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Supplementary Material

Overview
This document provides supplementary details on the
methods and experiments presented in the main paper:

• Training (Section 6): Details the architecture and param-
eters for both pretraining and fine-tuning of the segmen-
tation model, followed by a discussion of the longitudinal
tracking setup, including prompt propagation for multi-
timepoint analysis.

• Synthetic Data Generation (Section 7): Outlines the
lesion- and image-level augmentations used to simulate
realistic disease progression and imaging variations, sup-
porting robust training across diverse longitudinal pat-
terns.

• Promptable Segmentation Baselines (Section 8): De-
scribes the state-of-the-art promptable models bench-
marked against our approach, specifically those adapted
for medical imaging and segmentation.

• Evaluation Metrics (Section 9): Explains the metrics
used for segmentation and tracking accuracy.

• Additional Experimental Results (Section 10): Pro-
vides further comparisons against supervised baselines on
downstream tasks.

6. Training
6.1. Segmentation Model
Pretraining. The pretraining pipeline was implemented
using the nnU-Net framework [30], specifically utilizing
a ResEncL U-Net architecture [31, 33]. The model was
trained for 4,000 epochs with a patch size of [192,192,192]
and a batch size of 24. All images were resampled to a
cubic 1mm resolution and z-score normalized. Training
was performed with an initial learning rate of 1e-2, em-
ploying polynomial learning rate decay and the SGD op-
timizer. Following the MultiTalent strategy [100], datasets
were sampled inversely proportional to the square root of
the number of images per dataset, ensuring balanced train-
ing across datasets. A summary of the pretraining datasets
can be found in Table 4.
Fine-Tuning. Fine-tuning of the promptable segmentation
model was conducted using the combined lesion datasets
outlined in Table 5. During data loading, images were first
randomly picked, followed by random sampling of lesion
instances to ensure diverse training samples. The pretrained
weights were used to initialize the main body of the net-
work, while the stem and head were randomly initialized.

Fine-tuning was carried out with a reduced initial learning
rate of 1e-3. Prompts were input directly at the first level
of the network, concatenated with the 3D image volume.
To accommodate higher-resolution images, we employed
an axial spacing of 0.8mm, resulting in an overall spacing
of 0.8x0.8x1mm. The patch size was accordingly adjusted
to [224,224,160], and CT images were normalized follow-
ing the nnU-Net protocol. The model was trained for 2,000
epochs with a batch size of 3.

6.2. Longitudinal Tracking
The comprehensive tracking model integrates the single
timepoint segmentation network, trained in the above
fashion, with the prompt propagation module. We uti-
lize the GradICON [98] framework as a backbone for
the propagation module, initializing it with pretrained
weights obtained from a diverse set of image registration
datasets [99]. Images from both timepoints are resampled
to a uniform shape of [175, 175,175] before being fed into
the prompt propagation network. We then train both prompt
propagation module and segmentation model jointly on the
real longitudinal data or first on the synthetic followed by
fine-tuning on the real data.

Specifically, the propagation module generates a de-
formation field Φ, which facilitates the propagation of
prompts—these may include points, bounding boxes, or
segmentation masks produced by the segmentation model.
During training, the propagation network is provided with
downsampled versions of the baseline and follow-up im-
ages, whereas the segmentation network operates on a
higher-resolution cropped region centered around the prop-
agated prompt. The center of this region of interest (ROI) is
defined by a random voxel of the propagated prompt during
training, while the prompt’s center is used during inference.
The ROI matches the segmentation network’s patch size,
and is extracted from the high-resolution image (0.8 x 0.8
x 1 mm) and subsequently processed by the segmentation
network to generate the output mask.
We utilized PyTorch 2.3.1 and conduct experiments on
NVIDIA A100 GPUs with 40GB of memory.

7. Synthetic Data Generation
We generate synthetic longitudinal time series data by ap-
plying instance-level lesion augmentations in combination
with image-level spatial and intensity transformations to
single-timepoint images.



