Higher-Order Ratio Cycles for Fast and Globally Optimal Shape Matching

Supplementary Material

Contour C (2D or 3D Shape) 3D Shape Y

dso(3)(R1, R2)

Figure A.1. Ilustration of the key idea of the higher-order reg-
ulariser which favours local rigidity. We define two coordinate
frames for two connected edges e§, €S on the contour C and two
connected edges e¥, e on 3D shape). To this end, we use the
normal vectors (red arrows) at source vertices of respective edges
and the cross-product (green arrows) between respective normal
vector and respective edge. This allows us to compute two rota-
tion matrices R and R2 between which we compute the geodesic

distance dgso(s) (R1, R2) which is essentially our higher-order cost.

A. Details on Higher-Order Costs

In the following, we summarise the main aspects of the
higher-order (local rigidity) regulariser presented in [61].
The key idea is to define two coordinate frames on the con-
tour C and the 3D shape) and to compute the difference
between the rotation matrices describing the rotation from
first (second) coordinate frame on C to first (second) coor-
dinate frame on), see also Fig. A.1.

To compute the higher-order cost, we consider two con-
nected edges €§,eS on the contour C and two connected

edges e%}, e%} on the 3D shape). We note that the edge

pairs e§ and ey as well as e§ and e3 resemble vertices in the
conjugate product P and that these conjugate product ver-
tices are connected by an edge for which we compute the
higher-order cost [61]. Furthermore, we also consider the
normals at respective source vertices of the edges on both
shapes. Then, we can define the local coordinate frames by
using an edge, its respective normal and their cross-product,
see Fig. A.1. From that, we compute two rotation matrices
R, Ry, namely from the first (second) coordinate frame on
the contour C to the first (second) coordinate frame on the
3D shape). Our resulting higher-order cost, i.e. the local
rigidity regulariser, can then be computed by computing the
geodesic distance (see Fig. A.2 for an illustration) between
R; and R, on the Lie group SO(3) to quantify the differ-
ence in rotation of consecutive matched edges, and thus to
quantify the local rigidity of a matching.

Euclidean Distance Geodesic Distance

Ay

Figure A.2. Illustration of the difference between the euclidean
distance (straight red line) and the geodesic distance (red arc) in
1D for two points on the unit circle.

B. Details on Distortion Bound

The distortion bound value k£ means that a single vertex of
the curve C (2D or 3D shape) can be matched to at most k
connected vertices within Y (3D shape), see Fig. A.3 for an
illustration.

C. Additional Insights 2D-3D Shape Matching

Data Preparation. We follow [61] for data prepara-
tion: we decimate all 3D shapes from FAUST3S and
TOSCAZ3B datasets to half of their resolution and resample
2D shapes such that resulting edge lengths are equal to me-
dian edge lengths of 3D shapes.

Additional Results. In Fig. A.5, we show more quan-
titative results on FAUST3B and TOSCA3S dataset includ-
ing segmentation error on FAUST%B as well as matching
error on FAUST_%B with flips (for convenience, quantitive
results from main paper are also reported). Furthermore, in
Fig. A.7, we show more qualitative results on 2D-3D shape
matching which showcase that our approach does not have
the bias towards shorter cycles. In Tab. 3, we ablate on the
distortion bound k w.r.t. geodesic errors and computation
times. Finally, in Fig. A.4, we show results of our method
in presence of noise.

.t ma.gtthcd 9 ., P

Figure A.3. Intuition of the distortion bound k. We show on
the left that the yellow vertex of contour C is matched to 3 vertices
of 3D shape). In the product graph P (shown on the right), this
matching is encoded with the illustrated red path going to the k
duplicates of the yellow component. This illustrates the relation-
ship between duplicates of components, i.e. the distortion bound,
and possible matchings between C and).

~NSE S

Distortion bound k | 2 3 4 5 6 7 8 9 10
Mean Geo.Err w/o Flips -100| 2.5 2.7 2.6 29 29 29 29 28 28
Mean Runtime in s 69.0 69.2 69.0 69.3 70.2 70.8 71.6 71.5 71.7

Table 3. Ablation study on the distortion bound £ on 10 pairs
of FAUSTZ5. We vary the distortion bound & and compare mean
geodesic errors (without left-right flips) as well as mean computa-
tion times (best is bold). Runtimes are smaller for smaller values
of k due to increasing graph size with increasing k. Furthermore,
k = 2 yields best geodesic errors.

o = 0.001
o = 0.003
o = 0.004

Source

Figure A.4. We show results of our method in the presence
of noise (we disturb 3D vertex coordinates of a shape from
FAUST?S with varying Gaussian noise A(0,02)). We can see
(best viewed zoomed-in) local artefacts, but overall matchings are
consistent across different levels of noise.

% of Corr. Segment: TOSCA33 % of Corr. Segment: FAUST33

100 100
£
2 90 90
&
g 80 80 1
g — Liihner er al.: 0.11 — Lihner et al.: 0.09
S 70 —Roetzer eral.: 0.07 | 70 — Roetzer er al.: 0.02 |
x —— Ours: 0.06 — Qurs: 0.02
I | I ; | | I
60() 0.25 0.5 0.75 1 000 0.25 0.5 0.75 1
Geodesic Error Threshold Geodesic Error Threshold
% of Corr. Points: FAUST35 % of Corr. Points: FAUST23 w/o Flips
100 F i i 100 F I I
P
EES 1 8o .
£
g 60f {60} .
=
§ 40y — Lihnereral.: 023 | 0 — Lihner et al.: 0.21 |
S 90 — Roetzereral.: 0.15 | 9 — Roetzer et al.: 0.06 |
Lﬁ — Qurs: 0.13 — QOurs: 0.06
) I | I 0 I | I
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

Geodesic Error Threshold Geodesic Error Threshold

Figure A.5. More quantiative results on 2D-3D shape matching
(numbers in legends are mean geodesic errors). Top: we compare
segmentation errors on TOSCA3S and FAUST25. Bottom: we
compare matching errors with respect to ground-truth correspon-
dences (we remove left-right flipped matchings on the right).

