Memories of Forgotten Concepts

Supplementary Material

In the next sections, we provide additional details and
results that further support our analysis and offer a more
comprehensive understanding of the findings we presented
in the main paper. Appx. A provides additional informa-
tion on how the likelihood of latents affects image gen-
eration. Appx. B explains our initialization choice when
searching for distant latents that can generate a given query
image I,. Appx. C provides additional results for the exper-
iments shown in the paper, including metrics that were not
discussed, such as CLIP-score and a concept detector accu-
racy. Appx. D contains an analysis of the distribution of the
NLL of multivariate normally distribute vectors. Appx. E
contains results that justify our choice of inversion method
and its parameters.

A. Likelihood effect on generation

Figure 12. Inversion of low likelihood images. A low likelihood
latent can be used to generate an image (left). The image can be
inverted to find a latent that generates a similar image (right), with
PSNR=19.64[dB].

In this section, we focus on further examining the effect
of the likelihood of z7 on the generated image by a given
diffusion model. As explained in Sec. 4, inversion is a pow-
erful tool that can be used to generate images with different
likelihoods. But, examining these generated images along
with reconstruction error can give more information. For
example, in Fig. 12, we see that while inversion is used to
transform a very unlikely image to an image with reasonable
likelihood, the reconstruction PSNR of this process is poor.

We are also interested in the relation between likelihood
to generation quality. As shown on Fig. 13, while the 0
vector has the lowest (best) NLL, its generation quality is
poor. This is due to the fact that the model was trained us-
ing random samples from the standard normal distribution,
and (with high probability) have not been given the 0 as in-
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Figure 13. Generation using latents with varying likelihoods:
Using the same caption “cat”, the likelihood of the initial latent
seed controls the generation quality. This is done by sampling
z ~ N(0,1) and applying Y = « - e (i-e., using the same
vector with a scaled norm of «).

put for generation. This coincides with the work of Samuel
et al. [37], demonstrating that diffusion models are learned
using latents with a specific norm range. This conclusion is
important for our analysis, as we do not use the NLL as an
absolute score, but rather as a relative score compared to the
NLL of the standard normal distribution (see Eq. (5)).

B. Different initializations for distant memo-
ries retrieval

In Sec. 3.3, we suggest applying our sequential inversion
block (SIB), starting from arbitrary support images to re-
trieve distant memories of a given ablated target image.
Next, we present a few straightforward alternatives and dis-
cuss their drawbacks.

Instead of performing a VAE decoder inversion, one
could suggest utilizing the encoder of the VAE. Given an
image I,, the encoder returns parameters for a normal dis-
tribution, i.e., Enc(1,) = N(p1,, X1,). The distribution can
be used to sample multiple different latents, in close prox-
imity. In Sec. 3, we do not sample multiple latents, but
rather we use a latent zy which is the mean of the distri-
bution, g . Fig. 14 shows the PSNR and distances results
for these latents. The reconstruction quality is high, but all
memories turn out the same, displaying an average pairwise
cosine distance of 0.

In Fig. 15, in order to examine the case of more dis-
tant latents, we sample from N (i 1,5 21,) but add a stan-
dard normal random noise (normalized across its channels
dimension) and scaled by a factor of 10. As can be seen,
the average pairwise cosine distance is much higher and re-
sembles the average pairwise cosine distance presented by
our solution in Fig. 10. However, the PSNR is consider-
ably lower, suggesting that this method did not reconstruct
images that resemble I,.

Finally, we show in Fig. 16, that applying SIB, starting
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Figure 14. Sample near: randomly sample 10 latents from NV (u = Enc(I), X1,).
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Figure 15. Sample far: randomly sample 10 latents from A (x = Enc([,), Xy, ). For each sample, add a random noise.

from randomly sampled latents, is also suboptimal. Al- suboptimal, and are inferior compared to our method
though the reconstruction quality is sufficient, the average in Sec. 3.3.

pairwise cosine distance is lower than our suggested method

(See Fig. 10).