Table 4. Overview over all datasets used for the supervised pretraining. This table provides a comprehensive overview of the datasets
utilized for the supervised pretraining of our model. It includes a total of 47 datasets, detailing the name of each dataset, the number of
images, the imaging modality employed, the specific anatomical targets, and links for direct access. These diverse datasets cover a wide
range of anatomical structures and pathological conditions, ensuring a robust foundation for subsequent lesion segmentation tasks.

Name Images Modality Target Link

Decatlon Task 2 [3, 92] 20 MRI Heart http://medicaldecathlon.com/
Decatlon Task 3 [3, 92] 131 CT Liver, L. Tumor http://medicaldecathlon.com/
Decatlon Task 4 [3, 92] 208 MRI Hippocampus http://medicaldecathlon.com/
Decatlon Task 5 [3, 92] 32 MRI Prostate http://medicaldecathlon.com/
Decatlon Task 6 [3, 92] 63 CT Lung Lesion http://medicaldecathlon.com/
Decatlon Task 7 [3, 92] 281 CT Pancreas, P. Tumor http://medicaldecathlon.com/
Decatlon Task 8 [3, 92] 303 CT Hepatic Vessel, H. Tumor http://medicaldecathlon.com/
Decatlon Task 9 [3, 92] 41 CT Spleen http://medicaldecathlon.com/
Decatlon Task 10 [3, 92] 126 CT Colon Tumor http://medicaldecathlon.com/
ISLES2015 [63] 28 MRI Stroke Lesion http://www.isles-challenge.org/ISLES2015/
BTCV [47] 30 CT 13 abdominal organs https://www.synapse.org/Synapse:syn3193805/wiki/89480
LIDC [5] 1010 CT Lung lesion https://www.cancerimagingarchive.net/collection/lidc-idri/
Promise12 [54] 50 MRI Prostate https://zenodo.org/records/8026660
ACDC [9] 200 MRI RV cavity, myocardium, LV cavity https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html
ISBILesion2015 [12] 42 MRI MS Lesion https://iacl.ece.jhu.edu/index.php/MSChallenge
CHAOS [40] 60 MRI Liver, Kidney (L&R), Spleen https://zenodo.org/records/3431873
BTCV 2 [21] 63 CT 9 abdominal organs https://zenodo.org/records/1169361#.YiDLFnXMJFE
StructSeg Task1 [48] 50 CT 22 OAR Head & neck https://structseg2019.grand-challenge.org
StructSeg Task2 [48] 50 CT Nasopharynx cancer https://structseg2019.grand-challenge.org/Home/
StructSeg Task3 [48] 50 CT 6 OAR Lung https://structseg2019.grand-challenge.org/Home/
StructSeg Task4 [48] 50 CT Lung Cancer https://structseg2019.grand-challenge.org/Home/
SegTHOR [46] 40 CT heart, aorta, trachea, esophagus https://competitions.codalab.org/competitions/21145
NIH-Pan [14, 84] 82 CT Pancreas https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT
VerSe2020 [52, 56, 90] 113 CT 28 Vertebrae https://github.com/anjany/verse
M&Ms [11, 65] 300 MRI l. ventricle, r. ventricle, l. ventri. myocardium https://www.ub.edu/mnms/
ProstateX [55] 140 MRI Prostate lesion https://www.aapm.org/GrandChallenge/PROSTATEx-2/
RibSeg [111] 370 CT Rips https://github.com/M3DV/RibSeg?tab=readme-ov-file
MSLesion [71] 48 MRI MS Lesion https://data.mendeley.com/datasets/8bctsm8jz7/1
BrainMetShare [24] 84 MRI Brain Metastases https://aimi.stanford.edu/brainmetshare
CrossModa22 [91] 168 MRI vestibular schwannoma, cochlea https://crossmoda2022.grand-challenge.org/
Atlas22 [53] 524 MRI stroke lesion https://atlas.grand-challenge.org/
KiTs23 [26] 489 CT Kidneys, k. Tumors, Cysts https://kits-challenge.org/kits23/
AutoPet2 [19] 1014 PET,CT Lesions https://autopet-ii.grand-challenge.org/
AMOS [36] 360 CT,MRI 15 abdominal organs https://amos22.grand-challenge.org/
BraTs23 [6, 7, 39, 68] 1251 MRI Glioblastoma https://www.synapse.org/Synapse:syn51156910/wiki/621282
AbdomenAtlas1.0 [50, 77] 5195 CT 8 abdominal organs https://github.com/MrGiovanni/AbdomenAtlas?tab=readme-ov-file
TotalSegmentatorV2 [105] 1180 CT 117 classes of whole body https://github.com/wasserth/TotalSegmentator
Hecktor2022 [2] 524 PET,CT nodal Gross Tumor Volumes (Head&Neck) https://hecktor.grand-challenge.org/
FLARE [60] 50 CT 13 abdominal organs https://flare22.grand-challenge.org/
SegRap [58] 120 CT 45 OARs (Head&Neck) https://segrap2023.grand-challenge.org/
SegA [37, 74, 78] 56 CT Aorta https://multicenteraorta.grand-challenge.org/data/
WORD [51, 57] 120 CT 16 abdominal organs https://github.com/HiLab-git/WORD
AbdomenCT1K [59] 996 CT Liver, Kidney, Spleen, pancreas https://github.com/JunMa11/AbdomenCT-1K
DAP-ATLAS [34] 533 CT 142 classes of whole body https://github.com/alexanderjaus/AtlasDataset
CTORG [81] 140 CT lung, brain, bones, liver, kidneys and bladder https://www.cancerimagingarchive.net/collection/ct-org/
HanSeg [75] 42 CT OAR (Head&Neck) https://han-seg2023.grand-challenge.org/
TopCow [112] 200 CT,MRI vessel components of CoW https://topcow23.grand-challenge.org/

