2 1
2 C1 2.6599999999999966 1 3.3200000000000003" fill="#A95869"
transform="translate(343,60)"/>

...
</svg>

<svg viewBox="0 0 100 100" xmlns="http://www.w3.org/2000/svg">
<circle cx="50.5" cy="39.5" r="40" fill="#60f0ff" />
<ellipse cx="50" cy="39" rx="50" ry="20" fill="#2810ff" />
<polygon points="10,100 50,42 90,100" fill="green" />

</svg>

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" width="510"
height="520">

<path d="M0 0 C168.3 0 336.6 0 510 0 C510 171.6 510 343.2 510 520 C341.7
520 173.39999999999998 520 0 520 C0 348.4 0 176.8 0 0 Z ..."
fill="#2E17FE" transform="translate(0,0)"/>

<path d="M0 0 C0.6599999999999682 0 1.3199999999999932 0 2 0
C3.1463165283203125 1.3810577392578693 3.1463165283203125
1.3810577392578693 4.428955078125 3.356689453125
C4.916970977783194 " fill="#2E17FE" transform="translate(0,0)"/>

<path d="M0 0 C1.5393356364577242 2.844848138263643 2.426629556693727
5.489600992013067 3.1875 8.625 C8.714349606195654
27.37779319117132 28.666518702768336 42.668449172855844 45 52
C77.0038243523029 ..." fill="#2E17FE" transform="translate(0,0)"/>

<path d="M0 0 C0.3300000000000409 0 0.6599999999999682 0 1 0 C1 101.31 1
202.62 1 307 C-16.159999999999968 307 -33.31999999999999 307 -51
307 C-69.10137393182612 285.06539394143425 -69.10137393182612
285.06539394143425 -73.55859375 275.48046875 ..." fill="#2E17FE"
transform="translate(0,0)"/>

...
</svg>

is valid and effectively incorporates semantic concepts
along with the accurate colors of the input image into
the SVG code (see Figures [9 - 12]). However, it falls

short in terms of reconstruction fidelity, as GPT-4V was
not specifically trained for reconstruction tasks, making
these results predictable.

Outer: Ground Truth
Middle: StarVector
Inner: Baseline (LIVE)

pa
th

 (3
0.

87
%

)

g
(1

9.
20

%
)

te
xt

 (5
.9

3%
)

rec
t (

5.6
4%

)
titl

e (
4.3

1%
)

poly
gon (4

.07%)

stop (3.80%)

line (3.28%)

circle (2.66%)

defs (2.27%)

ellipse (2.10%)

linearGradient (1.71%)

use (1.46%)

style (1.02%)

tspan (0.88%)
a (0.80%)

div (0.68%)metadata (0.63%)

animate (0.60%)

clipPath (0.55%)

RDF (0.48%)

W
ork (0.48%

)

form
at (0.47%

)

type (0.47%
)

desc (0.47%
)

na
m

ed
vi

ew
 (0

.4
2%

)

po
ly

lin
e

(0
.3

7%
)

fil
te

r (
0.

37
%

)

fe
Ga

us
sia

nB
lu

r (
0.

33
%

)

fe
Co

lor
Ma

tri
x (

0.
29

%
)

sw
itc

h (
0.2

8%
)

for
eig

nO
bje

ct
(0.

28
%)

rad
ial

Grad
ien

t (0
.26

%)

feO
ffse

t (0
.21

%)
feBlend (0.21%)mask (0.21%)marker (0.18%)feFlood (0.11%)feComposite (0.11%)

image (0.10%)

li (0.10%)

symbol (0.10%)

feMergeNode (0.10%)

permits (0.09%)

Agent (0.08%)

guide (0.08%)

grid (0.07%)

ud (0.07%)

p (0.06%)

perspective (0.06%)

path-effect (0.06%)

br (0.05%)

feMerge (0.05%)

creator (0.04%)

userDefs (0.04%)

license (0.04%)
font (0.04%)

pattern (0.03%)
Bag (0.03%)

feMorphology (0.03%)
date (0.03%

)
subject (0.03%

)
License (0.03%

)
textBlock (0.03%

)
textRect (0.03%

)
paragraph (0.03%

)
tabList (0.03%

)
description (0.02%

)
requires (0.02%

)
pa

th
 (3

4.
07

%
)

g
(2

7.
19

%
)

us
e (

16
.94

%)

text (2
.81%)

rect (2.79%)

polygon (2.05%)

title (1.97%)

stop (1.94%)

symbol (1.76%)line (1.40%)

circle (1.17%)

defs (1.01%
)

ellipse (0.93%
)

clipPath (0.81%
)

lin
ea

rG
ra

di
en

t (
0.

