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In the next sections, we provide additional details and

results that further support our analysis and offer a more

comprehensive understanding of the findings we presented

in the main paper. Appx. A provides additional informa-

tion on how the likelihood of latents affects image gen-

eration. Appx. B explains our initialization choice when

searching for distant latents that can generate a given query

image Iq . Appx. C provides additional results for the exper-

iments shown in the paper, including metrics that were not

discussed, such as CLIP-score and a concept detector accu-

racy. Appx. D contains an analysis of the distribution of the

NLL of multivariate normally distribute vectors. Appx. E

contains results that justify our choice of inversion method

and its parameters.

A. Likelihood effect on generation

NLL ≈ 8 · 107 NLL ≈ 24K

Figure 12. Inversion of low likelihood images. A low likelihood

latent can be used to generate an image (left). The image can be

inverted to find a latent that generates a similar image (right), with

PSNR=19.64[dB].

In this section, we focus on further examining the effect

of the likelihood of zT on the generated image by a given

diffusion model. As explained in Sec. 4, inversion is a pow-

erful tool that can be used to generate images with different

likelihoods. But, examining these generated images along

with reconstruction error can give more information. For

example, in Fig. 12, we see that while inversion is used to

transform a very unlikely image to an image with reasonable

likelihood, the reconstruction PSNR of this process is poor.

We are also interested in the relation between likelihood

to generation quality. As shown on Fig. 13, while the 0⃗
vector has the lowest (best) NLL, its generation quality is

poor. This is due to the fact that the model was trained us-

ing random samples from the standard normal distribution,

and (with high probability) have not been given the 0⃗ as in-

NLL 15K 20K 23.2K 26.3K 31.2K
α 0 100 128 150 180

Figure 13. Generation using latents with varying likelihoods:

Using the same caption “cat”, the likelihood of the initial latent

seed controls the generation quality. This is done by sampling

z ∼ N (0, 1) and applying Y = α · z

||z|| (i.e., using the same

vector with a scaled norm of α).

put for generation. This coincides with the work of Samuel

et al. [37], demonstrating that diffusion models are learned

using latents with a specific norm range. This conclusion is

important for our analysis, as we do not use the NLL as an

absolute score, but rather as a relative score compared to the

NLL of the standard normal distribution (see Eq. (5)).

B. Different initializations for distant memo-

ries retrieval

In Sec. 3.3, we suggest applying our sequential inversion

block (SIB), starting from arbitrary support images to re-

trieve distant memories of a given ablated target image.

Next, we present a few straightforward alternatives and dis-

cuss their drawbacks.

Instead of performing a VAE decoder inversion, one

could suggest utilizing the encoder of the VAE. Given an

image Iq , the encoder returns parameters for a normal dis-

tribution, i.e., Enc(Iq) = N (µIq ,ΣIq ). The distribution can

be used to sample multiple different latents, in close prox-

imity. In Sec. 3, we do not sample multiple latents, but

rather we use a latent z0 which is the mean of the distri-

bution, µIq . Fig. 14 shows the PSNR and distances results

for these latents. The reconstruction quality is high, but all

memories turn out the same, displaying an average pairwise

cosine distance of 0.

In Fig. 15, in order to examine the case of more dis-

tant latents, we sample from N (µIq ,ΣIq ) but add a stan-

dard normal random noise (normalized across its channels

dimension) and scaled by a factor of 10. As can be seen,

the average pairwise cosine distance is much higher and re-

sembles the average pairwise cosine distance presented by

our solution in Fig. 10. However, the PSNR is consider-

ably lower, suggesting that this method did not reconstruct

images that resemble Iq .

Finally, we show in Fig. 16, that applying SIB, starting
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(b) Pairwise cosine distance.