Table 5. Fine-Tuning Datasets for Lesion Segmentation. This table summarizes the 16 datasets used for fine-tuning our promptable
lesion segmentation model. Each dataset contributes a collection of annotated images targeting various types of lesions. For each dataset,
we provide the name, the number of images, the specific types of lesions targeted, and links to access the datasets for further exploration.

Name Images Target Link

Deep Lesion 1093 Various kinds of lesions https://nihcc.app.box.com/v/DeepLesion
COVID-19 CT Lung 10 Covid -19 https://zenodo.org/records/3757476
FLARE23 Test Set 50 Various kinds of lesions https://codalab.lisn.upsaclay.fr/competitions/12239
KiTS 488 Kidney Lesions https://kits-challenge.org/kits23/
LIDC 1010 Lung Lesions https://www.cancerimagingarchive.net/collection/lidc-idri/
LNDb 229 Lymph nodes https://lndb.grand-challenge.org
MSD Colon 126 Colon Lesions http://medicaldecathlon.com/
MSD Hepatic Vessels 303 Liver Lesions http://medicaldecathlon.com/
MSD Liver 118 Liver Lesions http://medicaldecathlon.com/
MSD Lung 63 Lung Lesions http://medicaldecathlon.com/
MSD Pancreas 281 Pancreas Lesions http://medicaldecathlon.com/
NIH Lymph 176 Lymph nodes https://www.cancerimagingarchive.net/collection/ct-lymph-nodes/
NSCLC Pleural effusion 78 Pleural effusion https://www.cancerimagingarchive.net/analysis-result/plethora/
NSCLC Radiomics 503 Lung Lesions https://www.cancerimagingarchive.net/collection/nsclc-radiomics/
autoPET 500 Melanoma https://autopet-ii.grand-challenge.org/
COVID-19-20 199 Covid-19 https://covid-segmentation.grand-challenge.org/COVID-19-20/
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7.1. Lesion-Level Augmentations
To simulate random disease progression, we adapt the
anatomy-informed transformation approach [43] to model
lesion growth and shrinkage, creating realistic synthetic
longitudinal data. Specifically, we construct deformation
fields V around each lesion by computing the gradient of
a Gaussian kernel Gσs convolved with a lesion indicator
function Slesion, i.e. the lesion ground truth mask, scaled
by an amplitude A:

V = ∇(Gσs ∗ Slesion(x, y, z)) ·A(x, y, z).