We conclude that trivial random initializations are
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Figure 16. SIB on random noise: randomly sample 10 initializations for SIB.

C. Further analysis

Next, we present additional analysis regarding the experi-
ments in Sec. 3.3. Specifically, Tabs. | to 6 and Tabs. 7
to 12 contain extended results for the experiments detailed
in Secs. 3.2 and 3.3 (and visualized in Figs. 5 and 9), re-
spectively. Each table contains results that correspond to
one concept. These tables contain the scores discussed in
the main paper, i.e., PSNR and dy(E, R), along with a
concept classifier detection score, CLIP-score and the EMD
between different distributions. The presented EMD results
are:

1. E,N — The EMD between the NLL of latents in the
erased set E' and the NLL of standard normal samples,
i.e., EMD (NLL_,,,.(E), NLL(N)).

2. R, N — The same as above, using latents from the ref-
erence set R, i.e., EMD (NLL_,,.. (R), NLL(N)).

3. E, R— The EMD between latents in the erased and ref-
erence sets, i.e., EMD (NLL_,,. (E),NLL_,,.(R)).

Items 1 and 2 serve as the numerator and denominator
of dpr(+,) (see Eq. (5)), respectively. Tabs. 7 to 12 also
contain the average distances between all zgps 79 and 23
(see Fig. 10). These values are shown in both euclidean

distance and cosine similarity.

Fig. 17 contains a full comparison of Fig. 6 for all avail-
able erasing methods and concepts.

D. What is the distribution of the NLL of a
Normal Random Vector?

As we described in Sec. 3.1, we use the Negative-Log-
Likelihood (NLL) to analyze latents w.r.t. normal distribu-
tions. Recall that as explained in Sec. 2.2, the distribution
that was used to train the model is multivariate standard nor-
mal, i.e., with i.i.d. components. Next, we present why in
our case we can treat this distribution as Gaussian.

For a multivariate random vector Z € R* ~ N(ji, %)
with i.i.d. variables Z; € R, its Probability Density Func-
tion (PDF) is:

p2(2)=(2m) 5[5} exp (—%(z sz - m)
®)

In our case, all the i.i.d. univariate Gaussians have the
same parameters, meaning that Vi : Z; ~ N (u,0?). Thus,
the NLL of Z, which is — log pz(Z), can be expressed as:

k 1 &
NLL(Z) = 7 log( (270?) 2—2 9)

We denote Y; =
get that:

$log(2m0?) + 513 (Z; — p)? and we

k

Ra (10)