Figure 14. Sample near: randomly sample 10 latents from N (µ = Enc(Iq),ΣIq ).
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Figure 15. Sample far: randomly sample 10 latents from N (µ = Enc(Iq),ΣIq ). For each sample, add a random noise.

from randomly sampled latents, is also suboptimal. Al-

though the reconstruction quality is sufficient, the average

pairwise cosine distance is lower than our suggested method

(See Fig. 10).

We conclude that trivial random initializations are

suboptimal, and are inferior compared to our method

in Sec. 3.3.
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Figure 16. SIB on random noise: randomly sample 10 initializations for SIB.

C. Further analysis

Next, we present additional analysis regarding the experi-

ments in Sec. 3.3. Specifically, Tabs. 1 to 6 and Tabs. 7

to 12 contain extended results for the experiments detailed

in Secs. 3.2 and 3.3 (and visualized in Figs. 5 and 9), re-

spectively. Each table contains results that correspond to

one concept. These tables contain the scores discussed in

the main paper, i.e., PSNR and dN (E,R), along with a

concept classifier detection score, CLIP-score and the EMD

between different distributions. The presented EMD results

are:

1. E,N — The EMD between the NLL of latents in the

erased set E and the NLL of standard normal samples,

i.e., EMD (NLL→zT(E), NLL(N )).
2. R,N — The same as above, using latents from the ref-

erence set R, i.e., EMD (NLL→zT(R), NLL(N )).
3. E,R — The EMD between latents in the erased and ref-

erence sets, i.e., EMD (NLL→zT(E),NLL→zT(R)).

Items 1 and 2 serve as the numerator and denominator

of dN (·, ·) (see Eq. (5)), respectively. Tabs. 7 to 12 also

contain the average distances between all z
(si→q)
T and z

q
T

(see Fig. 10). These values are shown in both euclidean

distance and cosine similarity.

Fig. 17 contains a full comparison of Fig. 6 for all avail-

able erasing methods and concepts.

D. What is the distribution of the NLL of a

Normal Random Vector?

As we described in Sec. 3.1, we use the Negative-Log-

Likelihood (NLL) to analyze latents w.r.t. normal distribu-

tions. Recall that as explained in Sec. 2.2, the distribution

that was used to train the model is multivariate standard nor-

mal, i.e., with i.i.d. components. Next, we present why in

our case we can treat this distribution as Gaussian.

For a multivariate random vector Z ∈ R
k ∼ N (µ⃗,Σ)

with i.i.d. variables Zi ∈ R, its Probability Density Func-

tion (PDF) is:

  p_Z(Z) \! = \! (2\pi )^{-\frac {k}{2}} |\Sigma |^{-\frac {1}{2}} \exp \left ( -\frac {1}{2} (Z - \mu )^T \Sigma ^{-1} (Z - \mu ) \right ). 













   





(8)

In our case, all the i.i.d. univariate Gaussians have the

same parameters, meaning that ∀i : Zi ∼ N (µ, σ2). Thus,

the NLL of Z, which is − log pZ(Z), can be expressed as:

  \text {NLL}(Z) = \frac {k}{2} \log (2\pi \sigma ^2) + \frac {1}{2\sigma ^2} \sum _{i=1}^k (Z_i - \mu )^2. 














   (9)

We denote Yi = 1
2 log(2πσ

2) + 1
2σ2 (Zi − µ)2 and we

get that:

  \label {supp:eq:clt} \text {NLL}(Z) = \sum _{i=1}^k Y_i. 






 (10)



EMD

Detection

(%)

PSNR

[dB]
E,N R,N E,R dN (E,R)

CLIP-

Score

EraseDiff [45] 100 34.13 1565.2K 2896.0K 269.1K 0.54 0.31

ESD [7] 100 34.24 281.7K 194.9K 15.6K 1.45 0.31

FMN [46] 100 34.23 249.0K 185.9K 14.4K 1.34 0.31

Salun [4] 100 34.05 408.5K 294.4K 13.9K 1.39 0.31

Scissorhands [44] 100 34.32 2090.3K 2603.4K 67.1K 0.80 0.32

SPM [23] 100 34.22 257.3K 182.3K 14.0K 1.41 0.31

UCE [8] 100 34.22 263.8K 192.6K 13.3K 1.37 0.31

AdvUnlearn [48] 100 34.21 258.1K 192.1K 12.2K 1.34 0.31

Vanilla [33] 100 34.21 287.0K 210.1K 14.0K 1.37 0.31

Table 1. Ablated concept: Nudity.