To introduce variability in progression, we modulate
the amplitude A with a location-dependent random field
r(x, y, z) ∼ U(rmin, rmax), then smooth this field using a
Gaussian kernel Gσr:

A(x, y, z) = A · (Gσr ∗ r(x, y, z)).
Given the significant size variability of lesions compared
to surrounding anatomical structures, fixed transformation
parameters can distort smaller lesions or inadequately alter
larger ones. To address this, we employ a multi-stage
approach, applying a sequence of moderate transformations
with parameters adapted to lesion size:

• Gσs: Size of the Gaussian kernel used to blur the lesion
segmentation, adapted based on lesion size, with values
ranging from 4− 5.5.

• A: Initial amplitude for lesion dilation, randomly
sampled across the entire image from the set
[−22,−18, 15, 25]. Negative values simulate lesion
shrinkage, while positive values induce growth.

• r(x,y, z): Random voxel-wise scaling field for ampli-
tude A, with values drawn from the range (−3.5, 3.5).
This ensures spatial variability, so that the lesion grows
or shrinks non-uniformly across 3D space.

• Gσr: Gaussian kernel size, fixed at 3, used to smooth the
random modulation field r(x, y, z).

This transformation approach ensures robust, size-sensitive
adjustments to lesions, creating realistic variations in lesion
shape and size over time.

7.2. Image-Level Augmentations
We further enhance these lesion-level alterations with
image-level intensity and spatial augmentations to simulate
real-world examination variability. In our augmentation
pipeline, we employ the batchgeneratorsv2 [29]
package to streamline the application of spatial and inten-
sity transformations. Below, we detail each transformation
included in the pipeline:

• Spatial Transform: We utilize elastic deformations, ro-
tations, scaling, and translations to introduce realistic spa-
tial variations. Key parameters include:
– Elastic Deformations: Applied with a prob-

ability of 1.0 to simulate structural variabil-
ity, with elastic deform scale and
elastic deform magnitude set to (0.05, 0.05).

– Rotation: Random rotations in the range (−5◦, 5◦) are
applied with a probability of 1.0, introducing slight an-
gular variations.

– Scaling: Applied with a probability of 0.5, using scal-
ing factors drawn from (0.95, 1.05), and set to synchro-
nize across all axes for uniform scaling.

– Translation: Minor translations within the range
(−5, 5) pixels are applied with a probability of 1.0 to
emulate slight spatial shifts in image positioning.

• Gaussian Noise Transform: We add Gaussian noise to
simulate varying noise levels across imaging sessions.
Noise variance is sampled from (0, 0.05) and applied in-
dependently across channels, with a probability of 1.0.

• Gaussian Blur Transform: Gaussian blurring with a
sigma range of (0.1, 0.2) is applied with a probability of
0.1 to replicate the effects of lower scan quality or minor
out-of-focus regions. This transform is applied in an un-
synchronized manner across channels and axes to main-
tain realistic variability.

• Multiplicative Brightness Transform: Brightness ad-
justments are applied with a probability of 0.15 to em-
ulate diverse lighting conditions, with brightness multi-
pliers drawn from the range (0.75, 1.25).

• Contrast Transform: Contrast is adjusted with a prob-
ability of 0.15 to simulate different imaging conditions.
Contrast levels are sampled from the range (0.75, 1.25)
and applied while preserving the original intensity range
to prevent artifacts.

We provide additional examples of synthetically generated
longitudinal images in Fig. 7.

8. Promptable Segmentation Baselines
The Segment Anything Model (SAM) by META is a
leading model from the natural image domain that has
inspired numerous researchers to adapt it for radiological
medical imaging. While it was trained on 1 billion masks
and 11 million images, it did not focus explicitly on radi-
ological data. SAM was the first to popularize interactive
segmentation approaches [41].

