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Supplementary Material

In this supplementary material, we provide implementa-
tion details in Appendix A, out-of-distribution novel view
synthesis experiment in Appendix B, and further per-scene
quantitative and qualitative results in Appendix C and Ap-
pendix D respectively.

A. Implementation details
A.1. Extracting Plane-like Cues

Algorithm 1 Pseudo-code for Extracting Plane-like Cues

1: Dmono = Mono-model(I) ▷ Estimate mono-depth
2: Dsparse = DSfM ∪DLine

3: k̂ = argmink
∑

∥k ·Dmono −Dsparse∥22 ▷ Regression
4: Dadjust = k̂ ·Dmono ▷ Depth align
5: Ai = SAM(I) ▷ Segment image
6: for each Ai do ▷ Detect textureless area
7: if SIFT point density < Dthresh then
8: Mark Ai as weakly textured
9: end if

10: end for
11: for each textureless area Ai do
12: Pi = R−1(K−1DadjustAi − t) ▷ Back project
13: L2d = Lines in dilate(Ai, 3)
14: L3d = 3d lines corresponded to L2d
15: for each endpoint pj of 3D line L3d do
16: if dj = NN(pj , Pi) > dthresh then
17: Discard Pi

18: else
19: Retain Pi

20: end if
21: end for
22: end for
23: P =

∑
(Retained Pi) ▷ Merge results

24: Plane cues = downsample(P ) ▷ Output

Algorithm 1 employs 2 key hyperparameters: Dthresh, the
SIFT point density threshold, determined as 0.001 through
multi-image density analysis and texture strength classifica-
tion; and dthresh, the endpoint-to-point cloud distance thresh-
old, defined as triple the average point cloud distance.

A.2. Geometric cues input
As shown in Fig. 6, IndoorGS utilizes denser geometric
cues than sparse 3D SfM points as the initial input data.
The density is controlled during optimization using differ-
ent ADC (Adaptive Density Control) strategies tailored to

various data types. To achieve this goal, we introduce a
type attribute to each Gaussian primitive to record their
specific types: type=0 for line Gaussians, type=1 for SfM
Gaussians, and type=2 for planar-like Gaussians. During
the densification process, newly added Gaussians, i.e. those
resulting from cloning and splitting operations, inherit the
type attribute of their parent Gaussian.
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Figure 6. Three types of geometric cues as initial inputs on the
“playroom” scene of the Deep Blending dataset. (a) geometric
cues from 3D line segments. (b) geometric cues from SfM. (c)
geometric cues from planes. (d) All input cues, green points rep-
resent SfM cues, blue points represent line cues, and red points
represent plane-like cues.

A.3. SOR filter
Section 4.1 uses the Statistical Outlier Removal (SOR) fil-
ter to clean the sparse SfM point cloud by identifying and
removing noise or outliers. It calculates the average dis-
tance between each point and its K-nearest neighbors, then
removes points whose average distances deviate from the
mean. Specifically, a point pi is considered an outlier if its
mean distance d̄i exceeds a threshold defined by the global
mean µ and a multiple of the standard deviation σ:

d̄i > µ+ βσ (15)

where β is a threshold parameter that determines how many
standard deviations above the mean a point’s distance must



be to be classified as an outlier. The mean distance for
point pi is given by d̄i = 1

K

∑K
j=1∥pi − pj∥. The global

mean distance across the entire point cloud is expressed as
µ = 1

N

∑N
i=1 d̄i, and the standard deviation of the distances

is given by σ =

√
1
N

∑N
i=1

(
d̄i − µ

)2
, N denotes the num-

ber of points in the point cloud. This process improves the
overall quality and reliability of the point cloud for further
processing or analysis. We set K=5 and β=1.3 in our ex-
periments.

Figure 7. A comparison of the SfM point cloud before and after
filtering on the “playroom” scene of the Deep Blending dataset.
The point cloud on the left represents the pre-filtered state with
37,005 points, and the point cloud on the right represents the post-
filtered result with 36,850 points. In comparison, the right side has
fewer noisy points than the left side.

