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1. More Details on Loss Functions
Following the previous works [7, 10], our regularization
loss Lreg consists of five terms:

λnormLnorm+λlapLlap+λpercLperc+λnbrLnbr +λposeLpose

(1)
where the balancing hyper-prameters λnorm, λlap, λperc,
λnbr, and λpose are set to 0.01, 0.01, 10, 1, and 0.2, respec-
tively.

The normal consistency loss [3] Lnorm is defined as:

Lnorm =
∑

(i,j)∈E

(1− ni · nj

||ni||2||nj ||2
) (2)

where E represents the set of edges shared by two neighbor-
ing faces, and n is a face’s normal vector.

The Laplacian smoothing loss [11] is defined as:
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where v and N (i) represent a vertex and a set of neighbor-
ing vertices, respectively.

The perceptual loss [15] Lperc is defined as:

Lperc =
∥∥ϕ(I ′)− ϕ(I)

∥∥2
2

(4)

where ϕ(·) represents the output of the relu3 3 layer of a
pretrained VGG16 [13].

Following the previous works [7, 10], we use neighbor
reconstruction loss by exchanging the shape and texture at-
tributes to enforce the consistency across instances within
the same category.

Lnbr = ||Ii − I ′tx
j→i||22 + ||Ii − I ′sh

k→i||22 (5)

where samples j and k are the texture and shape neighbors
[10] of sample i, respectively, and I ′tx

j→i and I ′sh
k→i are the re-

constructed images by swapping the texture or shape code.

Category Airplane Car Chair Lamp Table
ShapeNet 2831 5247 4744 1622 5956

ShapeNetPart 1908 654 2655 1004 2532

Table 1. Numbers of training instances in ShapeNet and
ShapeNetPart. The training instances in ShapeNetPart are much
fewer than those in ShapeNet, especially for the car category.

Finally, following the widely used camera multiplex [5,
10], Lpose is defined as:

Lpose =
∑
k

|p̄k − 1

K
| (6)

where p̄k is the frequency of the k-th pose candidate in a
training batch. This loss encourages a uniform distribution
on the pose estimates.

2. Data Generation

In this section, we briefly introduce the process of data
generation for three datasets, including ShapeNetPart in
Sec. 2.1, PartNet in Sec. 2.2, and CUB-200-2011 in
Sec. 2.3. We will release all generated data along with our
code.

2.1. ShapeNetPart
ShapeNetPart [4] contains significantly fewer training in-
stances compared to ShapeNet [2], as shown in Table 1.
For instance, there are only 654 training samples for the
car category in ShapeNetPart, which is just one-tenth of the
corresponding number in ShapeNet.

The data in ShapeNetPart is represented as point clouds,
including point locations and their corresponding part la-
bels. To generate the required data for training and eval-
uation, we first identify the corresponding mesh and point
cloud in ShapeNet for each object in ShapeNetPart. To im-
prove the quality of the generated part masks, we upsample
the mesh using subdivision [8]. Next, we align the point
cloud from ShapeNetPart with the mesh and point cloud
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Figure 1. Examples of the input images and their correspond-
ing part-segmented meshes across five categories in ShapeNetPart.
Different colors represent different parts.

Category Bottle Bowl Display Knife Mug
PartNet 315 131 633 221 138

Table 2. Numbers of training instances across five categories in
PartNet.

from ShapeNet and transfer the part labels based on the dis-
tance between points. To generate training data, we render
the image and object mask using the original mesh and ren-
der the part mask using the part-segmented mesh. The ren-
dered images and the corresponding part-segmented meshes
for example objects are illustrated in Figure 1. For evalua-
tion purposes, we utilize the point cloud in ShapeNet with
the transferred part labels, as it contains significantly more
points than the point cloud in ShapeNetPart.
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Figure 2. Examples of the input images along with the part-
segmented meshes across the five categories in PartNet.

Figure 3. 2D part masks of CUB-200-2011. Different colors are
used to represent different parts: head (blue), body (green), neck
(cyan), wing (red), tail (purple), and legs (yellow).

2.2. PartNet

Table 2 shows the numbers of training instances for five
PartNet [9] categories used in our experiments. PartNet
contains significantly fewer samples than ShapeNetPart.

Since PartNet already provides the high-quality ground
truth, including point locations and part labels, we only
need to generate the 2D images, object masks, and part
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Figure 4. Qualitative results with five categories in ShapeNetPart based on three approaches. Unicorn [10] and AST [7] are state-of-the-arts
methods for learning whole object reconstruction from image collections. We extend them for partonomic reconstruction.
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Figure 5. Qualitative results across five categories on PartNet
with three methods. Unicorn [10] and AST [7] are state-of-the-
art methods for learning whole object reconstruction from image
collections. We extend them for partonomic reconstruction.

masks required for training. Similar to ShapeNetPart, we

Input Reconstruction Input Reconstruction 

Figure 6. Additional qualitative results showing front and back
views on CUB-200-2011. The input images of these examples are
the same as those in Figure 5 in the main paper.

first identify the corresponding mesh in ShapeNet for each
object in PartNet and upsample the mesh using subdivision
[8]. Then, we align the point cloud from PartNet with the
mesh in ShapeNet and transfer part labels to the correspond-
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Figure 7. Visualization of partonomic reconstruction based on CUB-200-2011. Each row is a bird. The first column is the input image, the
other columns are the partonomic reconstruction from base model and our proposed method with five different viewpoints.

ing mesh vertices. We render the images and object masks
with the original meshes in ShapeNet and render part masks
using the part-segmented meshes, shown in Figure 2.

