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Overview
In this supplementary material, we provide further explana-
tions and visualizations of our main paper, “Insightful In-
stance Features for 3D Instance Segmentation”. First, we
explore additional challenging cases from previous works
(Sec.1). Then, we explain more details about the implemen-
tation and large-scale datasets [1, 2, 4, 16] (Sec. 2). Also,
we describe our transformer-based architecture (Sec. 3).
Moreover, we supply more quantitative and qualitative ex-
perimental results to further demonstrate the robustness of
our IKNE network for 3D instance segmentation (Sec. 4).

1. Additional Failure Cases
In Fig. 1, we provide additional challenging cases from pre-
vious works. (a) First, we empirically observe that their
multiple instance candidates usually represent incomplete
fragments of the same single instance. (b) Also, they of-
ten confuse instances with backgrounds or misunderstand
their spatial range. In this work, to address these challenges,
we introduce (1) IKA to integrate scattered instance-specific
knowledge across multiple instance-wise candidates and (2)
ISG to enhance the structural understanding of candidates
with essential cues from noise-reduced features.

2. Experimental Setup
2.1. Datasets

We train and evaluate the overall performance using four
landmark datasets for 3D instance segmentation: Scan-
NetV2 [4], ScanNet200 [16], S3DIS [1], and STPLS3D [2].
ScanNetV2. The ScanNetV2 [4] dataset consists of high-
quality, large-scale 3D point data with 1,613 scenes from
various room types, such as bedrooms, libraries, and offices.
It includes 1,201 training scenes, 312 validation scenes, and
100 hidden test scenes. Each scene is captured using RGB-
D cameras and annotated with 20 semantic categories.
ScanNet200. To reflect diverse real-world scenarios, Scan-
Net200 [16] extends the original ScanNetV2 [4] dataset
with fine-grained 200 categories. ScanNet200 enables more
practical assessments of how effectively methods can un-
derstand rare instances (e.g., water cooler or keyboard pi-
ano) and challenging, long-tail distribution scenes. In our
experiments, we evaluate using 18 classes for ScanNetV2
and 198 classes for ScanNet200, excluding wall and floor.
S3DIS. The S3DIS [1] dataset is large-scale benchmark,
comprising a wide range of indoor environments, including
271 scenes from 6 areas within three different buildings. It
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Figure 1. Additional examples of two challenging cases from
previous works: (a) represents multiple fragments of a single in-
stance, and (b) illustrates misinterpretation of spatial range (Scene
1-2) and instance confusion with backgrounds (Scene 3-4).

is categorized with 13 semantic classes, and we utilize all
these classes for evaluation. Following the standard proto-
col [1, 11, 17], we report segmentation scores on Area 5
(Area 5 scenes for evaluation and the others for training)
and 6-fold cross-validation (average across all 6 areas).
STPLS3D. The STPLS3D [2] dataset is a extensive aerial
photogrammetry dataset containing real and synthetic 3D
point clouds. It includes 25 urban scenes covering 6 km²,
with 14 semantic classes. We use scenes 5, 10, 15, 20, and
25 for evaluation and the rest for training, following [3, 19].

2.2. Implementation Details

In this work, we implement our experimental setup using
the PyTorch deep learning framework. For our kernel-based
framework, we utilize two point aggregator blocks, each
with a ball query radius of 0.2 and 0.4 and 32 neighbors
for both layers. We also implement three dynamic convolu-
tion layers. We train our model for 120 epochs using a RTX
3090 GPU with a batch size of 12, applying the AdamW op-
timizer with a learning rate of 1ˆ 10´3 and a weight decay
of 1 ˆ 10´4. For the transformer-based pipeline, we utilize
a transformer decoder with six layers and eight heads to re-
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Figure 2. An overview of our transformer-based framework. Built upon the conventional transformer-based architecture, our model
consists of four main modules: (1) Sparse Convolutional 3D Backbone; (2) Instance-wise Knowledge Aggregation (IKA); (3) Instance-wise
Structural Guidance (ISG); and (4) Mask Transformer Decoder, which iteratively refines instance queries based on attention mechanisms.

fine 400 instance queries. We use Fourier absolute position
encoding with a temperature set to 10,000. Also, we train
our model for 512 epochs with a batch size of 4, employing
the AdamW optimizer with a learning rate of 2 ˆ 10´4 and
a weight decay of 5 ˆ 10´2 on a single RTX 3090 GPU.