NLL(Z) =



EMD EMD
Detection PSNR CLIP- Detection PSNR CLIP-
w g BN RN BRdv(BR) g @ e BNORNBR . dv(BR) g
EraseDiff [45] 100 34.13  1565.2K 2896.0K 269.1K 054 031 EraseDiff [45] 96 2873 4345K 229.8K 342K  1.89 031
ESD [7] 100 3424 281.7K 1949K 156K 145 031 ESD [7] 96 2876 3477K 1739K 337K 200 031
FMN [46] 100 3423 2490K 1859K 144K 134 031 FMN [46] 96 2875 4364K 2232K 370K 196 031
Salun [4] 100 3405 4085K 2944K 139K 139 031 Salun [4] 96 2874 568.1K 3185K 385K 178 031
Scissorhands [44] 100 3432 2090.3K 2603.4K 67.1K 080  0.32 Scissorhands [44] 96 2871  402.9K 855K 429K 217 03l
SPM [23] 100 3422 2573K 1823K 140K 141 031 SPM [23] 96 2874 4137K 2059K 370K 201 031
UCE [8] 100 3422 263.8K 1926K 133K 137 031 AdvUnlearn [48] 96 2874 4107K 2156K 334K 190 031
AdvUnlearn [48] 100 3421 2581K 192.1K 122K 134 031 Vanilla [33] 96 2871 4137K 201.0K 394K 206 031
Vanilla [33] 100 3421 287.0K 210.1K 140K 137 031
Table 2. Ablated concept: Church.
Table 1. Ablated concept: Nudity.
EMD EMD
Detection PSNR CLIP- Detection PSNR - i CLIP-
@ m BNORN BRdv(BR) @ s BNORN G BR av(BR) o
EraseDiff [45] 96 3244 521.6K 2562K 47.3K 204 032 EraseDiff [45] 76 3141 1256K 269.0K 414K 047 031
ESD [7] 98 3247 3860K 159.1K 49.5K 243 032 ESD [7] 78 3141 865K 2067K 530K 042 031
FMN [46] 96 3233 507.6K 2389K 50.5K 212 0.32 FMN [46] 78 3141 130K 2452K 277K 053 031
Salun [4] 96 3250 631.1K 3567K 389K 177 032 Salun [4] 76 3141 1672K 3412K 408K 049 03I
Scissorhands [44] 94 3248 4840K 217.7K 525K 222 032 Scissorhands [44] 76 3141 2647K 2564K 81K 103 031
SPM [23] 96 3246 4369K 2014K 455K 217 032 SPM [23] 78 3141 1084K 2148K 294K 050 031
AdvUnlearn [48] 96 3229 439.6K 204.8K 445K 215 032 AdvUnlearn [48] 78 3140 1182K 2293K 323K 052 031
Vanilla [33] 96 3247 453.1K 209.1K 470K 217 032 Vanilla [33] 78 3141 110K 2127K 261K 052 031
Table 3. Ablated concept: Parachute. Table 4. Ablated concept: Tench.
The expectation of Y is: The N distribution in Fig. 3 is an example of the NLL for
1 1 standard normal samples, along with other different normal
E[Y;] = 3 log(2m0?) + Q—ZE[(Zl — 115)?] distributions.
. 1" (11)
=3 log(2m0?) + 3 E. Inversion parameters and generalization to

To compute the variance of Y; we first compute E[Y}?],
denoting C' = 1 log(2wa?) for short:

BIY?] = O+ o Var(Z) + 5El(Z — )"

3
4?

404 (12)

='C?+C+
where in =! we use the definition of the 4th central mo-

ment for normal distribution. Using all the above, we can
compute Var(Y;) = E[V?] — E[V;]*:

1
Var(Yi):C2+C+%—(02+C+1):0.5 (13)

When £ is large, the sum Zle Y, can be approximated
by a normal distribution due to the Central Limit Theorem
(CLT). We use this assumption in our case, as the latent
dimension of our vectors is 4 x 4 x 64 ~ 16K. Specifically,
for standard normal distribution, we get:

E[Y;] ~ 1.42. (14)
This means that for NLL(Z) we assume:

NLL(Z) ~ N (1.42k,0.5k) ~ N (23.3K,8192)  (15)

different DiT based architectures

In this section we describe different aspects for our choice
of inversion method, along with its chosen parameters. In
addition, we demonstrate how our model generalizes to
DiT based architectures. As explained in Sec. 3, we use
Renoise [10] as our inversion method. Fig. 18 shows the ef-
fect of the number of renoising steps, the number of internal
optimization iterations between the scheduler steps, on the
likelihood of the output latent. In our experiments, using
10 renoising steps results in lower PSNR values (e.g., 16.9
dB between the church image in the left panel of Fig. 10a
and its reconstruction), although the likelihoods are low. To
utilize Renoise for our analysis, we use 5 iterations , which
results in a reconstruction with low likelihoods, and high
PSNR (e.g. 26.3 dB between the church image in the left
panel of Fig. 10a and its reconstruction).