EMD

Detection

(%)

PSNR

[dB]
E,N R,N E,R dN (E,R)

CLIP-

Score

EraseDiff [45] 96 28.73 434.5K 229.8K 34.2K 1.89 0.31

ESD [7] 96 28.76 347.7K 173.9K 33.7K 2.00 0.31

FMN [46] 96 28.75 436.4K 223.2K 37.0K 1.96 0.31

Salun [4] 96 28.74 568.1K 318.5K 38.5K 1.78 0.31

Scissorhands [44] 96 28.71 402.9K 185.5K 42.9K 2.17 0.31

SPM [23] 96 28.74 413.7K 205.9K 37.1K 2.01 0.31

AdvUnlearn [48] 96 28.74 410.7K 215.6K 33.4K 1.90 0.31

Vanilla [33] 96 28.71 413.7K 201.0K 39.4K 2.06 0.31

Table 2. Ablated concept: Church.

EMD

Detection

(%)

PSNR

[dB]
E,N R,N E,R dN (E,R)

CLIP-

Score

EraseDiff [45] 96 32.44 521.6K 256.2K 47.3K 2.04 0.32

ESD [7] 98 32.47 386.0K 159.1K 49.5K 2.43 0.32

FMN [46] 96 32.33 507.6K 238.9K 50.5K 2.12 0.32

Salun [4] 96 32.50 631.1K 356.7K 38.9K 1.77 0.32

Scissorhands [44] 94 32.48 484.0K 217.7K 52.5K 2.22 0.32

SPM [23] 96 32.46 436.9K 201.4K 45.5K 2.17 0.32

AdvUnlearn [48] 96 32.29 439.6K 204.8K 44.5K 2.15 0.32

Vanilla [33] 96 32.47 453.1K 209.1K 47.0K 2.17 0.32

Table 3. Ablated concept: Parachute.

EMD

Detection

(%)

PSNR

[dB]
E,N R,N E,R dN (E,R)

CLIP-

Score

EraseDiff [45] 76 31.41 125.6K 269.0K 41.4K 0.47 0.31

ESD [7] 78 31.41 86.5K 206.7K 53.1K 0.42 0.31

FMN [46] 78 31.41 130.1K 245.2K 27.7K 0.53 0.31

Salun [4] 76 31.41 167.2K 341.2K 40.8K 0.49 0.31

Scissorhands [44] 76 31.41 264.7K 256.4K 8.1K 1.03 0.31

SPM [23] 78 31.41 108.4K 214.8K 29.4K 0.50 0.31

AdvUnlearn [48] 78 31.40 118.2K 229.3K 32.3K 0.52 0.31

Vanilla [33] 78 31.41 111.0K 212.7K 26.1K 0.52 0.31

Table 4. Ablated concept: Tench.

The expectation of Yi is:

  \begin {split} \mathbb {E}[Y_i] &= \frac {1}{2} \log (2\pi \sigma ^2) + \frac {1}{2 \sigma ^2} \mathbb {E}[(Z_i - \mu _i)^2] \\ &=\frac {1}{2} \log (2\pi \sigma ^2) + \frac {1}{2}. \end {split} 








 














(11)

To compute the variance of Yi we first compute E[Y 2
i ],

denoting C = 1
2 log(2πσ

2) for short:

  \begin {split} \mathbb {E}[Y_i^2] &= C^2 + \frac {C}{\sigma ^2}\text {Var}(Z_i) + \frac {1}{4\sigma ^4} \mathbb {E}[(Z_i - \mu )^4] \\ &=^{1} C^2 + C + \frac {3}{4}, \end {split} 
   









 

   





(12)

where in =1 we use the definition of the 4th central mo-

ment for normal distribution. Using all the above, we can

compute Var(Yi) = E[Y 2
i ]− E[Yi]

2:

  \text {Var}(Y_i) = C^2 + C + \frac {3}{4} - (C^2 + C + \frac {1}{4}) = 0.5     



   




   (13)

When k is large, the sum
∑k

i=1 Yi can be approximated

by a normal distribution due to the Central Limit Theorem

(CLT). We use this assumption in our case, as the latent

dimension of our vectors is 4× 4× 64 ≈ 16K. Specifically,

for standard normal distribution, we get:

  \mathbb {E}[Y_i] \approx 1.42.    (14)

This means that for NLL(Z) we assume:

  \text {NLL}(Z) \sim \mathcal {N}(1.42k, 0.5k) \approx \mathcal {N}(23.3\text {K}, 8192)          (15)

The N distribution in Fig. 3 is an example of the NLL for

standard normal samples, along with other different normal

distributions.

E. Inversion parameters and generalization to

different DiT based architectures

In this section we describe different aspects for our choice

of inversion method, along with its chosen parameters. In

addition, we demonstrate how our model generalizes to

DiT based architectures. As explained in Sec. 3, we use

Renoise [10] as our inversion method. Fig. 18 shows the ef-

fect of the number of renoising steps, the number of internal

optimization iterations between the scheduler steps, on the

likelihood of the output latent. In our experiments, using

10 renoising steps results in lower PSNR values (e.g., 16.9
dB between the church image in the left panel of Fig. 10a

and its reconstruction), although the likelihoods are low. To

utilize Renoise for our analysis, we use 5 iterations , which

results in a reconstruction with low likelihoods, and high

PSNR (e.g. 26.3 dB between the church image in the left

panel of Fig. 10a and its reconstruction).

Furthermore, we perform our analysis using an addi-

tional inversion method, Null Text Inversion (NTI) [26].

This method optimizes the textual embeddings of the null

text, in order to achieve a more consistent inverse im-

age. We demonstrate concept-level retrieval on a handful

of erasure methods using NTI (Tab. 13) instead of Renoise

(Tab. 1). A drop in PSNR values can be attributed to the

inversion superiority of Renoise when compared to NTI.



EMD

Detection

(%)

PSNR

[dB]
E,N R,N E,R dN (E,R)

CLIP-

Score

EraseDiff [45] 80 28.98 447.3K 261.1K 25.0K 1.71 0.30

ESD [7] 84 28.93 369.9K 199.3K 26.3K 1.86 0.30

FMN [46] 82 29.00 447.0K 244.1K 30.5K 1.83 0.30

Salun [4] 82 28.98 618.6K 362.4K 34.1K 1.71 0.30

Scissorhands [44] 86 29.01 298.0K 283.1K 11.2K 1.05 0.30

SPM [23] 82 28.95 374.0K 193.2K 29.6K 1.94 0.30

AdvUnlearn [48] 82 28.99 370.2K 201.6K 25.5K 1.84 0.30

Vanilla [33] 82 28.97 421.7K 212.7K 35.4K 1.98 0.30

Table 5. Ablated concept: Garbage Truck.

EMD

Detection

(%)

PSNR

[dB]
E,N R,N E,R dN (E,R)

CLIP-

Score

ESD [7] 88 27.27 369.0K 208.1K 850.2K 1.77 0.34

FMN [46] 88 27.46 292.1K 246.8K 792.6K 1.18 0.34

SPM [23] 88 27.59 293.1K 213.6K 740.7K 1.37 0.34

UCE [8] 88 27.56 304.0K 201.1K 756.2K 1.51 0.34

AC [20] 88 27.60 358.4K 211.1K 837.2K 1.70 0.34

AdvUnlearn [48] 88 27.17 299.6K 195.0K 738.8K 1.54 0.34

Vanilla [33] 88 27.61 333.8K 189.5K 751.1K 1.76 0.34

Table 6. Ablated concept: Van Gogh.

