Prof. Robot: Differentiable Robot Rendering Without Static and Self-Collisions

Supplementary Material

6. Network Architecture

The architecture of our network, illustrated in Figure 6,
presents an elegantly straightforward design that comprises
two distinct inputs and a singular dependencies.

f(6)

] !

Eie
n .

Child

Root

Figure 6. Architecture

7. Collision Resolution

We illustrate the process of optimizing the robot’s joint an-
gles for collision resolution in Figure 7. This transformation
is further clarified by layering intermediate optimization re-
sults in Figure 8, thus offering a clearer depiction of how
the robot gradually evolves from an initial state of collision

to a final, non-collision posture.

8. Collision-free Trajectory

As outlined in Section 4.4.2, given the initial posture Oy
and the target posture B.,q4, we can delineate the trajectory
for the transition from Oy to Oenq. We illustrate this pro-
cess using three distinct methodologies.

8.1. Trajectory of Interpolation

Interpolation within the SO(2) plane offers a naive solution.
Assuming the interpolation function in SO(2) is represented
as Z, we can derive IV points along the intermediate trajec-
tory, él, ceey 0}\;, defined by

éla ceey 0;\7 =7 (astartv eend) (15)

However, this elementary interpolation method may
yield invalid angles and potential collisions, as illustrated
in Figure 11. If we were to rely on the trajectory generated
by interpolation to instruct the robot’s movements, it would
face the risk of becoming ensnared at collision points, as
depicted in Figure 12. Thus, it is imperative to employ our
SDF model to optimize the control points of the interme-
diate poses. By incorporating our SDF perception, we en-
hance the interpolation poses through the following formu-
lation:

L = v1Lspr + 2Ly (16)

where ~; and v, represent scalar weights. The term Lty is
detailed in Section 4.4.2 and is expressed as:

1 N-1 .
Liv =57 ; 16:41 — 6] (17)

Utilizing our SDF model, we generate a collision-free
trajectory to guide the robot’s movements, as shown in Fig-
ure 13. This trajectory is subsequently utilized to control
the robot’s motion, as illustrated in Figure 14.

8.2. Trajectory of Dr. Robot

We render the target posture 6,4 and utilize the intermedi-
ate optimized postures as control poses for Dr. Robot. Four
views of the target posture 6,4 are presented in Figure 9.
Starting from the initial parameters Oy, the intermediate
poses are optimized using the loss functions Lrgg and Lp,
as described in Section 4.4.1. The optimized intermediate
postures are illustrated in Figure 15.

Directly using these postures for control can result in col-
lisions, as shown in Figure 16. To mitigate this issue, our



50 )

= 2

T

Figure 7. The Visualization of SDF Optimization. We adjust the angles of only two of the robot’s joints while keeping the remaining joint
angles fixed. Using these two joint angles as coordinate axes, we calculate the SDF values corresponding to various joint configurations.
Subsequently, we apply the optimization method detailed in Section 4.3, visualizing the joint data points alongside their corresponding
states of the robot in a plot. In this visualization, the robot transitions from red collision points to green non-collision points. For improved
clarity, the regions where the robot comes into contact with the plane are depicted in red, the collision-free areas in blue, and the transitional

zones in

Figure 8. The Stack of SDF Optimization. To effectively il-
lustrate the robot’s gradual transition from a collision state to a
non-collision state, we stack the intermediate results from the op-
timization process shown in Figure 7 for visualization purposes.

method refines the pose optimization using the following
formulation:

L = 1 Lspr + v2L1v + ¥3LsDE (18)

The results are shown in Figure 17. We further refine
the optimization by employing Lspr and Lty, leading to
the control outcomes illustrated in Figure 18. These re-
sults clearly demonstrate that our optimization method sig-
nificantly reduces collisions between the robot and its sur-
rounding environment.

Figure 9. The Dataset for Trajectory Optimization from
Dr. Robot. We use four different views as supervision, provid-
ing image, depth, and segmentation data for each perspective.

8.3. Trajectory of Tangent

Given the unique properties of the SDF, its value consis-
tently increases along the gradient direction while remain-
ing unchanged along tangential directions. However, with
the multitude of possible tangential directions within the
SDF, a crucial question emerges: which tangential direction
should be chosen for gradient updates?