Furthermore, we perform our analysis using an addi-
tional inversion method, Null Text Inversion (NTI) [26].
This method optimizes the textual embeddings of the null
text, in order to achieve a more consistent inverse im-
age. We demonstrate concept-level retrieval on a handful
of erasure methods using NTI (Tab. 13) instead of Renoise
(Tab. 1). A drop in PSNR values can be attributed to the
inversion superiority of Renoise when compared to NTL



EMD EMD
Detection PSNR CLIP- Detection PSNR CLIP-
0 B EN RN  ER  dN(ER) . (dB] EN RN  BR  dv(B.R) g
EraseDiff [45] 80  28.98 4473K 261.1K 250K 171  0.30 ESD [7] 88 2727 369.0K 208.1K 8502K 177 034
ESD [7] 84 2893 369.9K 1993K 263K 186  0.30 FMN [46] 88 2746 292.1K 2468K 792.6K 1.18 034
FMN [46] 82 29.00 447.0K 2441K 305K  1.83 030 SPM [23] 88  27.59 293.1K 213.6K 740.7K 137 034
Salun [4] 82 2898 6I8.6K 3624K 341K 171 030 UCE [8] 88  27.56 3040K 201.IK 7562K 151 034
Scissorhands [44] 86  29.01 298.0K 283.1K 112K  1.05  0.30 AC [20] 88  27.60 3584K 211.1K 837.2K 170 034
SPM [23] 82 2895 3740K 1932K 296K 194 030 AdvUnlearn [48] 88  27.17 299.6K 1950K 738.8K 154 034
AdvUnlearn [48] 82  28.99 3702K 201.6K 255K 184  0.30 Vanilla [33] 88  27.61 3338K 189.5K 751.IK 176 034
Vanilla [33] 82 2897 421.7K 2127K 354K 198 030
Table 6. Ablated concept: Van Gogh.
Table 5. Ablated concept: Garbage Truck.
EMD
Detection PSNR[dB] EN RN ER dv(E, R) CLIP-Score Cosine Euclidean
(%) distance distance
EraseDiff [45] 100 30.32 3187.1K 3844.1K 145.2K 0.83 0.28 0.72 169.20
ESD [7] 98 30.04 45.4K 96.7K 135.6K 0.47 0.28 0.78 159.92
FMN [46] 100 29.59 39.8K 89.2K 131.5K 0.45 0.28 0.79 160.81
Salun [4] 100 29.22 45.8K 114.6K 152.8K 0.40 0.28 0.77 159.04
Scissorhands [44] 100 30.34 3429.5K 3557.9K 166.9K 0.96 0.28 0.76 173.58
SPM [23] 100 29.29 37.8K 84.9K 122.1K 0.45 0.28 0.79 160.73
UCE [8] 100 29.66 34.6K 82.3K 120.3K 0.42 0.28 0.78 160.50
AdvUnlearn [48] 100 28.74 28.8K 84.8K 107.0K 0.34 0.28 0.78 160.16
Vanilla [33] 100 29.49 39.8K 83.8K 126.3K 0.47 0.28 0.79 160.77
Table 7. Ablated Images: Nudity.
However, our analysis holds when NTI is used as well. EMD
Detection PSNR . B . (B CLIP-
%) (dB] EN RN E.R  dn(B.R) g
Previous erasure methods and benchmarks [27, 47, 49] FMN [46] 99 30.16 7463K 6729K 79K 111 031
. Salun [4] 86 2698 963.9K 8285K 89K  1.16 030
have focus'ed exc%uswely on SD1‘4' Howeve.r, we exténd Scissorhands [44] 97  28.92  932.5K 1202.3K 459K 078 0.3l
our analysis to DiT based architectures, specifically using UCE [8] 98 3002 7259K 629.6K 80K 1.5 031
Vanilla [33] 99 3008 718.0K 622.1K 84K  1.15 032

Flux'. We utilized a Flux adaptation of UCE [8] accord-
ing to EraseAnything [9]. To handle DiT based models, we
utilized RF-Inversion [34]. This extends our explored inver-
sion methods to DiT based models, for a total of 3 methods:
Null Text Inversion, Renoise and RF-Inversion. To estab-
lish a benchmark on Flux, we run our analysis on the vanilla
Flux model. Moreover, we apply a Flux adaptation to UCE
and erase two different concepts. Our analysis in Tab. 14
shows high PSNR (> 34dB) and low d/(-, -) values (below
0.8), indicating the concepts remain as likely as, or even
more likely than, the reference set. These findings align
with EraseAnything’s conclusion that the Flux adaptation
of UCE is ineffective for concept erasure.

