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A. Experimental Details

In particular, we study various data scales on WebLI [6],
ranging from least 1.5 billion up to 15 billion training ex-
amples. Our batchsize is set to 32768 by default following
optimal suggestions in Zhai et al. [99]. Images for training
are resized to 256 × 256. We use Adam-W optimizer [47]
with learning rate of 10−3, weight decay of 10−4, gradi-
ent clipping to norm 1, and β2 = 0.95 following recom-
mendations in [16, 99]. The full pipeline is implemented
in jax [3]. Our vision encoder is parameterized as a vi-
sion transformer [13]. The corresponding text-encoder (a
standard transformer [86]) tokenizes input text using the
sentencepiece tokenizer [43] pretrained on the English C4
dataset [66]. If not noted otherwise, LIxP-training utilizes
α = 0.9, τctx = 1, τ1 = 10 following [99], and τ2 = τ1.
While more detailed hyperparameter grid searches would
likely provide even better results, we opt for a simple and
transferable parameter grid for easiest reuse and replication.

To evaluate both the zero-shot transfer capabilities as
well as the few-shot adaptation performance, we measure
performance on 21 diverse datasets commonly used for few-
shot and domain adaptation works: CUB200-2011 [91],
Stanford Cars [41], Cassave [53], CIFAR100 [42], Colorec-
tal Histology [35], DomainNet-{ClipArt, Infograph, Quick-
draw, Sketch} [61], DTD [9], EuroSAT [29], Food101 [2],
ImageNet2012 [71], ImageNet-Sketch [88], Oxford IIIT
Pets [60], Places365 [104], Plant-Village [31], RE-
SISC45 [8], Stanford Dogs [11], SUN397 [94] and UC
Merced [97]. Datasets are selected to allow for shot counts
of at least up to 28-32, and were queried through the
tensorflow datasets interface, see tensorflow.
org/datasets/catalog. For datasets where only a
single split was available (such as only train or test), we
create a support/test split to allow for sufficient adaptation
examples, but ensuring that the number of classes are main-
tained. The exact splits are provided in Tab. 6. Ablation
runs are evaluated on a subset (eleven, ≈half) of our eval-
uation benchmarks, and cover: CUB200-2011, Stanford
Cars, Colorectal Histology, DTD, EuroSAT, Food101, Ima-
geNet2012, ImageNet-Sketch, Oxford IIIT Pets, Places365
and UC Merced — reporting average 16-shot performance.

B. Nearest-neighbor voting classifiers

As described in the main part of this paper, we study mul-
tiple different instantiations of nearest-neighbor classifiers
based on varying neighbor sample weights wi. These are:

Plurality-Voted Nearest-Neighbor Classifier, e.g. [54].
We compute k nearest neighbors Xk

spt to xtest and the label
for xtest is computed as the majority label from the corre-
sponding labels Lk

spt. For all our experiments with plurality
voting, we fix k = 32, but capped to the maximum number
of shots for a given few-shot classification task.

Softmax-Voted Nearest-Neighbor Classifier, e.g. [4, 22]
For each of the k nearest neighbors Xk

spt with respect to xtest,
we assign a softmax sample weight for the i-th neighbor in
Xk

spt (with temperature τs) as

wi =
exp(xqX

k
spt,i/τs)∑k

j=1 exp(xqX
k
spt,j/τs)

. (10)

We follow existing literature [4, 22, 58, 93] and keep τs =
0.07, while setting k = 32. The final output logits are then
simply computed as the softmax-weighted aggregation of
the one-hot labels Lk

spt of the neighbors.

Rank-Voted Nearest-Neighbor Classifier [22]. This
nearest-neighbor classifier computes the weights of k-
neighbors following a simple power-function wi = 1/(γ +
ranki) with offset γ = 2.0 [22], and rank of support image
index iXk

spt,i within the k neighborhood.

C. Additional Results
In Tab. 7 we provide a finer resolved numerical overview
over gains across different shot counts utilized in Fig. 1,
as well as the application of additional post-hoc classifiers
over exemplary four and sixteen shots in Tab. 8 utilizing
training-free variants of [108] and [102].

