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1. Implementation details.

1.1. Strand VAE

We train the strandVAE using a batch size of 200 strands,

each consisting of 256 points. For the loss we set the direc-

tional weight term to λ1 = 2e−3, the curvature weight term

to λ2 = 7.8e−2 and the KL term to λKL = 6e−4. We train

the StrandVAE for a total of 3M iterations using AdamW at

a learning rate of 3e− 3 with cosine decay schedule.

1.2. Diffusion model

We follow similar optimizer parameters as HDiT [1] and

train the diffusion model for ≈ 400K iterations at an ef-

fective batch size of 128 using a constant learning rate of

5e− 4.

2. Dataset.

The synthetic hair dataset was created by launching 12

Blender processes in parallel, each creating a chunk of the

40K samples. The process is particularly CPU-intensive

since the Blender geometry nodes don’t tend to take advan-

tage of GPU acceleration. As a result, the generation pro-

cess took approximately 1 week on a cluster with 4 H100

GPUs and a Intel Xeon Platinum 8480+ CPU (56 Cores).

3. Discussions

3.1. Density Map

Compared to GroomGen’s binary map, we treat the pro-

posed density map as an alternative hair representation with

different properties. GroomGen’s binary mask marks exact

scalp pixels where strands grow, while our focus is on local

hair density rather than precise root positions. This makes

the density map smoother and easier to edit—since strand

latent codes exist for every pixel, we can modify hair den-

sity by simply sampling more strands (Fig. 1).
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Figure 1. The density map allows the density of hair or hairline to

be easily controlled by directly modifying its values.
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Figure 2. Robustness. We train our method using synthetic im-

ages with diverse camera positions and focal lenghts. Testing on

real images, we observe that the method is robust and consistently

generates the same hairstyle regardless of changes in viewpoint.
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Figure 3. Ablation channel weighting. Without channel weight-

ing, the diffusion model tends to generate noisy density maps. Ap-

plying our proposed weighing, the network focuses on the impor-

tant information from the scalp textures and allowes it to create

smoother density maps.

4. Additional Evaluation and Results

4.1. Additional studies

Camera pose robustness. To further demonstrate the ro-

bustness of our method, we evaluate it on images captured

from varying camera poses from the H3DS dataset [4]. As

shown in Fig. 2, our approach can reconstruct consistent

hairstyles despite large changes in camera position and dis-

tance to the subject.

Ablation on curvature loss. To evaluate the effectiveness

of curvature loss while training the strandVAE, we perform

an ablation study as shown in Fig. 4 in which we encode the

ground-truth strand and decode it with models trained with



Figure 4. StrandVAE ablation. We observe that without the cur-

vatuer loss, the predicted strand (blue) tends to be smoother than

the ground-truth(green). However, with the curvature loss(purple),

the curly pattern is more accurately recovered, improving the vi-

sual quality of the whole hairstyle.

and without the curvature los. We observe that the curva-

ture loss is crucial in encouraging the network to reconstruct

curly and wavy hair.

Ablation on weighting scheme. We also ablate our pro-

posed per-channel weighting scheme in Fig. 3. It is clear

that without the weighting scheme, the output of the diffu-

sion model exhibits more noise which is especially evident

when viewing the density map. Our proposed weighting

scheme allows the network to focus on the important infor-

mation stored in the latent code of the strands and ignore

noisy dimensions.

4.2. Generalization ability

We test reconstructing a hairstyle outside the training set

and find the network generalizes well (Fig. 5). The signifi-

cant gap between the generated hair and the top-3 samples

from the training set confirms that our method generates

new hairstyles rather than merely retrieving from training

data.
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Figure 5. DiffLocks generalizes beyond the training set: Gener-

ated hair and the closest top3 hairstyles from the training set.

4.3. DINOv2 vs orientation map

We ran an experiment where we replace DINO features with

an orientation map together with hair segmentation mask.

We find that DINO features are more robust especially for

short or dark hair (Fig. 6) where the orientation map can be

noisy.

4.4. Extended comparison with baselines

We provide extended quantitative comparison and qualita-

tive comparison with HairStep [9] and NeuralHDHair [6] on

the DiffLocks evaluation dataset and Yuksel dataset [8]. We
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Figure 6. DINOV2 features are a more robust and richer condi-

tioning signal than orientation maps.

note that the DiffLocks evaluation set is created using our

proposed Blender pipeline and contains samples that were

not used during training.