EMD

Detection

(%)
PSNR[dB] E,N R,N E,R dN (E,R) CLIP-Score

Cosine

distance

Euclidean

distance

EraseDiff [45] 100 30.32 3187.1K 3844.1K 145.2K 0.83 0.28 0.72 169.20

ESD [7] 98 30.04 45.4K 96.7K 135.6K 0.47 0.28 0.78 159.92

FMN [46] 100 29.59 39.8K 89.2K 131.5K 0.45 0.28 0.79 160.81

Salun [4] 100 29.22 45.8K 114.6K 152.8K 0.40 0.28 0.77 159.04

Scissorhands [44] 100 30.34 3429.5K 3557.9K 166.9K 0.96 0.28 0.76 173.58

SPM [23] 100 29.29 37.8K 84.9K 122.1K 0.45 0.28 0.79 160.73

UCE [8] 100 29.66 34.6K 82.3K 120.3K 0.42 0.28 0.78 160.50

AdvUnlearn [48] 100 28.74 28.8K 84.8K 107.0K 0.34 0.28 0.78 160.16

Vanilla [33] 100 29.49 39.8K 83.8K 126.3K 0.47 0.28 0.79 160.77

Table 7. Ablated Images: Nudity.

However, our analysis holds when NTI is used as well.

Previous erasure methods and benchmarks [27, 47, 49]

have focused exclusively on SD1.4. However, we extend

our analysis to DiT based architectures, specifically using

Flux1. We utilized a Flux adaptation of UCE [8] accord-

ing to EraseAnything [9]. To handle DiT based models, we

utilized RF-Inversion [34]. This extends our explored inver-

sion methods to DiT based models, for a total of 3 methods:

Null Text Inversion, Renoise and RF-Inversion. To estab-

lish a benchmark on Flux, we run our analysis on the vanilla

Flux model. Moreover, we apply a Flux adaptation to UCE

and erase two different concepts. Our analysis in Tab. 14

shows high PSNR (> 34dB) and low dN (·, ·) values (below

0.8), indicating the concepts remain as likely as, or even

more likely than, the reference set. These findings align

with EraseAnything’s conclusion that the Flux adaptation

of UCE is ineffective for concept erasure.

These results reinforce our overarching conclusion about

the limitations of current erasure methods.

1https://github.com/black-forest-labs/flux

EMD

Detection

(%)

PSNR

[dB]
E,N R,N E,R dN (E,R)

CLIP-

Score

FMN [46] 99 30.16 746.3K 672.9K 7.9K 1.11 0.31

Salun [4] 86 26.98 963.9K 828.5K 8.9K 1.16 0.30

Scissorhands [44] 97 28.92 932.5K 1202.3K 45.9K 0.78 0.31

UCE [8] 98 30.02 725.9K 629.6K 8.0K 1.15 0.31

Vanilla [33] 99 30.08 718.0K 622.1K 8.4K 1.15 0.32

Table 13. NTI [26] Ablated concept: Nudity.

