DiffLocks: Generating 3D Hair
from a Single Image using Diffusion Models

Supplementary Material

1. Implementation details.

1.1. Strand VAE

We train the strandVAE using a batch size of 200 strands,
each consisting of 256 points. For the loss we set the direc-
tional weight term to A\; = 2e— 3, the curvature weight term
to Ao = 7.8e—2 and the KL term to A\g;, = 6e —4. We train
the StrandVAE for a total of 3M iterations using AdamW at
a learning rate of 3e — 3 with cosine decay schedule.

1.2. Diffusion model

We follow similar optimizer parameters as HDiT [1] and
train the diffusion model for ~ 400K iterations at an ef-
fective batch size of 128 using a constant learning rate of
S5e — 4.

2. Dataset.

The synthetic hair dataset was created by launching 12
Blender processes in parallel, each creating a chunk of the
40K samples. The process is particularly CPU-intensive
since the Blender geometry nodes don’t tend to take advan-
tage of GPU acceleration. As a result, the generation pro-
cess took approximately 1 week on a cluster with 4 H100
GPUs and a Intel Xeon Platinum 8480+ CPU (56 Cores).

3. Discussions

3.1. Density Map

Compared to GroomGen’s binary map, we treat the pro-
posed density map as an alternative hair representation with
different properties. GroomGen’s binary mask marks exact
scalp pixels where strands grow, while our focus is on local
hair density rather than precise root positions. This makes
the density map smoother and easier to edit—since strand
latent codes exist for every pixel, we can modify hair den-
sity by simply sampling more strands (Fig. 1).
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Figure 1. The density map allows the density of hair or hairline to
be easily controlled by directly modifying its values.
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Figure 2. Robustness. We train our method using synthetic im-
ages with diverse camera positions and focal lenghts. Testing on
real images, we observe that the method is robust and consistently
generates the same hairstyle regardless of changes in viewpoint.
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Figure 3. Ablation channel weighting. Without channel weight-
ing, the diffusion model tends to generate noisy density maps. Ap-
plying our proposed weighing, the network focuses on the impor-
tant information from the scalp textures and allowes it to create
smoother density maps.

4. Additional Evaluation and Results
4.1. Additional studies

Camera pose robustness. To further demonstrate the ro-
bustness of our method, we evaluate it on images captured
from varying camera poses from the H3DS dataset [4]. As
shown in Fig. 2, our approach can reconstruct consistent
hairstyles despite large changes in camera position and dis-
tance to the subject.

Ablation on curvature loss. To evaluate the effectiveness
of curvature loss while training the strandVAE, we perform
an ablation study as shown in Fig. 4 in which we encode the
ground-truth strand and decode it with models trained with
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Figure 4. StrandVAE ablation. We observe that without the cur-
vatuer loss, the predicted strand (blue) tends to be smoother than
the ground-truth(green). However, with the curvature loss(purple),
the curly pattern is more accurately recovered, improving the vi-
sual quality of the whole hairstyle.

and without the curvature los. We observe that the curva-
ture loss is crucial in encouraging the network to reconstruct
curly and wavy hair.

Ablation on weighting scheme. We also ablate our pro-
posed per-channel weighting scheme in Fig. 3. It is clear
that without the weighting scheme, the output of the diffu-
sion model exhibits more noise which is especially evident
when viewing the density map. Our proposed weighting
scheme allows the network to focus on the important infor-
mation stored in the latent code of the strands and ignore
noisy dimensions.

4.2. Generalization ability

We test reconstructing a hairstyle outside the training set
and find the network generalizes well (Fig. 5). The signifi-
cant gap between the generated hair and the top-3 samples
from the training set confirms that our method generates
new hairstyles rather than merely retrieving from training
data.
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Figure 5. Difflocks generalizes beyond the training set: Gener-
ated hair and the closest top3 hairstyles from the training set.

4.3. DINOV2 vs orientation map

We ran an experiment where we replace DINO features with
an orientation map together with hair segmentation mask.
We find that DINO features are more robust especially for
short or dark hair (Fig. 6) where the orientation map can be
noisy.

4.4. Extended comparison with baselines

We provide extended quantitative comparison and qualita-
tive comparison with HairStep [9] and NeuralHDHair [6] on
the DiffLocks evaluation dataset and Yuksel dataset [8]. We

DINOv2
Figure 6. DINOV2 features are a more robust and richer condi-
tioning signal than orientation maps.
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note that the DiffLocks evaluation set is created using our
proposed Blender pipeline and contains samples that were
not used during training.

