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A. Distilled Modality Template for Down-
stream Tasks

In this section, we will elaborate on how the distilled
modality templates obtained from pre-training can be ap-
plied in downstream tasks. As shown in Fig. 5, in the down-
stream fine-tuning stage, the distilled modality templates
are frozen. Let Dds = {(Xi, Yi)}Mi=1 denote the down-
stream dataset, where M represents the number of anno-
tated samples. Xi is the multi-modal MRI input volume,
and Yi represents the corresponding label, which can be a
segmentation map for segmentation tasks or a one-hot vec-
tor for classification tasks. Specifically, we randomly se-
lect m and n modalities in Xi and replace them with the
corresponding modalities from {Tm}Sm=1, obtaining two
augmented copies X ′

i and X ′′
i . The encoded features of

these two copies are Fenc(X
′
i) and Fenc(X

′′
i ), respectively.

Since the two embeddings are representations of the same
sample with different numbers of replaced modalities, we
use the L2 norm to maintain semantic consistency in the
feature space.

Lcons = ||Fenc(X
′
i)−Fenc(X

′′
i )||2 (7)

Subsequently, the features of the two copies are decoded
to the output space to calculate supervision loss with the
ground-truth annotations. The overall fine-tuning loss is:

LFT =
1

|B|

|B|∑
i=1

(Lsl(F(X ′
i), Yi) + Lsl(F(X ′′

i ), Yi)

+λcons ∗ Lcons)

(8)

where λcons is the weight of the consistency loss Lcons

term and Lsl is the supervision loss used in segmentation
or classification tasks, e.g., Dice Loss in segmentation or
Cross-Entropy Loss in classification. |B| represents number
of cases in a batch.

For the uni-modal input scenario, instead of replacing the
selected modalities with distilled modality templates, we
perform a partially masking strategy like Algorithm 1 where
Xi is replaced with the corresponding distilled modality
template. Then we randomly mask the uni-modal input vol-
ume twice to obtain two augmented copies of Xi, and the
remaining procedures are the same as the aforementioned
multi-modal scenario.

B. Pre-processing
B.1. Pre-training

During pre-training, data pre-processing is performed se-
quentially in Python based on MONAI 1.3.0 library. The
orientation of the mpMRI scan is first unified to the RAS
axcodes and co-registered to the same anatomical template.
Subsequently, each MRI scan is resampled to an isotropic
voxel spacing of 1.0mm × 1.0mm × 1.0mm using bilin-
ear interpolation, and skull-stripping is performed as well.
We linearly clip the pixel values between the 1st and 99th
percentiles and re-scale them to [0, 1]. The images are
then cropped into 96 × 96 × 96 voxel patches centered on
either foreground or background areas, to ensure that the
modality-wise data distillation is learned sufficiently. We
do not apply any other data augmentation techniques.

B.2. Segmentation

The input mpMRI scan is first reoriented to the RAS co-
ordinate system, then the image spacing is adjusted to a uni-
form 1.0mm × 1.0mm × 1.0mm ( for the ISLES22 [22]
dataset it’s 1.5mm× 1.5mm× 1.5mm ) using bilinear in-
terpolation. Subsequently, the pixel grayscale values of the
input mpMRI scan are normalized from the 5th to the 95th
percentile, with each channel being adjusted to a range be-
tween 0 and 1. After cropping the foreground area of the
image, we randomly crop a fixed area of 96 × 96 × 96.
To avoid over-segmentation, we allow the sampling center
to be in the background area. Then, random mirror flip-
ping along three axes with a probability of 0.5, random in-
tensity offset with 0.1 offset, random intensity scaling with
probability 1.0 in a scale factor of 0.1 are performed for
data augmentation. For network training, we employ the
AdamW optimizer [35] with an initial learning rate of 3e-
4, incorporating cosine learning rate decay. Weight decay
is set to 1e-3 for UNETR [19]-based models, 1e-4 for Uni-
Former [31] and Swin-UNETR [18]-based models, and 1e-
5 for UNET3D [40]-based models. We train the network
with a batch size of 3 for 500 epochs, and λconsis set to 0.1.

B.3. Classification

The data augmentation part is different from segmen-
tation in that we resize the input image to a fixed size of
128× 128× 64 after normalizing it to fit the training of the
comparison methods. Subsequently, we randomly crop a
fixed region of 96×96×64 and then perform the same ran-
dom data augmentation as segmentation. In the inference
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Figure 5. Modality-wise data distillation for downstream tasks. The input multi-modal MRI scans are randomly selected to replace a
certain number of modalities with the corresponding modality templates. Then L2 norm is used to ensure feature consistency between the
two replacement copies. Finally, the task head is replaced with corresponding modules based on the task type.

stage, we crop an area of 96 × 96 × 64 at the center of the
input image. we set the batch size to 64 considering gra-
dient accumulation and train all networks for 200 epochs.
The remaining hyper-parameters are the same as those used
for segmentation.