63
%

)

st
yle

 (0
.4

8%
)

a (
0.4

2%
)

tsp
an

 (0
.29

%)

animate
 (0

.28%)
polyline (0.13%)

radialGradient (0.11%)metadata (0.09%)
desc (0.09%)

mask (0.07%)

filter (0.07%)

RDF (0.06%)

guide (0.06%)

format (0.06%)

type (0.06%)

Work (0.06%)

namedview (0.05%)

feGaussianBlur (0.05%)

feColorMatrix (0.05%)
feOffset (0.03%

)
div (0.03%

)
feBlend (0.02%

)
switch (0.02%

)
foreignObject (0.02%

)

path (96.76%)

defs (1.62%)

g (1.62%)

Figure 30. Distribution of SVG Primitives and SVG Tags. We show the frequency of SVG tags that appear in the ground truth of SVG-
Stack dataset (outer ring), compared to the frequency of tags generated by StarVector (middle ring), and compared to our most performant
baseline (LIVE). For visualization purposes, we apply a logarithmic scaling over the counts and show the base percentage in parentheses.
StarVector generates SVGs that contain tags with a similar distribution to the ground truth. The baseline is limited to paths or basic
primitives.

4. LIVE achieves the best results in terms of pixel-based
metrics like MSE, LPIPS, and SSIM (see Tables [1, 2,
3]). Using 32 paths, it effectively represents a wide range
of images, making it highly versatile for vectorization
tasks, including natural images, which StarVector cannot

handle due to its specialized training. However, LIVE
has notable limitations. It relies on a slow test-time opti-
mization process (approximately 10 minutes per sample,
using 32 paths, Table 3) to refine SVG outputs for good
MSE scores, often introducing unwanted visual artifacts.

Additionally, its exclusive use of path primitives results
in significantly larger SVG files (19k tokens), as shown
in Table1. In contrast, StarVector produces compact (3k
tokens) and professional-grade SVGs by leveraging a va-
riety of SVG primitives beyond paths, achieving higher
precision and efficiency.
Notably, we find that this method, and the broader fam-
ily of differentiable techniques it belongs to, is unsuit-
able for generating images that require specific primi-
tives, such as those in diagrams. Its performance on the
SVG-Diagrams benchmark is poor, as illustrated in Fig-
ure 14.

5. DiffVG offers comparable results as the other baselines
in terms of reconstruction metrics, and it can produce
suitable SVG image vectorization with 32 paths (same
as LIVE), as seen in Tables [1, 2, 3]. This tables also
show that DiffVG produces large SVGs as seen in the
number of tokens (Tokens column), approaximately 19k
tokens, similar to LIVE. This means that files are ex-
tremely large compared to the ones of StarVector. As
mentioned before, this is due to StarVector leveraging
understanding and SVG primitieves. Nevertheless, this
method is substantially faster than LIVE, requiring 30
seconds per sample.

6. Image Processing Methods: VTracer, Potrace, Auto-
trace Previous image processing methods for Image-to-
SVG are powerful, excelling at fitting vector images to
raster inputs with near-zero MSE while reliably captur-
ing the shapes and colors of the original image. How-
ever, we identify several shared limitations across
these methods: (1) lack of SVG file compression, as
they often generate excessively long paths (see the To-
kens column in Tables 1 and 2); (2) susceptibility to vi-
sual artifacts, especially with challenging patterns; and
(3) poor performance in vectorizing diagrams, as illus-
trated in Figure 14. On the SVG-Diagrams benchmark,
VTracer, Potrace, and AutoTrace struggle with pro-
ducing high-quality results.
These methods perform best on images that can be seg-
mented into distinct regions by color or texture but fail
with complex patterns, such as small, closely spaced
shapes or fine details. For example, in Figures 9 and 4,
small polygons and intricate text are inadequately vec-
torized, with details often lost. All three methods are
restricted to path primitives, limiting their ability to sup-
port features like optical character recognition or render-
ing text with the <text> tag. Although Potrace some-
times better preserves text compared to others, it still