Qualitative. The qualitative comparison with HairStep
and NeuralHDHair is shown in Fig. 7. Their method per-
forms well on straight hairstyles but struggle with curly and
wavy ones, especially when their predicted 2D orientation
map [3] represent an incorrect parting or growth direction.
The reliance on intermediate representations like orienta-
tions maps is a long-standing limitation of hair reconstruc-
tion. In contract, our method effectively reconstructs both
straight and curly hairstyles, remaining unaffected by 2D
orientation ambiguities, as it directly utilizes RGB images
as input.

An additional limitation of previous methods becomes
evident when viewing the backside of the head where the
baselines methods tend to create balding areas or overly
smooth strands. In contrast, our approach, powered by ro-
bust data priors, generates more reasonable and realistic re-
sults for occluded or invisible regions.

Quantitative. We provide extended quantitative compar-
isons of HairStep and NeuralHDHair on both DiffLocks
evaluation dataset and Yuksel dataset [8]. We calculate pre-
cision, recall and F-score using 3D ground-truth strands
similar to previous methods [5, 7] as shown in Tab. |
and Fig. 8. We provide per-example results to complement
the aggregate quantitative metrics presented in the main
paper. Since HairStep and NeuralHDHair are trained pri-
marily on frontal views, and their training hairstyles lack
diversity, they tend to perform poorly on the DiffLocks
dataset which contains a range of hairstyles(curly, balding,
combed-back, and afro-like) together with images that de-
viate slightly from the frontal view.

Considering that the baselines models were trained
trained on the USC-HairSalon dataset [2], while our train-
ing data aligns more closely with the distribution of the
evaluation dataset (rendering manner and strands distribu-
tion on scalp), our results will be better aligned with the
distribution of ground truth, leading to higher evaluation
metrics. Thus, we also perform a quantitative evaluation
on Yuksel synthetic dataset [8]. We show the metrics for



the different hairstyles separately for a more comprehensive
analysis. HairStep and NeuralHDHair both achieved high
F-score in straight hairsytle, but for curly hairstyle, their
method struggle to reconstruct it accurately and both pre-
cision, recall and F-score are greatly reduced. In contract,
our method still performs well on curly hairstyle, recover-
ing plausible geometry even on the backside of the head.

4.5. Additional in-the-wild results

Lastly, to evaluate the robustness and effectiveness of our
method, we provide additional reconstructions from in-the-
wild single images. As shown in Fig. 9, our method can
robustly reconstruct a large variety of hairstyles, achieving
high-quality and realistic results.
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Straight Curly
Method 2/20  3/30  4/40 | 2/20 3/30 4/40 | 2/20 3/30 4/40 || 2/20 3/30 4/40 | 2/20 3/30 4/40 | 2/20 3/30 4/40
Precision Recall F-score Precision Recall F-score
NeuralHDHair [6] 72.58 86.85 92.07 | 4528 63.57 7455 | 55.77 73.41 8239 |[ 2324 4329 5545 1792 38.65 5473 | 2023 40.84 55.09
HairStep [9] 64.05 7895 84.52 | 56.22 7337 82.17 | 59.88 76.06 8333 || 17.71 33.02 4367 | 811 1655 24.14 | 11.13 22.05 31.08
Ours 57.38  76.15 84.49 | 38.54 54.84 6574 | 46.11 6377 73.94 || 29.83 60.46 79.09 | 31.41 61.69 77.84 | 30.60 61.07 78.46

Table 1. Quantitative comparison with [0, 9] on Yuksel dataset [8]. We evaluate our method on straight and curly hair separately. Our
method achieves superior results on curly hair. Our method performs slightly worse on straight hair due to the diffusion model, which
introduces perturbations to enhance the realism of the generated hairstyles.
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Figure 7. Results on the synthetic dataset of [8]