2.3. CUB-200-2011

Since the official dataset does not provide the detailed 2D
part labels, we use part masks provided by [1], which only
labels the first 70 categories. In addition, we merge the orig-
inal 11 parts into 6 parts to avoid too small parts such bird
eyes. Then, we label different parts with different colors,
head (blue), body (green), wing (red), tail (purple), neck
(cyan), and legs (yellow). The examples are visualized in
Figure 3.

3. More Qualitative Results

We present more qualitative results on ShapeNetPart
(Sec. 3.1), PartNet (Sec. 3.2), and CUB-200-2011
(Sec. 3.3).

3.1. ShapeNetPart

Figure 4 visualizes the qualitative results across five cat-
egories in ShapeNetPart based on three approaches. We
extend Unicorn [10] and AST [7] by modeling the part
class of each mesh vertex, and adding the part rendering
loss for learning. These two extension are denoted as Uni-
corn* and AST*. As shown in Figure 4, our proposed
method is able to obtain both better overall and partonomic
reconstructions. For the airplane category, the reconstruc-
tion generated by our proposed method has more clear-
boundary wings compared with the output of the other two
approaches.

3.2. PartNet
Figure 5 visualizes the qualitative results of three ap-
proaches in PartNet. Each column represents an object,
while each row represents the input image, the ground
truth, and the reconstruction generated by Unicorn*, AST*
and our proposed method, respectively. The visualization
highlights our proposed method outperforms Unicorn* and
AST* across all five categories in terms of overall and parto-
nomic reconstruction. Specifically, for the mug category,
Unicorn* and AST* show artifacts in the handle region and
fail to achieve consistent part segmentations. However, our
proposed method better captures the handle’s geometry and
the part decomposition, achieving a more realistic recon-
struction.

3.3. CUB-200-2011
Figure 6 demonstrates qualitative results illustrating the
front and back views of the reconstructed 3D shapes on
CUB-200-2011. These extended views offer a more com-
prehensive evaluation of the reconstruction quality.

Figure 7 shows the qualitative comparison between our
proposed method and the base model on CUB-200-2011
[14]. We tried to train Unicorn* and AST* on this dataset
with part rendering loss, but got unsatisfactory results. Each
row of Figure 7 represents a bird. The first column is the
input image, the second to sixth columns are the parto-
nomic reconstruction of base model from different view-
points, and the seventh to eleventh columns show our parto-
nomic reconstruction from five different viewpoints. It
shows our proposed method is able to generate the more ac-
curate overall and semantic-meaningful partonomic recon-
struction. Specifically, the reconstructed tail of the last in-
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Figure 8. More qualitative results on ShapeNetPart.

Sup. Method Average Airplane Car Chair Lamp Table

2D
Unicorn 0.249 0.099 0.157 0.243 0.499 0.247

AST 0.217 0.090 0.151 0.222 0.393 0.229
Ours 0.197 0.082 0.148 0.227 0.340 0.189

3D
Unicorn 0.138 0.070 0.138 0.151 0.183 0.147

AST 0.132 0.068 0.134 0.142 0.178 0.140
Ours 0.127 0.059 0.129 0.139 0.176 0.131

Table 3. Quantitative comparison using 2D and 3D super-
visions on ShapeNetPart. The Chamfer-L1 performance is re-
ported. 2D supervision means object and part masks. 3D supervi-
sion means ground truth meshes.

stance is coarser than ours. In addition, the part labels are
mixed and more messy.

4. Ablation Study

Component analysis. Figure 8 provides more qualitative
results on ShapeNetPart [4]. Across all five categories,
our proposed method reconstructs the 3D shapes which are
much closer to the ground truth compared to the Base model
and +Deform, with more clear boundary segmentation.

2D versus 3D supervisions. Table 3 shows quantitative
comparison between 2D object and part mask supervisions
and 3D mesh supervisions on ShapeNetPart [4]. Our pro-
posed method consistently outperforms Unicorn [10] and
AST [7] across all five categories. It is worth noting that
reconstruction performance under full 3D supervision is
not comparable to that of prior works [6, 12] because the
ShapeNetPart used in this paper is significantly smaller than
the full ShapeNet.

5. Limitation
Since our compositional 3D object representation is defined
on a spherical mesh, it struggles to effectively handle high-
genus shape topologies, such as kettles and donuts. For fu-
ture work, we plan to extend our compositional approach to
implicit representations, such as the signed distance func-
tion, which can represent shapes with arbitrary topologies.
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