cannot recognize or encode it semantically.
Despite these limitations, these methods excel in genera-
tion speed, making them highly efficient for many tasks.
As shown in Table 3, VTracer and AutoTrace can gen-
erate SVGs in under a second, while Potrace typically
takes around 10 seconds. In comparison, StarVector re-
quires over a minute, and other baselines can take any-
where from 10 to 20 minutes. While StarVector’s seman-
tic richness and compact outputs make it better suited
for certain applications, these image processing methods
demonstrate a clear advantage in scenarios where speed
is critical.

7. IconShop achieves remarkable results on the SVG-
FIGR dataset, as demonstrated in Table 4 and Figures
of their original work [94]. However, it is not designed
to handle SVG-Stack due to its restriction to modeling
only the path primitive. StarVector outperforms Icon-
Shop, as shown in Tables 4, across metrics such as FID,
FID CLIP, and CLIP Score. Qualitative examples further
highlight StarVector’s superior performance in Text-to-
SVG generation within the FIGR-SVG dataset.

8. LLMs for Code Generation. Methods utilizing LLMs
to directly generate SVG code present appealing advan-
tages. In our evaluation, we assessed GPT-4, GPT-4V,
CodeLlama, and our proposed StarVector approach. By
leveraging the code space, these models can utilize var-
ious SVG primitives based on their understanding of
raster images, including path shapes and higher-order
primitives like circles and text. This capability enables
applications in new domains, such as diagram genera-
tion, as demonstrated by the results in Figure 14. How-
ever, most LLMs have not been specifically trained for
the Image-to-SVG task, which limits their performance.
In contrast, StarVector outperforms other LLMs due to
its dedicated architecture and tailored training method-
ology, excelling in both image understanding and SVG
generation.
Upon reviewing the complete set of results, we conclude
that the StarVector approach is the only deep learning-
based Image-to-SVG model capable of achieving results
comparable to those of VTracer, Potrace, and AutoTrace.
Furthermore, StarVector paves the way for novel re-
search avenues in vector graphics generation, enabling
applications such as diagram generation, Text-to-SVG
generation, and potentially enhanced editing and under-
standing of vector images.

10.7. Human Evaluation
We conducted a human evaluation to compare the out-
puts of StarVector-8B, our best model, with those of
the most powerful baselines. Participants were selected
from diverse backgrounds and carefully screened for
conflicts of interest, with none of the key authors in-
volved. The evaluation was performed through a web
interface (shown in Figure 31) that provided anonymized
outputs and randomized sample presentations to prevent
pattern recognition or bias.
The results, presented in Figure 5, demonstrate a strong
preference for StarVector-8B across all settings, espe-
cially in SVG-Diagrams tasks. This highlights a dis-
connect between pixel-based metrics (e.g., MSE, SSIM)
and human visual perception of SVGs. While base-
line models often prioritize pixel-perfect reconstruction,
human evaluators preferred StarVector’s sharp, well-
defined shapes and its effective use of primitives (Fig-
ure 30).
Spearman correlation analyses between model metrics
and human evaluations further emphasize this gap. MSE
shows weak correlations (0.0596 and -0.1002), indicat-
ing its inadequacy as a predictor of human preferences.
In contrast, DinoScore exhibits significantly stronger
correlations, with values of -0.6193 and 0.6214. More-
over, a robust correlation of 0.7577 between differences
in DinoScore and human evaluation scores highlights
DinoScore as a more reliable metric for assessing SVG
quality in alignment with human judgment.