Regardless of architecture, we set the voxel size to 0.02m
for the ScanNet [4] and S3DIS [1] datasets, and 0.3m for the
STPLS3D [2] dataset. During training, points are randomly
sampled for augmentation with a maximum of 250,000
points, while all points are used for evaluation. This sam-
pling technique is memory-efficient and can also serve as a
dropout. In particular, we leverage the superpoint pooling
technique [12, 13] on the ScanNet for efficient computation.
Also, we set the correlation matrix threshold value τ to 0.9
(exceptionally 0.8 for STPLS3D) for precisely identifying
instance candidates representing the same instance, and the
top t value as 0.5 for an optimal balance between data com-
pression and information preservation. Moreover, for LKA

and LSG, we set the balance hyperparameters w and w̃ to
5.1ˆ 10´3 following [9, 20]. Finally, we leverage the Hun-
garian algorithm [10] for one-to-one matching between the
predicted instance masks and the ground truth masks.

3. Our Transformer-based framework

In this section, we explain our instance-wise knowledge en-
hancement approach based on traditional transformer struc-
ture [11, 17]. As shown in Fig. 2, our model consists of four
main modules: (1) Sparse Convolutional 3D Backbone;
(2) Instance-wise Knowledge Aggregation (IKA), which
associates scattered cues of the same single instance; (3)
Instance-wise Structural Guidance (ISG), which enhances
spatial understandings of instance queries using noise re-
duced features; and (4) Mask Transformer Decoder, which
refines hundreds of candidate queries to contain instance-

specific knowledge based on attention mechanisms.
Transformer-based 3DIS Architecture. As in the kernel-
based architecture (Sec.3 of our main paper), the sparse
convolutional U-Net backbone [7] first takes a colored point
cloud P P RNpˆ6 as input and extracts full-resolution fea-
ture maps F 1

p P RNpˆD. We then produce F 1
p into mask

features Fmask P RNpˆD and point features Fp P RNpˆD

via MLP layers. Following [14, 17], we set zero-initialized
non-parametric instance queries Q P RNkˆD, referring
to point positions sampled with Farthest Point Sampling
(FPS) [5]. Given the Fmask, Fp and Q, the transformer
decoder layer iteratively enhances the queries Q through at-
tention layers. Specifically, we employ the masked cross-
attention using an intermediate foreground mask Mattn.
We compute the similarity between Q and Fmask using dot
product operation, then calculate the probability of the in-
stance mask using the sigmoid function as follows:

Mattn “ tmi,j “ rσpFmask ¨ QT qi,j ą 0.5su (1)

where the threshold value is 0.5 for binary attention mask.
With Mattn, Q attends to point features Fp in the cross-
attention layer to contain instance-specific information as:

Q “ softmaxpQKT {
?
D ` MattnqV (2)

where K and V are linearly projected from Fp, and Q are
from Q. Subsequently, we utilize the standard self-attention
layer. Here, the queries, keys, and values are all linear pro-
jections of Q. After passing through these layers, we predict
the final instance masks using queries from the last layer.
Our Approach. In transformer-based architecture, decoder
layers iteratively attend point features, which often contain
inherent fuzzy noises due to the sparse and incomplete na-
ture of point clouds. Thus, repetitive layers can lead to noise
accumulation in the candidate features during the attention



operations, potentially resulting in spatial range misinter-
pretations. To tackle this challenge, we introduce the ISG
network, which regularizes the correlations between the
original and clarity-enhanced query features within decoder
layers based on a simple yet effective truncated SVD tech-
nique [8], as detailed in Sec.3.3 (main paper). Then, the iter-
ative layers continuously enrich instance candidate queries
with structural cues. Also, we implement the IKA network,
which is designed to integrate scattered clues across query
features representing the same single instance. The IKA
optimizes correlations among instance candidate queries, as
outlined in Sec.3.2 (main paper). Ultimately, our model pre-
dicts more precise instance masks with highly informative
instance query features through our two novel modules.