Thresholds: mm / degrees

Method 2/20 3/30 4/40 | 2/20 3/30 4/40 | 2/20 3/30 4/40
Precision (1) Recall (1) F-score (1)
NeuralHDHair [6] 27.57 47.30 57.12 22.67 44.90 63.06 24.88 46.07 59.94
HairStep[9] 32.10 52.78 65.90 20.04 35.55 47.71 24.67 4248 55.35
Ours 49.93 73.46 84.42 52.20 76.88 88.90 51.04 75.13 86.60
Thresholds: mm / degrees
Method 2/20 3/30 4/40 | 2/20 3/30 4/40 | 2/20 3/30 4/40
Precision (1) Recall (1) F-score (1)
NeuralHDHair [6] 38.30 54.20 61.76 54.50 80.77 89.65 44.99 64.87 73.14
HairStep [9] 33.40 54.09 63.08 36.42 60.63 71.23 34.84 57.17 66.91
Ours 89.68 96.70 98.24 86.47 93.82 96.44 88.05 95.24 97.33
Thresholds: mm / degrees
Method 2/20 3/30 4/40 | 2/20 3/30 4/40 | 2/20 3/30 4/40
Precision (1) Recall (1) F-score (1)
NeuralHDHair [6] 31.27 62.32 80.14 32.20 60.04 77.37 31.73 61.16 78.73
HairStep [9] 41.17 61.83 71.11 38.43 66.04 81.06 39.76 63.87 75.76
Ours 63.71 84.26 92.67 62.97 84.77 93.34 63.34 84.51 93.00
Thresholds: mm / degrees
Method 2/20 3/30 4/40 | 2/20 3/30 4/40 | 2/20 3/30 4/40
Precision (1) Recall (1) F-score (1)
NeuralHDHair [6] 16.75 43.33 62.75 9.33 22.73 37.59 11.99 29.82 47.01
HairStep [9] 26.50 60.19 79.40 10.14 23.01 37.34 14.67 33.29 50.80
Ours 29.53 62.11 81.67 34.39 69.56 87.98 31.77 65.62 84.71
Thresholds: mm / degrees
Method 2/20 3/30 4/40 | 2/20 3/30 4/40 | 2/20 3/30 4/40
Precision (1) Recall (1) F-score (1)
NeuralHDHair [6] 16.83 31.60 43.07 20.15 4245 62.18 18.34 36.23 50.89
HairStep [9] 28.87 42.79 50.31 38.85 64.23 78.16 33.13 51.37 61.21
Ours 85.73 96.97 99.05 84.34 96.37 98.70 85.03 96.67 98.87
Thresholds: mm / degrees
Method 2/20 3/30 4/40 | 2/20 3/30 4/40 | 2/20 3/30 4/40
Precision (1) Recall (1) F-score (1)
NeuralHDHair [6] 10.60 31.98 52.94 5.45 17.77 32.98 7.19 22.84 40.64
HairStep [9] 6.56 21.95 40.96 3.83 10.15 19.50 4.84 13.88 26.42
Ours 38.33 71.01 88.46 34.37 65.80 83.83 36.24 68.30 86.08
Thresholds: mm / degrees
Method 2/20 3/30 4/40 | 2/20 3/30 4/40 | 2/20 3/30 4/40
Precision (T) Recall (1) F-score (1)
NeuralHDHair [6] 9.90 24.95 40.50 10.70 24.12 38.74 10.29 24.53 39.60
HairStep [9] 9.78 18.98 26.92 14.08 29.42 45.88 11.54 23.07 33.93
Ours 54.17 81.83 92.75 51.87 78.94 90.60 53.00 80.36 91.67
Thresholds: mm / degrees
Method 2/20 3/30 4/40 | 2/20 3/30 4/40 | 2/20 3/30 4/40
Precision (1) Recall (1) F-score (1)
NeuralHDHair [6] 17.64 31.10 41.55 21.04 43.40 59.30 19.19 36.24 48.87
HairStep [9] 11.90 18.39 24.29 17.26 33.64 50.13 14.09 23.78 32.7
Ours 85.82 97.15 85.82 73.10 86.27 90.94 78.95 91.39 94.85
Thresholds: mm / degrees
Method 2/20 3/30 4/40 | 2/20 3/30 4/40 | 2/20 3/30 4/40
Precision (1) Recall (1) F-score (1)
NeuralHDHair [6] 11.34 21.98 34.32 8.76 19.74 27.98 9.89 20.80 30.82
HairStep [9] 7.69 15.41 21.67 21.96 44.94 65.67 11.39 22.95 32.58
Ours 70.03 91.91 97.29 55.16 71.37 87.19 61.71 84.02 91.96
Thresholds: mm / degrees
Method 2/20 3/30 4/40 | 2/20 3/30 4/40 | 2/20 3/30 4/40
Precision (1) Recall (1) F-score (1)
NeuralHDHair [6] 6.38 13.38 20.47 7.85 17.39 27.23 7.04 15.12 23.37
HairStep [9] 4.29 9.02 13.72 7.02 17.73 31.59 5.32 11.96 19.13
Ours 63.73 86.23 94.16 44.22 67.34 80.17 52.21 75.63 86.60

Figure 8. Quantitative comparison. We provide the quantitative comparison for each example in DiffLocks evaluation set. When the
hairsytle is curly or balding or the image is not in frontal view, our method achieves significant improvement.
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Figure 9. More results of in-the-wild reconstruciton of hairstyles.
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