11. StarVector Method
Here, we provide details on the StarVector architecture,
training recipe, and generation process.

11.1. Architecture
11.1.1. Large Language Model
We consider several aspects when choosing the LLM to
handle the SVG code generation. First, we require an LLM
that can handle large token contexts during training, as SVG
code samples are typically of long lengths (i.e., between
1,000-4,000 tokens for the most common SVG datasets but
growing arbitrarily for much more complex vector graph-
ics). Second, we need fast decoding during the generation
of these large contexts. Finally, we would benefit from mod-
els that have been extensively pre-trained on general coding
tasks to avoid early training costs.

Some prior works offer open-source models that fit these
requirements. We explored the open-source families of
models CodeGen [53], StarCoder [42] and StarCoder2 [49].

We empirically find the StarCoder family to be
the most suitable choice for our requirements. Star-
Coder offers a pre-trained model with 1B parameters

(starcoderbase-1b) and a context length of 8k tokens,
making it ideal for smaller-scale experiments while main-
taining efficient generation speeds. The model employs
Multi-Query Attention and a Fill-in-the-Middle objective,
trained on 1 trillion tokens, with a context window of 8192
tokens. Its compact size ensures compatibility with GPUs,
facilitating data parallelism during training—a crucial ben-
efit when fine-tuning all network parameters, including the
memory-intensive image encoder.

The second generation, StarCoder2, extends the context
length to 16,384 tokens, presenting an exciting avenue for
exploring training on SVGs with longer context require-
ments. For this, we leverage the 7B parameter version
(starcoder2-7b), which incorporates a sliding window
attention mechanism of 4,096 tokens and was trained on
over 3.5 trillion tokens of code using the same Fill-in-the-
Middle objective [49]. This enhanced context capacity and
training scale make it a promising candidate for scaling
SVG-based experiments.

These two types of LLMs define the backbones of
our two StarVector variants. StarVector-1B is based on
the starcoderbase-1b architecture and weights, while
StarVector-8B is based on the starcoder2-7b architec-
ture and weights.

11.1.2. Image Encoder
Our image encoding pipeline computes the images’ feature
representations using a backbone image encoder and aligns
them to the LLM via the Adapter module (see Figure 3).
State-of-the-art image encoders are typically focused on
natural images. However, our data contains images of lo-
gotypes, icons, fonts, or emojis, which usually contain no
background (which we set to white) and mostly constant
colors.

Note that the image encoder is used exclusively for the
Image-to-SVG task and is not employed during the Text-
to-SVG task. For Image-to-SVG, images must be projected
into a representation with the same dimensionality as that of
the LLM. We train the model to enable the LLM to ingest
these representations and generate SVG code sequentially.

To choose the best encoder, we draw inspiration from
the success of pre-trained encoder backbones in down-
stream computer vision tasks such as classification [62], re-
trieval, and generation [23], including both convolutional
and transformer-based models. Specifically, we experiment
with CLIP ViT-B/32 [62], ConvNext [46] (pre-trained on
LAION-2B [75]), and VQGAN [23], which we pre-train
on an image reconstruction task using raster images from
SVG-Stack. For CLIP, we have Lv = 257 embeddings,
including the CLS token. For VQGAN, we use the pre-
quantization layers and flatten them to obtain Lv = 196
embeddings. For ConvNext, we flatten the last activation
map to get Lv = 49 embeddings.

We explore several image encoders based on different

Figure 31. The web interface used during the human evaluation.

paradigms. VQGAN [23] is based on learning to project
images to discrete tokens. First, we fine-tune an Ima-
genet [19]-pretrained VQGAN on the SVG-Stack dataset
with the VQ-adversarial reconstruction task. We find that
using the features before the quantization yields better re-
sults. ConvNext [46] is a convolutional backbone, which
we extract features before pooling. We start from a LAION-
2B [75]-pretrained checkpoint. Finally, ViT CLIP [62] is
based on the Visual Transformer (ViT) [22] and is well pre-
pared for autoregressive tasks. We extract all output repre-
sentations. We use a LAION-2B pre-trained model. During
the training of StarVector, all the parameters of the image
encoders are updated. We find that the best choice is using
CLIP. We consider that the gains in performance come from
CLIP using more visual tokens (257) than the other image
encoders.