MedSAM is a tailored adaptation of SAM, fine-tuned on
1,570,263 image-mask pairs specifically from the medical
domain. Unlike its predecessors, MedSAM is limited to
box prompts [61].

SAM-Med2D is a SAM ViT-b model with additional
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Figure 7. More examples from the synthetic dataset used to augment the training process for lesion tracking. The dataset simulates disease
progression through random lesion progression, based on anatomy-informed transformations and image augmentations.



adapter layers in the image encoder. It was fine-tuned
on 4.6 million images and 19.7 million masks from the
medical domain using boxes and clicks.[13].

ScribblePrompt is a state-of-the-art medical segmentation
model that supports prompting via points, boxes, or
scribbles. It offers the flexibility of utilizing either a UNet
or SAM model (ViT-b) backbone; we opted for the UNet
backbone due to its superior performance in the performed
user study. This model is trained on a comprehensive
dataset of 65 diverse medical sources, encompassing a wide
range of both healthy anatomical structures and various
lesions [107].

SAM2 extends SAM, enhancing its capabilities by in-
corporating support for video data and increasing the
training dataset size [79]. In our experiments, we utilize
the SAM2.1 Hiera Base Plus checkpoint and evaluate it
in a 2D+t configuration, treating axial slices as individual
images and interpreting the z-dimension as the temporal
axis.

SAM-Med3D introduces a transformer-based 3D image
encoder, 3D prompt encoder, and 3D mask decoder. The
original model was trained from scratch on 22,000 3D
images and 143,000 corresponding 3D masks. SAM-Med
3D Turbo is an enhanced version of SAM-Med 3D, trained
on a more extensive dataset collection consisting of 44
datasets for improved performance, which we use in our
comparisons. It supports both point and mask prompts
[104].

NVIDIA VISTA is a 3D segmentation model that supports
point prompts in conjunction with class prompts for 127
common human anatomical structures and various lesion
types. The model leverages SegResNet [72] as its back-
bone CNN, enhanced by SAM’s prompt encoder. It was
trained on a comprehensive dataset comprising 11,454 CT
volumes, both private and public, which include real and
pseudo labels [25].

SegVol is an interactive 3D segmentation model that
utilizes a 3D adaptation of the Vision Transformer (ViT)
architecture. It was initially trained on 96,000 unlabelled
CT images and subsequently fine-tuned using 6,000 labeled
CT images. SegVol supports both point and bounding box
prompts as spatial inputs, as well as corresponding text
prompts that describe the class. In our experiments, we
prompt with ”lesion” or ”tumor” which increased results
[18].

ULS model: Developed for the Universal Lesion Segmen-
tation challenge [15], the ULS model is specifically tailored

for lesion segmentation. It was trained on 38,693 lesions
derived from 3D CT scans covering the entire body. How-
ever, it does not function as a traditional promptable model,
as it operates on a fixed region of interest (ROI) with the
expected lesion centered for segmentation. Consequently,
it can only be utilized as a point model by employing center
points as inputs.

In addition to these models, other notable promptable mod-
els exist, including 3D Sam Adapter [23] and Prism [49].
However, these models operate in a closed-set manner, hav-
ing been trained exclusively on specific datasets without the
capability to segment arbitrary prompted classes. There-
fore, they were excluded from our evaluations.

9. Evaluation
For evaluating segmentation and tracking performance, we
employ a range of metrics that capture both accuracy and
robustness in handling diverse lesion sizes and positions.
The single-timepoint segmentation models are evaluated on
six held-out lesion segmentation datasets, as detailed in Ta-
ble 6. This dataset collection includes a multi-timepoint,
in-house annotated whole-body melanoma dataset, which
we use for all tracking model experiments through 5-fold
cross-validation, addressing the lack of suitable public lon-
gitudinal datasets.

9.1. Single-Timepoint Segmentation Metrics
We evaluate segmentation performance using two primary
metrics:
• Dice Score: Measures the overlap between the predicted

and ground truth lesion masks.
• Normalized Surface Dice (NSD) with a 2mm toler-

ance: Ensures precise boundary delineation, accounting
for varying lesion sizes by focusing on surface-level de-
viations. This metric is particularly suited for handling
both small and large lesions.