C.1. Further Buffer Studies
We include an additional buffer design ablation, within
which we study the option to populate the key and value
contextualization buffer with augmented variants (“Aug-
mented Entries”) of the input batch BI (and consequently
removing the self-attention mask M). In this scenario, we
distinguish between only populating the buffer with aug-
mented examples (“Buffer Only”), as well as jointly train-
ing on them with and without the addition of a separate In-
foNCE objective. Our results show that gains are only vis-
ible if augmented examples are treated as independent en-
tries, effectively mimicking our main contextualization ob-
jective in Eq. (8).



Dataset Type Support/Test Split Support Examples Test Set Size #Classes

CUB200-2011 [91] Finegrained, Birds train, test 5994 5794 200
Stanford Cars [41] Finegrained, Cars train, test 8144 8041 196
Cassava [53] Cassava Leafs train, test 5656 1885 5
CIFAR100 [42] Visual Recognition train, test 50000 10000 100
Col. Histology [35] Colorectal Cancer Histology train[:2000], train[:2000] 2000 3000 8
DomainNet - ClipArt [61] Visual Recognition, ClipArt train[:30K], test[:20K] 30000 20000 345
DomainNet - Infograph [61] Visual Recognition, Infographics train[:30K], test[:20K] 30000 20000 345
DomainNet - Quickdraw [61] Visual Recognition, Quickdraws train[:30K], test[:20K] 30000 20000 345
DomainNet - Sketch [61] Visual Recognition, Sketches train[:30K], test[:20K] 30000 20000 345
DTD [9] Textures train, test 1880 1880 47
EuroSAT [29] Remote Sensing train[:22K], train[22K:] 22000 5000 10
Food101 [2] Finegrained, Food train[:30K], validation 30000 25250 101
ImageNet2012 [71] Visual Recognition train[:100K], validation 100000 50000 1000
ImageNet-Sketch [88] Visual Recognition, Sketch test[:30K], test[35K:] 30000 15889 1000
Oxford IIIT Pets [60] Finegrained, Pets train, test 3680 3669 37
Places365 (small) [104] Finegrained, Places train[:20K], validation[:15K] 20000 15000 365
Plant-Village [31] Finegrained, Plant leaves train[:30K], train[30K:] 30000 24303 38
RESISC45 [8] Remote Sensing train[:20K], train[20K:] 20000 11500 45
Stanford Dogs [11] Finegrained, Dogs train, test 12000 8580 120
SUN397 [94] Scene Understanding train[:30K], validation 30000 10875 397
UC Merced [97] Remote Sensing train[:1K], train[1K:] 1000 1100 21

Table 6. Exact default support and test configurations for all benchmark datasets studied. For most datasets with a clearly defined and
available train and test split, we utilize these to define the pool of support examples to sample from for K − shot few-shot studies, and the
number of test examples evaluated on. For datasets (such as “Col. Histology” or “Imagenet-Sketch”) where only one split was available
through tensorflow.datasets, we split accordingly into support and test pool. For the remaining datasets (primarily DomainNet),
we randomly subsample to maintain comparable support and test pools, though we note no relevant changes in relative performances across
methods with either full or subsampled pools.

ViT S/16 (1.5B), Shots → 0 1 2 4 8 16 32
Gain (Perc. Points) +0.4% +2.3% +4.2% +5.5% +5.5% +5.3% +5.4%

Table 7. Gains for TiP-Adapter using SigLIxP versus SigLIP.

Method → Proto TiP CV-TiP Plurality Rank Softmax APE DMN-TF
Gain (4-shot) +4.6% +5.6% +2.4% +2.2% +2.0% +2.9% +2.6% +3.1%
Gain (16-shot) +4.2% +5.3% +2.6% +2.1% +1.5% +2.7% +2.3% +3.3%

Table 8. Gains for metric-based classifiers for SigLIxP versus
SigLIP including more recent training-free variants of APE [108]
and DMN-TF [102] on exemplary four and sixteen shots.

Method Avg. Zero-Shot Avg. 16-Shot

No Augmentations 50.5 64.1± 0.5
Augmented (Buffer only) 48.3 60.0± 0.3
Augmented (All) 49.5 63.8± 0.3
Augmented (All) + InfoNCE 51.0 63.9± 0.3

Table 9. Additional Buffer Ablations: Inclusion of augmented
entries, with and without additional InfoNCE-style training aug-
menting the base image-text contrastive training.