The adapter first projects the features from the original
dimensionality Dv to a dimensionality Dv × 2, followed
by a Swish non-linear activation function and a linear pro-
jection to the LLM dimensionality Dl. Finally, we apply
a layer normalization [5]. We initialize the adapter param-
eters with Glorot [27]. Dropout [79] of 0.1 is applied at
the beginning. These hyperparameters were found using a
random search on SVG-Fonts.

Our results show that image resolution is essential to
capture fine-grained details like texts or high-frequency pat-
terns. As seen in the SVG-Diagrams dataset in Figure 6),
diagrams and figures are part of the SVG-Stack dataset
and present challenging horizontal or vertical aspect ratios.
When images have these aspect ratios, we make the image
fit in the 224×224 resolution, losing much detail, especially

for the OCR capabilities of reading rendered texts and ac-
curately displaying them.

Additional results comparing image encoders can be
found in Figures 19 and 22. These results show the boost
in precision obtained when using CLIP. VGQAN and Con-
vNext often fail to capture the image’s shape and the path’s
trajectory. We note that ConvNext performs better than VQ-
GAN. These differences are also due to the differences in
the number of parameters. The CLIP ViT-L/14 model that
we use consists of 290M parameters, VQGAN consists of
29M, and ConvNext consists of 179M parameters.

Generating SVGs from natural images is out of the scope
of this project. However, future work should focus on
adapting this approach to natural images, drawing from [50]
and [12] to create a dataset of natural images and SVG pairs.

The selected image encoder architectures for StarVec-
tor include two variants: one with fewer parameters and
reduced image resolution, based on the CLIP ViT-B/32
model, which processes images at 224x224 pixels and
is utilized in StarVector-1B. The second variant, SigLip
(siglip-so400m302 patch14-384), has a larger num-
ber of parameters and processes images at a higher reso-
lution of 384x384 pixels, and is employed in StarVector-
8B. Given the positive results from the ViT architecture, we
chose the SigLip variant due to its demonstrated effective-
ness [97] and the enhanced resolution it provides.

11.2. Training
For training the StarVector model, we define the task of
Image-to-SVG as an inverse rendering problem that con-
verts a raster image (represented with visual tokens) into a

sequence of SVG code. This can be viewed as a sequence-
to-sequence problem that models the translation between
the image and SVG code domains. As detailed in Sec-
tion 11, we utilize a CLIP ViT-B/32 for StarVector-1B and
SigLip for StarVector-8B as image encoders, along with a
non-linear adapter to generate a sequence of visual tokens.

The training process consists of two stages. In the first
stage, the Image-to-SVG training phase, we construct se-
quences of visual tokens (produced by the image encoder
and adapter) and SVG tokens, separated by a trigger to-
ken, <svg-start>. We train the LLM to learn these
sequences on a large SVG-Stack dataset using a basic lan-
guage modeling loss that calculates the cross-entropy loss
in predicting the next token in a sequence based on the pre-
vious tokens.

This task enables the model to learn the concept of draw-
ing with SVG vectors that resemble the input image. Im-
portantly, this training can occur without supervision in the
image domain (i.e., without pixel loss), relying solely on
categorical cross-entropy loss for the LLM vocabulary in-
troduced by the next-token prediction task.

In the second stage, we fine-tune the checkpoint from
the first stage, which has learned SVG syntax through the
Image-to-SVG task, on the Text-to-SVG task. During this
phase, the image encoder is disregarded, as it becomes a
Text-to-text task where the text instructions and SVG codes
can be tokenized and processed directly by the LLM.

Training Details. We trained StarVector-1B on 1 node of 8
A100 80GB GPUs using Accelerate with DeepSpeed stage
2 and StarVector-8B on 8 nodes of 8 H100 80GB GPUs with
Fully Shared Data Parallel (FSDP). For Image-to-SVG,
we used total batch sizes of 128 and 512 for StarVector-
1B and -8B, respectively, a learning rate of 1e-5, and the
AdamW optimizer. To optimize memory and computation,
we employed bf16 precision, FlashAttention2, and gradient
checkpointing. StarVector-1B took 7 days to train, while
StarVector-8B took 10 days, with both models completing
2 epochs.