9.2. Tracking Metrics
For tracking across longitudinal scans, we prompt the
previous timepoint and evaluate the model’s performance
on the follow-up segmentation using the following metrics:

• Center Point Matching (CPM@25): The percentage of
ground truth and predicted lesion center points within a
25mm distance, reflecting the accuracy of lesion localiza-
tion over time. We follow the 25mm threshold used in
related work for consistency.

• Dice@25: The Dice score for lesions with center points
correctly matched within 25mm, capturing segmentation
quality for accurately tracked lesions.

• Mean Euclidean Distance (MED): The average Eu-
clidean distance between predicted and ground truth le-



Table 6. Test Datasets. This table summarizes the 6 datasets used for evaluating our proposed model. The datasets encompass a large
set of annotated images from various types of lesions and institutions. For each dataset, we provide the name, the number of images, the
specific types of lesions targeted, and links to access the datasets.

Name Images Target Link

Liver Metastases 171 Colorectal Cancer www.cancerimagingarchive.net/collection/colorectal-liver-metastases/
Adrenal-ACC-Ki67-Seg 53 Adrenocortical Carcinoma www.cancerimagingarchive.net/collection/adrenal-acc-ki67-seg/
HCC-TACE-Seg 66 Primary Liver Cancer www.cancerimagingarchive.net/collection/hcc-tace-seg/
Lnq2023 393 Malignant Lymph Nodes lnq2023.grand-challenge.org/
RIDER Lung CT 55 Lung Cancer www.cancerimagingarchive.net/collection/rider-lung-ct/
Whole-body Melanoma 159 Metastatic Melanoma Private

Dim Model Prompt
Colorectal

Liver Tumor
Adrenal
Tumor

Primary
Liver Cancer

Lymph Node
Metastases

Lung
Tumor

Whole-body
Melanoma

Avg.
Dice

3D
nnUNet [30] - 64.09 89.03 72.27 43.34 72.05 62.01 67.13

Ours point 75.38 89.10 78.39 75.60 77.18 82.58 79.71
box 74.05 92.04 85.71 80.63 82.51 84.66 83.26

Dice Inter-Rater Variability 76 [35] - 84 [35] 80 [44] 81-85 [42] 80-85[28]

Table 7. Performance Comparison Against Supervised Segmentation. This table compares the segmentation performance of our model
with nnUNet, a leading supervised medical segmentation model trained specifically on each test dataset and evaluated via 5-fold cross-
validation. Remarkably, our model, despite never being trained on these held-out datasets, achieves higher Dice scores across all lesion
types by leveraging either point or box prompts. Results are benchmarked against human inter-observer variability, offering an upper bound
reference.

sion center points, providing a direct measure of tracking
precision. Lesions without a corresponding match in the
ground truth or prediction are excluded from this calcula-
tion.

• Total Dice Score: The overall Dice score across all
tracked lesions, assessing the model’s ability to main-
tain segmentation quality over time, including missed or
wrongly matched lesions.

All tracking metrics are averaged by patient. First, the av-
erage over all lesions of a particular scan is calculated, and
then weighted by the number of scans per patient to account
for variability in the number of available scans per patient.

10. Additional Results

Zero-Shot Segmentation Performance Exceeds Super-
vised Models. We benchmarked our zero-shot promptable
segmentation model against nnUNet [30], a leading super-
vised segmentation framework that has consistently set high
standards in medical image segmentation [32]. To establish
a robust comparison, nnUNet was trained independently
on each of our six benchmark datasets, ensuring it had full
access to the specific lesion types and image distributions
within each dataset (see Tab. 7). Remarkably, despite
nnUNet’s access to the dataset from each specific lesion
type, our zero-shot model outperformed it by over 15 Dice
points on average, a significant margin that underscores the
versatility and generalization capabilities of our approach.