A.4. Dataset
Replica. The Replica dataset, being synthetic, includes liv-
ing room and office scenarios. We selected eight scenar-
ios for our experiments: “Room0-2” and “Office0-4”. The
dataset was obtained from NICE-SLAM [52] to simplify the
reconstruction process. Specifically, we sampled one image
every 10 frames from the 2000 images available per scene,
resulting in 200 images per scene for our experiments.
ScanNet++. For the ScanNet++ dataset, we used half-
resolution images for reconstruction due to the high
image resolution and excluded any images labeled as
blurry. We used DSLR camera sequences with COLMAP-
registered poses for four scenes, including “a5c013435”,
“3f1e1610de”, “66c98f4a9b” and “88cf747085”, which
contain 105, 185, 67, and 182 registered images.
Deep Blending. The Deep Blending dataset is a real-world
dataset that contains high-resolution RGB images captured
from multiple views of a real-world scene, along with pre-
cise camera parameters. We use two scenes, namely “Dr-
johnson” and “Playroom”, which contain 263 and 225 high-
resolution photos, respectively.

A.5. Mesh evaluation metrics
Tab. 4 defines the mesh evaluation metrics to compare the
predicted mesh with the ground truth mesh for the Replica
and ScanNet++ datasets. A threshold of 5 cm is used for
calculating precision, recall, and F1-score. Additionally, the
mesh quality assessment is limited to the area within the vi-

sual range of the training camera views. Specifically, we
crop the ground truth (GT) mesh by determining the visibil-
ity of its vertices and use the cropped mesh as our ground
truth reference.

Metric Definition

Accuracy 1
|P |

∑
p∈P

(
minp∗∈P∗ ∥p − p∗∥1

)
Completion 1

|P∗|
∑

p∗∈P∗
(
minp∈P ∥p − p∗∥1

)
Chamfer-L1

Accuracy + Completion
2

Precision 1
|P |

∑
p∈P

(
minp∗∈P∗ ∥p − p∗∥1 < 0.05

)
Recall 1

|P∗|
∑

p∗∈P∗
(
minp∈P ∥p − p∗∥1 < 0.05

)
F1-score 2· Precision · Recall

Precision + Recall

Normal-Accuracy 1
|P |

∑
p∈P

(
nT

p np∗
)

s.t. p∗ = argmin
p∗∈P∗

||p − p∗||1

Normal-Completion 1
|P∗|

∑
p∗∈P∗

(
nT

pnp∗
)

s.t. p = argmin
p∈P

∥p − p∗∥1

Normal-Consistency Normal-Acc+Normal-Comp
2

Table 4. Evaluation Metrics. We show the evaluation metrics with their
definitions that we use to measure reconstruction quality. P and P ∗ are
the point clouds sampled from the predicted and the ground truth mesh.
np is the normal vector at point p.

B. Out-of-distribution NVS experiment
We follow the out-of-distribution novel view synthesis
(OOD-NVS) definition of SplatFormer [7]. Test views sig-
nificantly differ from input views in the out-of-distribution
novel view synthesis(OOD-NVS). This scenario contrasts
with in-distribution NVS, where test views interpolate be-
tween densely captured input views. According to Splat-
Former, the geometrically consistent scene representation
demonstrates a significant advantage in the OOD-NVS task.
Our result is also consistent with the underlying geometry.
To highlight the effectiveness of our approach for the NVS
task, we propose a simple method for extracting an out-of-
distribution test set. Specifically, we compute the nearest-
neighbor distances between the centers of all cameras and
sort them in descending order. The test set is constructed
using data corresponding to the top one-eighth of cameras
with the largest distances.

We then collected an indoor dataset consisting of 163
images casually captured with a cellphone within a single
room. After processing with COLMAP to calculate intrin-
sic and extrinsic camera parameters and correct image dis-
tortion, each image was resized to 1195 × 896 pixels.