Additional Runtime Experiments. In Fig. A.6, we
compare runtimes of all 2D-3D shape matching approaches
with additional GPU re-implementation of minimum cost
cycle problems (i.e. Lihner et al. and Roetzer et al. with
distortion bound). For GPU re-implementations, we use the
graph modification that we present in Sec. 3 (i.e. using dis-
tortion bound k to avoid intra-component cycles). We set
k = 2. Furthermore, we use dynamic programming on
GPU (i.e. the Moore-Bellman-Ford algorithm [5, 25, 52])
to compute a (potentially acyclic) minimum cost path from
the first component to itself (going through all other com-
ponents). To finally obtain a cyclic minimum cost path, we

Runtime Comparison on Product Graph P: FAUSTZ)

10°
E 107! e
E
Q0
E
|
Z 1072 £l
------ Lihner et al. (CPU)
— Liihner ef al. (GPU)
=~ Ours (GPU)
3 | |
10 0.5 1 1.5
[Vel - [Vy] - 10°
Runtime Comparison on Conjugate Product Graph P: FAUST23
: :
=
E
— |
£
<
Z
L e s Roetzer et al. (CPU)
—— Roetzer et al. (GPU)
=~ Ours (GPU)
| |

1072

ot

0.5 1 1.
[Vel - [Vy] - 10°

Figure A.6. Comparison of computation times (including graph
and cost computation) for fixed resolution of 3D shapes (|Vy| =
3500), while varying the resolution of the 2D contour. Lines
are median computation times. Top: we compare computation
times of approaches running on P: Lihner et al., our GPU re-
implementation of Lihner er al. and our approach. Bottom: we
compare computation times of approaches running on the ap-
prox. 10x larger conjugate product graph P: Roetzer et al., our
GPU re-implementation of Roetzer et al. and our approach. Both
comparisons confirm that improved computation times of our ap-
proach not only stem from implementation on GPU but also from
requiring less amount of branches.

use the branch and bound strategy presented in [41, 61].

This implementation is similar to algorithms presented
in [41, 61] except that we integrate the distortion bound
(cf. Fig. 3) which allows for parallelisation (algorithms
[41, 61] use heaps which prohibits parallel implementa-
tion). We release the GPU implementation for minimum
cost cycles along with our implementation for minimum ra-
tio cycles.

Finally, we compare to Howard’s algorithm [34] to con-
duct runtime experiments'. To this end, we use P and set
k = 0 to keep the problem as small as possible. Even
though we run on a much smaller problem (i.e. P instead
of P and k = 0 instead of k = 2), Howard’s algorithm did
not finish within a day on the smallest instance reported in
Fig. A.6 (very likely caused by its exponential worst-case
time complexity).

! Implementation taken from https://lemon.cs.elte.hu/.

https://lemon.cs.elte.hu/

—
(e

Source

e = X 0
L. G G =
Sk ok S =
~ak, ~ak, ~al, =
uge Tug TUg =_ -
A AT

Roetzer et al. [61] Lihner et al. [41]

Ours

R e k=
o
S -
R

Figure A.7. More qualitative results on 2D-3D shape matching. The first five columns are shapes from FAUST35 dataset while the last
five columns are shapes from TOSCA3B dataset. In column two, we can see a failure case of our method where the matching collapses to
one side of the 3D shape (very likely stemming from intrinsic symmetries). Apart from that, Roetzer et al. and ours consistently produce
better results than Lahner ef al. while ours has less bias towards shorter paths (see green and red circles).

D. Additional Insights 3D-3D Shape Matching

Data Preparation. We follow [59] and decimate all 3D
shapes to 1000 triangles. This conveniently allows to com-
pare results directly with the ones reported in [59]. Further-
more, we repair any mesh defects using [3]. Nevertheless,
we note that in principle shapes with boundary or genus
g > 0 can be matched with our approach.

Additional Results. In Fig. A.8, we show additional
qualitative results for 3D shape matching for all methods
(including DiscrOpt [57] and SmoothShells [22]).

—_
[\S}

Source

DiscrOpt[57]
=D -~

ook

SmoothShells[22]

ULRSSM[12]

SpiderMatch[59]

Ours

@)@33@3@3 -
.

~y =y

Figure A.8. More qualitative results for 3D shape matching for all methods. The first six columns are the shape pairs shown in the main
paper (1 — 3 from FAUST dataset and 4 — 6 from DT4D) including results computed using methods DiscrOpt and SmoothShells. The last
six columns are additional qualitative results (7 — 9 from FAUST dataset and 10 — 12 from DT4D dataset).

	Introduction
	Related Work
	Ratio-Based Shape Matching
	Cycle-Based Matching in Product Graphs
	Minimum Ratio Cycles
	Higher-Order Ratios for Shape Matching

	Experiments
	2D-3D Shape Matching
	3D Shape Matching
	GPS-Art on City Maps

	Discussion
	Conclusion
	Details on Higher-Order Costs
	Details on Distortion Bound
	Additional Insights 2D-3D Shape Matching
	Additional Insights 3D-3D Shape Matching