These results reinforce our overarching conclusion about
the limitations of current erasure methods.

It tps://github.com/black-forest—-labs/flux

Table 13. NTI [26] Ablated concept: Nudity.

F. How many solutions exist?

In our effort to truly erase an image, we explored how many
distant memories exist for a single image. To this end, we
significantly increased the number of retrieved latents. As
shown in Fig. 19, we identified 1,000 distant likely latents
that successfully reconstruct an image of a Garbage Truck,
in an ESD model that erased this concept. Their mean pair-
wise cosine distance is 0.71, and the standard deviation is
0.02, comparable to the mean distance for 10 latents in
Fig. 10. We limited our analysis to 1,000 latents but sus-
pect the actual number is higher. Thus, as raised in the geo-
metric interpretation of the retrieved memories in Sec. 3.3,
truly forgetting an image remains challenging, highlighting
the persistence of distant memories of supposedly forgotten
concepts. We encourage future work to adopt our analysis
as a benchmark for single-image erasure, advancing broader
concept erasure.
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EMD

Detection PSNR[B] EN RN ER dv(E,R) CLIP-Score Cosine Euclidean
(%) distance distance
EraseDiff [45] 90 23.29 167.6K 136.7K 477.0K 1.23 0.31 0.62 145.48
ESD [7] 86 23.08 456.1K 102.0K 641.8K 4.47 0.31 0.62 147.88
FMN [46] 86 23.15 261.6K 97.9K 509.1K 2.67 0.31 0.62 146.99
Salun [4] 86 23.10 140.7K 146.7K 463.4K 0.96 0.31 0.62 145.61
Scissorhands [44] 94 2351 194.1K 73.4K 341.4K 2.64 0.31 0.62 145.07
SPM [23] 86 22.92 251.6K 84.0K 469.3K 2.99 0.31 0.62 147.23
AdvUnlearn [48] 88 22.99 255.0K 90.6K 475.3K 2.81 0.31 0.62 146.97
Vanilla [33] 88 22.96 257.9K 87.6K 471.0K 2.94 0.31 0.63 147.31
Table 8. Ablated Images: Church.
EMD
Detection PSNR[B] EN RN ER dn(E, R) CLIP-Score Cosine Euclidean
(%) distance distance
EraseDiff [45] 86 28.83 333K 141.0K 79.3K 0.24 0.31 0.80 160.99
ESD [7] 80 28.23 257K 79.2K 64.7K 0.32 0.30 0.80 162.28
FMN [46] 84 28.36 20.0K 98.0K 78.4K 0.20 0.30 0.80 162.29
Salun [4] 84 28.83 57.6K 179.0K 66.7K 0.32 0.31 0.80 159.92
Scissorhands [44] 82 29.43 23.1K 67.0K 21.7K 0.34 0.31 0.79 159.62
SPM [23] 84 27.85 21.3K 91.5K 70.8K 0.23 0.31 0.80 162.42
AdvUnlearn [48] 74 27.60 20.7K 86.3K 65.0K 0.24 0.30 0.80 162.29
Vanilla [33] 84 28.06 20.7K 87.7K 74.8K 0.24 0.31 0.80 162.55
Table 9. Ablated Images: Parachute.
EMD
Detection PSNR[dB] EN RN ER dv(E,R) CLIP-Score Cosine Euclidean
(%) distance distance
EraseDiff [45] 58 28.18 88.9K 129.1K 167.8K 0.69 0.33 0.74 155.13
ESD [7] 46 27.74 140.0K 87.3K 212.0K 1.60 0.33 0.74 156.84
FMN [46] 58 27.57 127.8K 96.5K 205.7K 132 0.33 0.74 156.63
Salun [4] 50 28.03 89.0K 161.5K 149.5K 0.55 0.33 0.74 154.42
Scissorhands [44] 58 28.34 138.2K 64.8K 139.6K 2.13 0.33 0.73 154.10
SPM [23] 54 27.40 119.8K 88.5K 192.3K 1.35 0.33 0.74 156.90
AdvUnlearn [48] 42 27.07 116.7K 82.3K 185.1K 1.42 0.33 0.74 156.42
Vanilla [33] 50 27.41 122.2K 83.9K 192.4K 1.46 0.32 0.74 156.97
Table 10. Ablated Images: Tench.
EMD
Detection PSNR[dB] EN RN ER dn(E, R) CLIP-Score Cosine Euclidean
(%) distance distance
EraseDiff [45] 86 24.07 41.0K 113.6K 218.2K 0.36 0.29 0.71 153.61
ESD [7] 78 23.42 136.5K 90.7K 276.2K 1.50 0.29 0.71 155.38
FMN [46] 76 24.00 101.4K 98.7K 272.2K 1.03 0.29 0.71 155.56
Salun [4] 76 24.06 9.3K 166.1K 208.8K 0.06 0.29 0.71 152.98
Scissorhands [44] 80 2424 58.2K 124.0K 241.7K 0.47 0.29 0.69 152.15
SPM [23] 80 23.28 91.0K 80.5K 243.3K 1.13 0.29 0.71 155.43
AdvUnlearn [48] 78 2291 95.3K 91.8K 257.0K 1.04 0.29 0.71 155.34
Vanilla [33] 76 23.84 92.4K 89.7K 244.6K 1.03 0.29 0.71 155.65