Qualitative. The qualitative comparison with HairStep

and NeuralHDHair is shown in Fig. 7. Their method per-

forms well on straight hairstyles but struggle with curly and

wavy ones, especially when their predicted 2D orientation

map [3] represent an incorrect parting or growth direction.

The reliance on intermediate representations like orienta-

tions maps is a long-standing limitation of hair reconstruc-

tion. In contract, our method effectively reconstructs both

straight and curly hairstyles, remaining unaffected by 2D

orientation ambiguities, as it directly utilizes RGB images

as input.

An additional limitation of previous methods becomes

evident when viewing the backside of the head where the

baselines methods tend to create balding areas or overly

smooth strands. In contrast, our approach, powered by ro-

bust data priors, generates more reasonable and realistic re-

sults for occluded or invisible regions.

Quantitative. We provide extended quantitative compar-

isons of HairStep and NeuralHDHair on both DiffLocks

evaluation dataset and Yuksel dataset [8]. We calculate pre-

cision, recall and F-score using 3D ground-truth strands

similar to previous methods [5, 7] as shown in Tab. 1

and Fig. 8. We provide per-example results to complement

the aggregate quantitative metrics presented in the main

paper. Since HairStep and NeuralHDHair are trained pri-

marily on frontal views, and their training hairstyles lack

diversity, they tend to perform poorly on the DiffLocks

dataset which contains a range of hairstyles(curly, balding,

combed-back, and afro-like) together with images that de-

viate slightly from the frontal view.

Considering that the baselines models were trained

trained on the USC-HairSalon dataset [2], while our train-

ing data aligns more closely with the distribution of the

evaluation dataset (rendering manner and strands distribu-

tion on scalp), our results will be better aligned with the

distribution of ground truth, leading to higher evaluation

metrics. Thus, we also perform a quantitative evaluation

on Yuksel synthetic dataset [8]. We show the metrics for



the different hairstyles separately for a more comprehensive

analysis. HairStep and NeuralHDHair both achieved high

F-score in straight hairsytle, but for curly hairstyle, their

method struggle to reconstruct it accurately and both pre-

cision, recall and F-score are greatly reduced. In contract,

our method still performs well on curly hairstyle, recover-

ing plausible geometry even on the backside of the head.

4.5. Additional in­the­wild results

Lastly, to evaluate the robustness and effectiveness of our

method, we provide additional reconstructions from in-the-

wild single images. As shown in Fig. 9, our method can

robustly reconstruct a large variety of hairstyles, achieving

high-quality and realistic results.
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Straight Curly

Method 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40
Precision Recall F-score Precision Recall F-score

NeuralHDHair [6] 72.58 86.85 92.07 45.28 63.57 74.55 55.77 73.41 82.39 23.24 43.29 55.45 17.92 38.65 54.73 20.23 40.84 55.09

HairStep [9] 64.05 78.95 84.52 56.22 73.37 82.17 59.88 76.06 83.33 17.71 33.02 43.67 8.11 16.55 24.14 11.13 22.05 31.08

Ours 57.38 76.15 84.49 38.54 54.84 65.74 46.11 63.77 73.94 29.83 60.46 79.09 31.41 61.69 77.84 30.60 61.07 78.46

Table 1. Quantitative comparison with [6, 9] on Yuksel dataset [8]. We evaluate our method on straight and curly hair separately. Our

method achieves superior results on curly hair. Our method performs slightly worse on straight hair due to the diffusion model, which

introduces perturbations to enhance the realism of the generated hairstyles.
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Figure 7. Results on the synthetic dataset of [8]



Thresholds: mm / degrees

Method 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40
Precision (↑) Recall (↑) F-score (↑)

NeuralHDHair [6] 27.57 47.30 57.12 22.67 44.90 63.06 24.88 46.07 59.94

HairStep[9] 32.10 52.78 65.90 20.04 35.55 47.71 24.67 42.48 55.35

Ours 49.93 73.46 84.42 52.20 76.88 88.90 51.04 75.13 86.60

Thresholds: mm / degrees

Method 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40
Precision (↑) Recall (↑) F-score (↑)