4. Additional Experiments
4.1. Effectiveness of the IKA

To further validate the effectiveness of our IKA network,
we investigate the average variance and standard deviation
of instance candidate features across both kernel and trans-
former based architectures of baselines [11, 15] and those
with IKA in Tab. 1 and Fig. 3. We first identify candidates
representing the same instance using ground-truth instance
masks to ensure fair and more precise comparisons between
predicted instance masks from each model. We then calcu-
late the variance and standard deviation of features corre-
sponding to identical instances. Compared to baselines, in-
corporating IKA consistently achieves lower variance and
standard deviation, regardless of the architecture. These re-
sults verify that our instance-wise aggregation approach ef-
fectively enhances the correlations between candidates from
the same instance, establishing meaningful associations.

Method Avg Variance Avg StDev

ISBNet (Kernel-based) [15] 2.8441 1.6152
ISBNet w/ IKA 2.4620 1.4199

MAFT (Transformer) [11] 2.3613 1.5352
MAFT w/ IKA 2.1278 1.2743

Table 1. Average variance and standard deviation of instance fea-
tures for kernel / transformer based models and those with IKA.

4.2. Effectiveness of the Our 3DIS framework

We provide t-SNE [18] visualizations of instance candidate
features clustered using the density-based spatial clustering
(DBSCAN) [6] algorithm to further qualitatively demon-
strate the significance of the our framework. As shown in
Fig. 4, the candidate features in the baseline method [15]
are wildly scattered without patterns in the feature space, re-
sulting in multiple fragments. In contrast, our method pro-
duces relatively distinctive clusters for the same scene, with
clusters that are accurate to the number of instances. These

Avg Var / StDev (Transformer)Avg Var / StDev (Kernel)

Figure 3. Distributions of the average variance and standard de-
viation of instance features across kernel and transformer based
baselines (blue) and those with the IKA (orange) network.

qualitative findings confirm that our IKA and ISG networks
effectively handle hundreds of instance candidate features.
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Figure 4. t-SNE [18] visualizations of instance candidate features
from kernel-based baseline (ISBNet [15]) and our IKNE method.

4.3. Threshold τ for the STPLS3D Dataset

The threshold τ starts from insights on cosine similarity,
which ranges from r´1, 1s, where ´1 for opposite, 0 for un-
related, and 1 for similar vectors. In our case, we normalize
it to r0, 1s (Sec. 3.2, main); thus, 0.5 represents unrelated.
We then determine the optimal τ over 0.5 via experiments
in Tab.8 of our main paper. In addition to analyzing τ on the
ScanNetV2 [4] and S3DIS [1] datasets, we further evaluate
a range of τ values on the STPLS3D [2] dataset to identify
the threshold that best facilitates robust candidate selection
for the same instance. As shown in Tab. 2, the model effec-
tively specifies instance candidates likely to represent the
same instance with a somewhat lower threshold of 0.8 for
the STPLS3D, compared to 0.9 for both ScanNetV2 and
S3DIS. This difference is probably because scenes from the
STPLS3D dataset include relatively monotonous large in-
stances, such as buildings and vehicles, unlike ScanNetV2
or S3DIS, which contain more intricate indoor props.

4.4. Correlation Regularization Terms.

Inspired by the self-supervised mechanisms [20], we softly
guide highly correlated instance-wise features to be closer



Architecture Threshold τ mAP mAP50

Baseline (Transformer) [17] - 63.4 79.2
Ours 0.6 61.8 78.8
Ours 0.7 64.5 80.8
Ours 0.8 64.9 81.2
Ours 0.9 64.7 81.0

Table 2. Ablation study to investigate the correlation threshold τ
for instance-wise candidate identification on the STPLS3D [2].

to each other in the latent space, enhancing their solidarity
(Eq.6 and Eq.10). Specifically, we utilize dynamically gen-
erated pseudo-binary labels to regularize correlations. This
element-wise regularizing strategy is conceptually compa-
rable to standard cross-entropy loss, which measures the
difference between predicted probabilities and ground-truth
distributions. Therefore, to compare the two loss func-
tions, we replace our regularization loss (LKA and LSG)
with standard cross-entropy loss. Here, we set all other set-
tings constant. In Tab. 3, both approaches outperform the
baseline [15]; however, ours with cross-entropy loss yields
lower performance than our original method. We consider
that this performance gap comes from the differences in
how each loss handles negative pairs. Cross-entropy loss
aims to minimize the disparity between predictions and true
labels without explicitly addressing negative pairs. On the
other hand, ours considers both positive and negative pairs,
reducing the position-wise distances between predicted and
target matrices. This strategy encourages the model to es-
tablish valuable connections among highly correlated can-
didates, while minimizing confusion from irrelevant knowl-
edge of unrelated candidates. In conclusion, these results
validate the effectiveness of our regularization approach.