Table 11. Ablated Images: Garbage Truck.



EMD

Detection PSNR[dB] EN RN E.R dv(E,R)  CLIP-Score Cosine Euclidean
(%) distance distance
ESD [7] 90 22.84 591.0K 89.9K 870.8K 6.57 0.32 0.61 147.20
FMN [46] 92 23.30 424.6K 94.1K 746.6K 4.51 0.32 0.61 146.73
SPM [23] 90 23.13 419.8K 86.6K 702.0K 4.85 0.32 0.61 146.76
UCE [8] 94 23.09 452.9K 87.4K 741.9K 5.18 0.32 0.61 146.87
AC [20] 92 23.28 545.8K 89.9K 837.2K 6.07 0.32 0.61 147.23
AdvUnlearn [48] 90 23.03 481.6K 83.2K 759.6K 5.79 0.32 0.61 146.99
Vanilla [33] 94 23.22 421.4K 86.2K 700.0K 4.89 0.32 0.61 146.89

Table 12. Ablated Images: Van Gogh.

Nudity Church Garbage Truck Parachute Tench Van Gogh

Our Analysis Fixed Seed Our Analysis Fixed Seed Our Analysis Fixed Seed Our Analysis Fixed Seed Our Analysis Fixed Seed Our Analysis

Fixed Seed

Vanilla

EraseDiff

AdvUnlearn

Figure 17. Erased concepts generations. Arbitrary latents vs. our retrieved latents for different ablating methods.
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Figure 18. Choosing the right renoising parameter. Using Renoise [10], we see that after a certain amount of iterations, the NLL drops
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Vanilla UCE [8]

Concept  pNR[AB]  du(E,R) PSNRIAB] du(E, R)
Nudity — 35.77 0.76 35.76 0.57
Parachute  34.02 0.59 34.01 0.75

Table 14. Our analysis on Flux using RF-Inversion.
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Figure 19. Erasing is a challenging task. We produce 1K distant
memories of a single image. The mean pair-wise cosine distance
between the latents is 0.71, and minimal distance is 0.56.