NeuralHDHair [6] 38.30 54.20 61.76 54.50 80.77 89.65 44.99 64.87 73.14

HairStep [9] 33.40 54.09 63.08 36.42 60.63 71.23 34.84 57.17 66.91

Ours 89.68 96.70 98.24 86.47 93.82 96.44 88.05 95.24 97.33

Thresholds: mm / degrees

Method 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40
Precision (↑) Recall (↑) F-score (↑)

NeuralHDHair [6] 31.27 62.32 80.14 32.20 60.04 77.37 31.73 61.16 78.73

HairStep [9] 41.17 61.83 71.11 38.43 66.04 81.06 39.76 63.87 75.76

Ours 63.71 84.26 92.67 62.97 84.77 93.34 63.34 84.51 93.00

Thresholds: mm / degrees

Method 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40
Precision (↑) Recall (↑) F-score (↑)

NeuralHDHair [6] 16.75 43.33 62.75 9.33 22.73 37.59 11.99 29.82 47.01

HairStep [9] 26.50 60.19 79.40 10.14 23.01 37.34 14.67 33.29 50.80

Ours 29.53 62.11 81.67 34.39 69.56 87.98 31.77 65.62 84.71

Thresholds: mm / degrees

Method 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40
Precision (↑) Recall (↑) F-score (↑)

NeuralHDHair [6] 16.83 31.60 43.07 20.15 42.45 62.18 18.34 36.23 50.89

HairStep [9] 28.87 42.79 50.31 38.85 64.23 78.16 33.13 51.37 61.21

Ours 85.73 96.97 99.05 84.34 96.37 98.70 85.03 96.67 98.87

Thresholds: mm / degrees

Method 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40
Precision (↑) Recall (↑) F-score (↑)

NeuralHDHair [6] 10.60 31.98 52.94 5.45 17.77 32.98 7.19 22.84 40.64

HairStep [9] 6.56 21.95 40.96 3.83 10.15 19.50 4.84 13.88 26.42

Ours 38.33 71.01 88.46 34.37 65.80 83.83 36.24 68.30 86.08

Thresholds: mm / degrees

Method 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40
Precision (↑) Recall (↑) F-score (↑)

NeuralHDHair [6] 9.90 24.95 40.50 10.70 24.12 38.74 10.29 24.53 39.60

HairStep [9] 9.78 18.98 26.92 14.08 29.42 45.88 11.54 23.07 33.93

Ours 54.17 81.83 92.75 51.87 78.94 90.60 53.00 80.36 91.67

Thresholds: mm / degrees

Method 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40
Precision (↑) Recall (↑) F-score (↑)

NeuralHDHair [6] 17.64 31.10 41.55 21.04 43.40 59.30 19.19 36.24 48.87

HairStep [9] 11.90 18.39 24.29 17.26 33.64 50.13 14.09 23.78 32.7

Ours 85.82 97.15 85.82 73.10 86.27 90.94 78.95 91.39 94.85

Thresholds: mm / degrees

Method 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40
Precision (↑) Recall (↑) F-score (↑)

NeuralHDHair [6] 11.34 21.98 34.32 8.76 19.74 27.98 9.89 20.80 30.82

HairStep [9] 7.69 15.41 21.67 21.96 44.94 65.67 11.39 22.95 32.58

Ours 70.03 91.91 97.29 55.16 77.37 87.19 61.71 84.02 91.96

Thresholds: mm / degrees

Method 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40
Precision (↑) Recall (↑) F-score (↑)

NeuralHDHair [6] 6.38 13.38 20.47 7.85 17.39 27.23 7.04 15.12 23.37

HairStep [9] 4.29 9.02 13.72 7.02 17.73 31.59 5.32 11.96 19.13

Ours 63.73 86.23 94.16 44.22 67.34 80.17 52.21 75.63 86.60

Figure 8. Quantitative comparison. We provide the quantitative comparison for each example in DiffLocks evaluation set. When the

hairsytle is curly or balding or the image is not in frontal view, our method achieves significant improvement.
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Figure 9. More results of in-the-wild reconstruciton of hairstyles.


	Implementation details.
	Strand VAE
	Diffusion model

	Dataset.
	Discussions
	Density Map

	Additional Evaluation and Results
	Additional studies
	Generalization ability
	DINOv2 vs orientation map
	Extended comparison with baselines
	Additional in-the-wild results