Method
ScanNet Val S3DIS Area 5

mAP / mAP50 mAP / mAP50

Baseline [15] 56.8 / 73.3 56.3 / 67.5
Ours w/ Cross Entropy 61.2 / 79.7 58.6 / 70.4

Ours 62.9 / 81.8 61.1 / 73.0

Table 3. Ablation study to compare our correlation regularization
terms (LKA and LSG) with traditional cross-entropy loss.

4.5. Discussion on the Number of Instances

We investigate the number of instances within scenes from
various datasets, including ScanNetV2 [4], S3DIS [1], and
STPlS3D [2], in Tab. 4. We randomly sampled around 30%
of scenes from each dataset and computed the minimum,
maximum, and average number of instances. On average,
the S3DIS, which consists of a wide range of indoor en-
vironments such as exhibition and educational spaces, in-
cludes more instances (34.5) per scene than the other two
datasets. The ScanNetV2, which contains rooms of various
sizes, from small bathrooms to large conference rooms, has

Dataset min Inst. max Inst. avg Inst.

ScanNetV2 [4] 3 104 15.2
S3DIS [1] 6 90 34.5

STPLS3D [2] 2 93 25.2

Table 4. Minimum (min), maximum (max), and average (avg)
number of instances per scene from various datasets.
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Figure 5. Global view visualizations of predicted instance masks
with ground truth from scenes containing many instances across
various datasets, ScanNetV2 [4], S3DIS [1], and STPLS3D [2].

a relatively lower average instance count (15.2) per scene
but occasionally includes a maximum of 104 instances. In
Fig. 5, we also visualize examples of scenes, especially in-
cluding a large number of instances. Since our approach
regularizes features based on correlations among all hun-
dreds of instance candidates, it remains effective regardless
of the total instance numbers. While it may be less effective
in rare cases where the number of objects exceeds the num-
ber of candidates, such scenarios are highly uncommon.

4.6. Visual Comparison

In this section, we present additional qualitative visualiza-
tion results of our framework, compared to existing state-of-
the-art models: ISBNet (kernel-based, K) [15] and MAFT
(transformer-based, T) [11], in Fig. 6 and Fig. 7. We visu-
alize the predicted semantic (Sem.) and instance (Inst.) re-
sults with corresponding ground truth on the ScanNetV2 [4]
dataset, using red colored boxes to highlight the critical dif-
ferences for better comparison. First, as shown in Fig. 6, our
method outperforms existing methods in precisely classify-
ing a single instance into one category without fragments.
In particular, compared to baseline models, ours more ac-
curately identifies large instances like a sofa (Scene 4) or
cabinet (Scene 5). Moreover, as shown in Fig. 7, ours dis-
tinguishes objects clearer; for example, ours precisely cap-
tures their spatial range in Scenes 12-14, where objects are
closely adjacent. These results underscore the effectiveness
of our novel modules, which enhance instance-wise knowl-
edge for understanding complex real-world environments.
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Figure 6. Qualitative comparisons of 3DIS performance on the ScanNetV2 [4] dataset. We visualize semantic (Sem.) masks of ISBNet
(kernel-based, K) [15], MAFT (transformer-based, T) [11] and ours based on both architectures with Ground Truth (GT) masks. The key
differences are highlighted using red-colored boxes for better comparison. Note that the color map (top right) represents semantic labels.
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Figure 7. Qualitative comparisons of 3DIS performance on the ScanNetV2 [4] dataset. We visualize instance (Inst.) masks of ISBNet
(kernel-based, K) [15], MAFT (transformer-based, T) [11] and ours based on both architectures with Ground Truth (GT) masks. The key
differences are highlighted using red-colored boxes for better comparison. Best viewed in color.
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