We extracted OOD views as test views using the above-
mentioned method and then extracted geometric cues using
our proposed geometric cue extraction approach (Section
4.1). As illustrated in Fig. 8, our geometric cue inputs on
the right are significantly denser than the 3DGS input data



Method Metric R0 R1 R2 OFF0 OFF1 OFF2 OFF3 OFF4 Avg.
PSNR↑ 37.45 38.62 39.82 43.06 41.91 38.12 37.75 39.45 39.52
SSIM↑ 0.964 0.966 0.969 0.980 0.966 0.967 0.964 0.966 0.9683DGS
LPIPS↓ 0.097 0.115 0.123 0.079 0.179 0.139 0.114 0.122 0.121
PSNR↑ 39.24 40.06 41.33 44.28 43.67 39.38 39.37 40.51 40.98
SSIM↑ 0.978 0.978 0.981 0.986 0.979 0.981 0.979 0.978 0.980GOF
LPIPS↓ 0.060 0.074 0.072 0.055 0.106 0.072 0.071 0.081 0.074
PSNR↑ 39.24 40.30 41.48 44.41 43.60 39.34 39.35 40.61 41.04
SSIM↑ 0.978 0.978 0.981 0.986 0.979 0.981 0.978 0.978 0.980RaDeGS
LPIPS↓ 0.061 0.073 0.073 0.054 0.107 0.073 0.072 0.082 0.074
PSNR↑ 38.15 39.31 40.32 43.70 43.06 38.28 37.91 39.46 40.02
SSIM↑ 0.971 0.973 0.974 0.984 0.976 0.973 0.970 0.972 0.974PGSR
LPIPS↓ 0.087 0.100 0.112 0.065 0.127 0.109 0.100 0.105 0.101
PSNR↑ 39.12 40.13 41.28 44.47 44.18 39.33 39.29 41.09 41.11
SSIM↑ 0.978 0.978 0.980 0.987 0.982 0.980 0.978 0.979 0.980Ours
LPIPS↓ 0.058 0.078 0.075 0.050 0.089 0.081 0.071 0.081 0.073

Table 5. Quantitative comparison results of rendering quality for novel view synthesis on the Replica dataset.

Method Metric R0 R1 R2 OFF0 OFF1 OFF2 OFF3 OFF4 Avg.
C-L1↓ 0.069 0.084 0.117 0.067 0.107 0.083 0.068 0.092 0.086

F1↑ 0.654 0.566 0.493 0.666 0.425 0.577 0.668 0.562 0.576GOF
NC↑ 0.838 0.796 0.789 0.807 0.668 0.817 0.842 0.818 0.797

C-L1↓ 0.068 0.080 0.093 0.051 0.132 0.067 0.058 0.080 0.079
F1↑ 0.666 0.561 0.533 0.709 0.391 0.647 0.690 0.603 0.600RaDeGS
NC↑ 0.885 0.867 0.864 0.882 0.750 0.879 0.887 0.883 0.862

C-L1↓ 0.045 0.046 0.083 0.030 0.062 0.045 0.034 0.045 0.049
F1↑ 0.850 0.818 0.724 0.886 0.734 0.815 0.873 0.844 0.818PGSR
NC↑ 0.903 0.885 0.862 0.923 0.875 0.892 0.915 0.908 0.895

C-L1↓ 0.032 0.029 0.041 0.023 0.044 0.046 0.033 0.042 0.036
F1↑ 0.893 0.902 0.774 0.907 0.739 0.715 0.866 0.803 0.825Ours
NC↑ 0.956 0.947 0.946 0.949 0.918 0.932 0.934 0.940 0.940

Table 6. Quantitative comparison results of Chamfer distance, F-Score, and Normal Consistency for reconstruction on the Replica dataset.

Method Metric 0a5c 3f1e 66c9 88cf Avg.
PSNR↑ 29.37 31.96 25.26 31.23 29.46
SSIM↑ 0.933 0.944 0.864 0.930 0.9183DGS
LPIPS↓ 0.143 0.147 0.175 0.143 0.152
PSNR↑ 29.68 32.47 25.94 31.17 29.82
SSIM↑ 0.932 0.950 0.864 0.930 0.919GOF
LPIPS↓ 0.141 0.146 0.179 0.146 0.153
PSNR↑ 30.52 32.19 26.50 31.10 30.08
SSIM↑ 0.938 0.943 0.871 0.931 0.921RaDeGS
LPIPS↓ 0.131 0.150 0.165 0.141 0.147
PSNR↑ 30.66 32.16 25.97 31.17 29.99
SSIM↑ 0.936 0.950 0.863 0.932 0.920PGSR
LPIPS↓ 0.142 0.147 0.182 0.146 0.154
PSNR↑ 31.17 32.05 27.24 31.35 30.45
SSIM↑ 0.941 0.955 0.880 0.935 0.928Ours
LPIPS↓ 0.125 0.126 0.140 0.134 0.131