We use HuggingFace Transformers [93] and Py-
Torch [58] for the implementation. We use a batch size
of 2. Images are processed with a resolution of 224x224,
as defined by the pre-trained CLIP image encoder, and pro-
cess a maximum of 8192 tokens, considering the 257 visual
tokens and the rest for the SVG tokens. We use gradient
batch accumulation of 8 and train on a data parallel setup
with 4 A100 80GB GPUs, having an effective batch size of
64. The learning rate is set to 5 × 10−4 for training, us-
ing AdamW optimizer [48] for approximately five days of
training on the SVG-Stack dataset.

11.3. Generation

Here, we describe how to sample SVG code from our
model. As a decoder-only LLM [42], StarVector first com-
putes the key-value (KV) cache using the visual tokens from
the image and then produces the initial set of output logits.
This stage is often quick because the model can process the
entire visual token sequence simultaneously [78]. The se-
lected token from the output logits is then input back into
the model, which generates logits for the subsequent token.
This process is iteratively repeated until the model produces
the desired quantity of tokens. Our approach uses archi-
tectural improvements for fast decoding, such as FlashAt-
tention [18] and Multi-Query Attention [77]. We leverage
vLLM to improve inference speed.

We perform a grid search on SVG-Emoji and SVG-Icons
validation sets to select the correct sampling temperature.
The choice of temperature does not strongly impact the re-
sults. However, a 1-point increase in performance is ob-
served on CD for SVG-Emoji using temperatures close to
1.0.

We also present an ablation study of StarVector-1B pop-
ular decoding techniques [31, 52, 76, 85]. Specifically, we
experiment with greedy decoding, beam search, and nu-
cleus sampling with top-p. Results are shown in Table 7.
The use of nucleus sampling with top-p=0.9 and tempera-
ture T=0.5 (no beam search) shows to be the best option.
The beam search improves the greedy decoding baseline
but does not work well when combined with nucleus sam-
pling, increasing the inference time. In sum, we recommend
nucleus sampling [31] with top p=0.9 and temperature be-
tween 0.5 and 0.9 for the best performance.

Are the SVGs valid and compilable? A common issue
when generating SVGs with our approach is that the max-
imum token length of the LLM might not be sufficient to
complete the SVG code, leading to compilation errors. We
find that 85% of the generated SVG fit within the context
length and compile successfully. The remaining incomplete
samples are post-processed with cairosvg to produce a
complete and compilable SVG. However, in some cases,
parts of the image may be lost during this process. With
this technique, 100% of the generated SVGs are valid and
compilable.

Improving SVG Quality Through Sampling. The gener-
ation process is stochastic, meaning the outputs may some-
times take an incorrect path, leading to failed generations
or repetitive patterns. To address this, we propose a simple
baseline approach: generate k SVG outputs with varying
sampling parameters (e.g., by adjusting the temperature),

then compare the outputs with the ground truth using a vi-
sual metric (we propose DinoScore) to select the most ac-
curate result. In an ablation study conducted on SVG-Stack
using StarVector-8B with k = 1 and k = 5, we observe
a boost in DinoScore by 0.12. Empirically, after sampling
100 test samples, we find that 32% of the SVGs are more
accurate when using k = 5, though this increases the gener-
ation time by a factor of k. The use of vLLM helps mitigate
the slower sampling process, as it operates much faster. For
further improvement in code generation, previous work has
used MCTS techniques [7], which leverage visual feedback
more effectively to guide the generation and enhance the
stochastic sampling process.

	SVG Datasets in SVG-Bench
	Datasets with Simplified SVGs.
	Creating the SVG-Fonts Dataset
	Creating SVG-Diagrams
	Generating Synthetic Captions on SVG-Stack
	Data Augmentation for SVG

	SVG Methods and Baselines
	Image-to-SVG Baselines
	Text-to-SVG Generation Baselines

	Additional Experiments and Results
	Image-to-SVG Results
	Ablation Studies
	Text-to-SVG Results
	Results on SVG-Diagrams
	Analysis of SVG Primitives
	Human Evaluation
	Comparing StarVector with Baselines
	Human Evaluation

	StarVector Method
	Architecture
	Large Language Model
	Image Encoder

	Training
	Generation