C. Dataset Details
C.1. Pre-training datasets

BraTS2021 [2]: This dataset comprises 1,470 cases pub-
licly available multi-sequence MRI scans, encompassing
four paired modalities: T1, T1CE, T2, and FLAIR. All
images have been registered and resampled to 1.0mm ×
1.0mm × 1.0mm. We only utilize the image data without
incorporating the segmentation annotations.
BraTS2023-SSA [1] and BraTS2023-MEN [29]: These
datasets are two of the five segmentation sub-tasks in
BraTS2023 with 75 cases and 1,141 cases mpMRI, respec-
tively. The former dataset focuses on the segmentation of
brain gliomas in patients from sub-Saharan Africa, while
the latter is dedicated to adult meningioma segmentation.
Note that the modality type is identical to BraTS2021 [2],
albeit involving a different type of brain tumor.
UCSF-PDGM [6]: This dataset comprises 501 cases with
various mpMRI data, from which we select six modalities–
T1, T1CE, T2, FLAIR, DWI, and ADC for corresponding
downstream applications.
IXI: This dataset includes 600 MR images from normal,
healthy subjects with T1, T2, PD, MRA and DTI images.
We select 568 cases that include all four modalities: T1,
T2, PD, and MRA for pre-training and this dataset serves as
a supplement to the pre-training brain dataset, specifically
for normal brain cases.

C.2. Downstream datasets

We conduct a comprehensive evaluation using ten down-
stream datasets encompassing segmentation and classifica-
tion tasks. The details are as follows:

https://brain-development.org/ixi-dataset/

Segmentation: (1) BraTS2023-PED [26]: This dataset
comprises 99 publicly annotated pediatric brain glioma
multi-sequence MRI scans. The annotations include Non-
Enhancing Core (NEC), Edema, and Enhancing Tumor
(ET). (2) BraTS2023-MET [37]: Similarlly, this dataset
focuses on brain metastasis sub-region segmentation from
multi-sequence MRI. It contains 238 publicly available
imaging cases with four modalities: T1, T1CE, T2W,
and FLAIR. (3) ISLES22 [22]: This dataset aims to seg-
ment acute to subacute ischemic stroke lesions from multi-
sequence MR images (including FLAIR, DWI, and ADC).
We collected 238 publicly annotated cases. (4) MR-
BrainS13 [36]: This dataset targets brain structure segmen-
tation from 20 cases with three sequences: T1, T1CE, and
FLAIR MR images. The segmentation targets include Cere-
brospinal Fluid (CF), Gray Matter (GM), and White Mat-
ter (WM). (5) UPENN-GBM [4]: We collected 127 pub-
licly annotated multi-sequence MR images from de novo
Glioblastoma (GBM) patients, similarly focusing on seg-
menting three tumor subregions. (6) VSseg [41]: This
dataset includes 242 cases of multi-sequence MRI data from
patients with vestibular schwannoma, aiming to segment the
vestibular schwannoma region.

Classification: (1) BraTS2018 [3]: This dataset includes
a tumor subtype classification task, aiming to determine
the severity grade of brain tumors from four MR modali-
ties, labeled as HGG (High-Grade Glioma) or LGG (Low-
Grade Glioma). (2) ADNI [23]: This dataset represents
late-life brain disorders through Alzheimer’s Disease (AD)
cases. Given the importance of early diagnosis, we analyze
the most recent neuroimaging scans and demographic data
from 1348 subjects, labeled as mild cognitive impairment
(MCI) or normal control (NC). (3) ADHD-200 [11] and (4)
ABIDE-I [14]: These two datasets are utilized for early-life
brain disorder studies. For ADHD-200 [11], T1-weighted
MRI scans and demographic information (age and gen-
der) are collected from 767 subjects, including 279 ADHD
patients and 488 controls. ABIDE-I [14] comprises neu-
roimaging data from 819 subjects (327 with autism spec-



trum disorder and 492 typically developing controls) with
matching imaging modalities.

The aforementioned datasets, except for MR-
BrainS13 [36], are randomly partitioned into training,
validation, and test sets with a ratio of 6:1:3. For MR-
BrainS13 [36], 5 cases are used for training and the
remaining 15 cases for testing. It’s worth noting that
the data splits for ADNI [23], ADHD-200 [11], and
ABIDE-I [14] datasets are performed at the patient/case
level, ensuring that scans from the same subject will not
appear across different sets.

Algorithm 1 Pixel-level cross-modal masking.

Sample randomly Xim from Xi

Sample randomly Xin(n ̸= m) from Xi

ptotal ← H ×W ×D
pmask ← 0
while pmask < ptotal × p∗ do

Select randomly (x, y, z) in Xim

Mask an area of size r × r × r centered at (x, y, z)
Fill with corresponding data from Xin

pmask ← pmask

⊕
r × r × r

end while
return modified Xim

D. HD95 Results and Visualization
In Table 5 and Table 6, we report the HD95 metric results

of the pre-trained model on segmentation and classification
tasks, respectively. These experimental results indicate that
BrainMVP consistently exhibits smaller structural errors.

To facilitate qualitative comparison, we visualize the re-
sults obtained from MAE3D [10, 20], MG [65], GVSL [21],
VoCo [53], and BrainMVP on four datasets. The visualiza-
tions are shown in Fig. 6. The visualization results indicate
that our BrainMVP segmentation results are most consis-
tent with the ground truth (GT), significantly mitigating the
issues of under-segmentation and over-segmentation. As
shown in Fig. 6 (a) for the NCR region boundary, Brain-
MVP demonstrates more accurate identification, while
other methods exhibit substantial under-segmentation.
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Figure 6. Visualization results of segmentation tasks. (a) BraTS2023-PED [26]: pediatric tumor subregion segmentation. NCR: necrotic
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GT: ground truth. The green arrows highlight the regions where BrainMVP demonstrates superior performance over other methods.
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