Table 7. Quantitative comparison results of rendering quality for novel
view synthesis on the Scannet++ dataset. Row one, ’0a5c, 3f1e, 66c9,
88cf’, is an abbreviation for the full hexadecimal strings ’0a5c013435,
3f1e1610de, 66c98f4a9b, 88cf747085’.

shown on the left. We evaluated our method and 3DGS on
this dataset. The 3DGS reconstruction achieved a PSNR of
only 13.47 dB, essentially considered a failure. In contrast,
our method achieved a PSNR of 27.93 dB on test views,
corresponding to significantly better performance as shown

Method Metric Drjohnson Playroom Avg.
PSNR↑ 28.77 30.04 29.41
SSIM↑ 0.899 0.906 0.9033DGS
LPIPS↓ 0.244 0.241 0.243
PSNR↑ 28.24 30.17 29.21
SSIM↑ 0.897 0.910 0.904GOF
LPIPS↓ 0.253 0.239 0.246
PSNR↑ 28.81 30.1 29.46
SSIM↑ 0.902 0.911 0.907RaDeGS
LPIPS↓ 0.246 0.240 0.243
PSNR↑ 28.18 30.25 29.22
SSIM↑ 0.877 0.909 0.893PGSR
LPIPS↓ 0.264 0.245 0.255
PSNR↑ 29.51 30.61 30.06
SSIM↑ 0.907 0.913 0.910Ours
LPIPS↓ 0.235 0.235 0.235

Table 8. Quantitative comparison results of rendering quality for
novel view synthesis on the Deep Blending dataset

in Fig. 9.

This experiment highlights the robustness of our method
across different datasets and underscores its comparative
advantage in handling OOD test views.



Method Metric 0a5c 3f1e 66c9 88cf Avg.
C-L1↓ 0.085 0.139 0.133 0.061 0.105

F1↑ 0.487 0.387 0.424 0.618 0.479GOF
NC↑ 0.669 0.702 0.680 0.756 0.702

C-L1↓ 0.075 0.127 0.120 0.061 0.096
F1↑ 0.533 0.389 0.446 0.620 0.497RaDeGS
NC↑ 0.723 0.768 0.746 0.806 0.761

C-L1↓ 0.065 0.099 0.100 0.051 0.079
F1↑ 0.651 0.561 0.585 0.703 0.625PGSR
NC↑ 0.727 0.810 0.751 0.825 0.778

C-L1↓ 0.037 0.058 0.042 0.024 0.040
F1↑ 0.777 0.686 0.720 0.922 0.776Ours
NC↑ 0.817 0.890 0.867 0.933 0.877

Table 9. Quantitative comparison results of Chamfer distance, F-Score,
and Normal Consistency for reconstruction on the Scannet++ dataset.

Figure 8. Different initialization input data.

Figure 9. Qualitative comparison of test view results.

C. Per-scene quantitative results
In this section, we present per-scene quantitative results.
Tab. 5, Tab. 7, and Tab. 8 show the NVS comparison on
the Replic, Scannet++, and Deep Blending datasets respec-
tively, while Tab. 6 and Tab. 9 shows the mesh quality com-
parison on the Replic and Scannet++ datasets.

D. More qualitative results
More qualitative results are given in Fig. 10, Fig. 11,
Fig. 12, and Fig. 13.



Figure 10. Qualitative comparison on mesh reconstruction. Comparison of baseline methods on sequences from the Replic dataset.



Figure 11. Qualitative comparison on mesh reconstruction. Comparison of baseline methods on sequences from the Replic dataset.



Figure 12. Additional experimental results of IndoorGS on the ScanNet++ dataset.



Figure 13. IndoorGS enables high-precision geometric reconstruction and novel view synthesis for indoor datasets using a sequence of
RGB images.