To address this, we leverage additional available infor-



mation to guide the gradient. By projecting this external in-
formation onto the tangential plane of the SDF gradient, we
can define an appropriate update direction. We propose Al-
gorithm 1, which facilitates movement within a plane where
the SDF value remains constant. This approach effectively
enables the generation of a collision-free trajectory. The re-
sulting outputs are depicted in Figure 19.

Algorithm 1 Gradient-Based Optimization with SDF Con-
straints

Require: Oy, O.ng, 9, maxlterations, €plerance
Ensure: Optimized 6
1: Initialize @ < O
2: for iteration = 1 to maxlterations do
3 Compute the SDF ¢(0) and the gradient Gispr
4: Normalize the Gspr: GEJE Hg%iu
5 Calculate the L1 distance to Oeng: Lo <+ |0 — Ocnal,
and compute the gradient of Lg: Gg
6: Determine the projection of Gg onto the tangent of
Gm: D« Go — (G - Go) G
7: Update 8: 0 < 0 — 6D

8: if Lo < Eplerance then
9: break

10: end if

11: end for

9. Comparison with Differentiable Simulator

We frame Prof. Robot as a lightweight plug-in that can be
seamlessly integrated into other skill-learning pipelines. In
specific, Prof. Robot has a compact JIT model size of only
3.1 MB, as opposed to differentiable simulation, which re-
quires a storage of nearly 4.7 GB and additional robot as-
sets of nearly 22.1 MB. When optimizing poses, our model
and the PyTorch environment require just 712 MiB of GPU
memory. In comparison, Brax consumes 11,445 MiB, mak-
ing our approach approximately 16 times more memory-
efficient. When optimizing poses, our approach approx-
imately 16 times more memory-efficient. Additionally,
while differentiable simulators are capable of backpropa-
gating gradients from collisions to actions, they come with
significant limitations, such as computational overhead and
inaccurate gradient estimation [42]. Moreover, many sim-
ulators, such as MuJoCo and Isaac Gym, are not differen-
tiable, and our Prof. Robot is compatible with these simula-
tors.

10. Train with Alternative Regularizers

Although optimizations involving Eikonal equations are
known to be unstable, recent work by [68] proposes a sta-
ble Eikonal loss (StEik) formulation. While incorporating
StEik into our framework yields a modest 0.29% improve-

ment in classification accuracy, we observe that its effec-
tiveness is constrained by fundamental factors: StEik pri-
marily targets optimization of complex geometric configu-
rations, whereas our pose optimization task does not strictly
require full adherence to the Eikonal property. Similarly,
imposing Lipschitz constraints [31] improves classification
accuracy by 0.35% through gradient stabilization, but intro-
duces unintended consequences. This regularization relaxes
the critical gradient normalization condition, thereby com-
promising essential SDF properties: (1) the geometric inter-
pretation of SDF values as exact distance measurements to
zero-level surfaces. (2) the directional significance of SDF
gradients for surface orientation. Such properties prove cru-
cial for downstream tasks like pose interpolation [55].

11. Manipulation with Dr. Robot

To showcase the efficacy of our method in robot control, we
undertook a training regimen for Dr. Robot, enabling it to
learn and execute actions based on video sequences. The
effectiveness of this learning was then verified through a
series of simulation experiments. We created a multi-view
video of a pick operation using the Mujoco engine and em-
ployed Dr. Robot to optimize the actions required for each
video frame. Subsequently, we assessed these optimized
actions within the simulation environment, with a focus on
analyzing their interaction with the desk to detect any colli-
sions.

In the robot demonstration video, each frame corre-
sponds to a control parameter 6;. Our objective is to infer
these 6; values from the video and subsequently use them
to control the robot. While Dr. Robot has the capability to
manipulate a robot, no demonstrations of this functionality
have been presented so far. We are confident that with high-
quality video input, Dr. Robot can effectively manipulate a
real robot.

For the sake of brevity, we do not focus on the qual-
ity of the survival model; instead, we directly learn the
robot’s actions from the demonstration video. Using the
Mujoco engine, we generate a robot manipulation video, as
shown in Figure 10. To ensure precise manipulation data,
we adopt a course-to-fine strategy. Finally, we incorporate
our collision-aware module to prevent any incidents of col-
lision during robot operation.