Our model achieved these results without any prior expo-
sure to the datasets or lesion-specific information, relying
solely on prompts such as points or bounding boxes to
localize regions of interest. This not only highlights the
model’s zero-shot proficiency but also its robustness across
varied anatomical contexts, from colorectal liver tumors
to whole-body melanoma. In addition, our model’s per-
formance in zero-shot settings closely approaches or even
reaches inter-rater variability levels reported in literature,
further reinforcing its reliability and potential as a scalable
solution in clinical scenarios where labeled data may be
limited or unavailable.

Consistently High Tracking Performance Irrespective
Of Prompt. LesionLocator achieves robust and consistent
temporal tracking accuracy, as demonstrated in Fig. 5 of
the main paper. In this figure, the initial Dice distribution
on the baseline scan shows strong performance using box
prompts in the segmentation module. To complement this,
Appendix Fig. 8 illustrates a similar initial distribution with
less informative point prompts, which perform slightly
lower overall but still demonstrate high accuracy. The bar
plots for subsequent timepoints show that LesionLocator
consistently achieves high Dice scores using autoregressive
mask prompts, even when trained exclusively on consecu-
tive image pairs. This highlights the generalizability of our
longitudinal training approach. With minimal performance

www.cancerimagingarchive.net/collection/colorectal-liver-metastases/
www.cancerimagingarchive.net/collection/adrenal-acc-ki67-seg/
www.cancerimagingarchive.net/collection/hcc-tace-seg/
lnq2023.grand-challenge.org/
www.cancerimagingarchive.net/collection/rider-lung-ct/
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Figure 8. Consistent Lesion Tracking Performance Over Time Using Point Prompts. Similar to Fig. 5, we show the initial Dice
score distribution for the baseline scan using LesionLocator’s segmentation model with point prompts. For follow-up scans, tracking is
performed autoregressively, as proposed, using prior masks as prompts. Tracking accuracy relative to the baseline is measured as CPM@25
(lesion matches within 25mm) with corresponding Dice@25 (Dice score of matched lesions). Similar to using box prompts in the first
image, the Dice for matched lesions remains consistently high, with matching accuracy above 80% and only a slight decrease over time.
Note: Only a single patient in the dataset has a Follow-Up 3 scan, so this distribution is based on one scan with 4 lesions, of which 3 were
correctly matched.

Data Model Dice@25↑ MED↓
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Yan et.al [110] (point tracker) - 6.92
Registration of t− 1 Seg 36.10 8.71
Def. Register + LesLoc Seg 68.54 5.79
Ours (LesionLocator) 79.02 3.12

un
se

en
O

O
D Yan et.al [110] (point tracker) - 9.07

Hering et.al [27](best baseline) 64.42 6.39
Ours (LesionLocator) 76.55 5.13

Table 8. Ablations and diffuse-lesion diverse test set results.

degradation across multiple timepoints, LesionLocator
excels in lesion matching (CPM@25), ensuring reliable
and sustained tracking throughout a sequence of scans
irrespective of initial prompt type.

Comparison to Registration-Based Cross-Time Seg-
mentation. Tab. 8 (top) compares our approach against
classical Elastix [64], which warps prior segmentations
to the follow-up scan using its deformation field, and a
two-step approach that uses Elastix to warp the prompt
instead, then feeds it into LesionLocator’s segmentation
module. The results clearly indicate the superiority of our
combined training approach.

Robustness. To further evaluate out-of-distribution perfor-
mance, we extended our experiments to assess robustness
under real-world conditions. Specifically, our clinicians ad-

ditionally annotated patients with diffuse, challenging-to-
segment lesions from two centers. These cases feature vary-
ing resolutions, implant artifacts and were unseen during
training. The results shown in Tab. 8 (bottom) demonstrate
that our method, despite the expected decrease, maintains
robust performance.


	Training
	Segmentation Model
	Longitudinal Tracking

	Synthetic Data Generation
	Lesion-Level Augmentations
	Image-Level Augmentations

	Promptable Segmentation Baselines
	Evaluation
	Single-Timepoint Segmentation Metrics
	Tracking Metrics

	Additional Results