During the course stage, we utilize gradient accumula-
tion, leveraging Dr. Robot to propagate the gradients from
the three views before updating the parameters. In this
phase, we adopt a larger learning rate and recursively op-
timize the parameters of the robot for each frame, perform-
ing five parameter updates before retaining the optimization
results. In the fine stage, we still employ the method of
gradient accumulation, but with a smaller learning rate and
incorporate the TV loss mentioned in Section 4.4.2 to mit-
igate jitter during the optimization process, conducting ten



Figure 10. The Dataset for Robot Manipulation. Our dataset in-
cludes three perspectives captured across 160 frames. For supervi-
sion, we provide images alongside their corresponding depth data
of the robot. To address the singularity of actions, we ensure multi-
view consistency by utilizing three distinct perspectives. Addition-
ally, to supervise fine-grained manipulation, we use a telephoto
camera to capture close-up images of the robot’s gripper.

parameter updates. The results are presented in Figure 20.
However, in our demonstration scenario, directly utiliz-
ing Dr. Robot for robot control can result in collisions. To
circumvent this issue, we optimize the parameters 6 esti-
mated by Dr. Robot using our SDF model. We categorize
the robot’s movements into two types: movement, which
typically does not emphasize the posture of the end effector
but focuses on avoiding collisions during motion, and oper-
ations, which prioritize the end effector’s posture. Conse-
quently, we classify the parameters @ inferred by Dr. Robot
into these two categories. For the movement parameters,
we apply SDF loss for supervision, while for the operation
parameters, we supervise based on the posture of the end
effector. Throughout the optimization process, we also em-
ploy TV loss to ensure smoother postures and to prevent ex-
cessive jitter. Our evaluation primarily focuses on collision
avoidance between the robot arm and the desktop during
movement, as illustrated in Figure 21. The results demon-
strate that our method effectively mitigates robot collisions.



Figure 11. Visualization of the interpolation trajectory. The reading sequence progresses from left to right and top to bottom, adhering

to this pattern consistently. When the robotic arm makes contact with the green block, the collision area will be highlighted in red, with a
gradient transitioning in between, a pattern that is replicated in other instances as well.

VoV oV Y
DA DA BVa Ba Ba
eV oV VY
eV oV VY
oV oV Y Y

Figure 12. Visualization of the use of the interpolation trajectory for robot control.



1415
1115
11113

Figure 13. Visualization of our optimization trajectory derived from interpolation.

FERRY FEERD
FEEEE FRERE

}iHH}
}iH}
}iH}

Figure 14. Visualization of controlling the robot using our optimization trajectory from interpolation.



4

!

!

{

Yo |4 [N [

Sl S

{
,

Figure 15. Intermediate trajectory of Dr. Robot’s optimization process.

LY
Figure 16. Visualization of the trajectory generated by Dr. Robot




:

.

.

{

R A D

el B B
el el g
f

BRSO SO . P P




P74 BrA BoA B B
B B g, g gy
Vo VoV oV
Fm Fin g pn pn
e e g g pren

Figure 19. Visualization of our tangent trajectory. Given that we employed only gradient descent without the inclusion of momentum
for optimization, while assigning a substantial value to J to assist 8 in circumventing local minima, this approach led to considerable jitter
in the robot depicted in the image.

el e s e e A

e

2 S e S A S S R

Figure 20. Rendering results of robot control utilizing Dr. Robot. The first two rows display operational images from a singular
perspective, rendered by Dr. Robot, while the final row illustrates the gripper being precisely manipulated by Dr. Robot. Upon learning the
parameter 6, Dr. Robot proceeds to control the robot.



Figure 21. Results of robot control employing the parameters 6 learned by Dr. Robot. The red robot arm in the image denotes direct
control based on the original parameters learned by Dr. Robot, while the blue robot arm represents control following optimization through
our SDF model. To highlight potential collisions, we elevated the plane of the initial 60 views by 0.005 m solely during the rendering
process, with collision points marked in red on the gray desktop.