F. How many solutions exist?

In our effort to truly erase an image, we explored how many

distant memories exist for a single image. To this end, we

significantly increased the number of retrieved latents. As

shown in Fig. 19, we identified 1,000 distant likely latents

that successfully reconstruct an image of a Garbage Truck,

in an ESD model that erased this concept. Their mean pair-

wise cosine distance is 0.71, and the standard deviation is

0.02, comparable to the mean distance for 10 latents in

Fig. 10. We limited our analysis to 1,000 latents but sus-

pect the actual number is higher. Thus, as raised in the geo-

metric interpretation of the retrieved memories in Sec. 3.3,

truly forgetting an image remains challenging, highlighting

the persistence of distant memories of supposedly forgotten

concepts. We encourage future work to adopt our analysis

as a benchmark for single-image erasure, advancing broader

concept erasure.

https://github.com/black-forest-labs/flux


EMD

Detection

(%)
PSNR[dB] E,N R,N E,R dN (E,R) CLIP-Score

Cosine

distance

Euclidean

distance

EraseDiff [45] 90 23.29 167.6K 136.7K 477.0K 1.23 0.31 0.62 145.48

ESD [7] 86 23.08 456.1K 102.0K 641.8K 4.47 0.31 0.62 147.88

FMN [46] 86 23.15 261.6K 97.9K 509.1K 2.67 0.31 0.62 146.99

Salun [4] 86 23.10 140.7K 146.7K 463.4K 0.96 0.31 0.62 145.61

Scissorhands [44] 94 23.51 194.1K 73.4K 341.4K 2.64 0.31 0.62 145.07

SPM [23] 86 22.92 251.6K 84.0K 469.3K 2.99 0.31 0.62 147.23

AdvUnlearn [48] 88 22.99 255.0K 90.6K 475.3K 2.81 0.31 0.62 146.97

Vanilla [33] 88 22.96 257.9K 87.6K 471.0K 2.94 0.31 0.63 147.31

Table 8. Ablated Images: Church.

EMD

Detection

(%)
PSNR[dB] E,N R,N E,R dN (E,R) CLIP-Score

Cosine

distance

Euclidean

distance

EraseDiff [45] 86 28.83 33.3K 141.0K 79.3K 0.24 0.31 0.80 160.99

ESD [7] 80 28.23 25.7K 79.2K 64.7K 0.32 0.30 0.80 162.28

FMN [46] 84 28.36 20.0K 98.0K 78.4K 0.20 0.30 0.80 162.29

Salun [4] 84 28.83 57.6K 179.0K 66.7K 0.32 0.31 0.80 159.92

Scissorhands [44] 82 29.43 23.1K 67.0K 21.7K 0.34 0.31 0.79 159.62

SPM [23] 84 27.85 21.3K 91.5K 70.8K 0.23 0.31 0.80 162.42

AdvUnlearn [48] 74 27.60 20.7K 86.3K 65.0K 0.24 0.30 0.80 162.29

Vanilla [33] 84 28.06 20.7K 87.7K 74.8K 0.24 0.31 0.80 162.55

Table 9. Ablated Images: Parachute.

EMD

Detection

(%)
PSNR[dB] E,N R,N E,R dN (E,R) CLIP-Score

Cosine

distance

Euclidean

distance

EraseDiff [45] 58 28.18 88.9K 129.1K 167.8K 0.69 0.33 0.74 155.13

ESD [7] 46 27.74 140.0K 87.3K 212.0K 1.60 0.33 0.74 156.84

FMN [46] 58 27.57 127.8K 96.5K 205.7K 1.32 0.33 0.74 156.63

Salun [4] 50 28.03 89.0K 161.5K 149.5K 0.55 0.33 0.74 154.42

Scissorhands [44] 58 28.34 138.2K 64.8K 139.6K 2.13 0.33 0.73 154.10

SPM [23] 54 27.40 119.8K 88.5K 192.3K 1.35 0.33 0.74 156.90

AdvUnlearn [48] 42 27.07 116.7K 82.3K 185.1K 1.42 0.33 0.74 156.42

Vanilla [33] 50 27.41 122.2K 83.9K 192.4K 1.46 0.32 0.74 156.97

Table 10. Ablated Images: Tench.

EMD

Detection

(%)
PSNR[dB] E,N R,N E,R dN (E,R) CLIP-Score

Cosine

distance

Euclidean

distance

EraseDiff [45] 86 24.07 41.0K 113.6K 218.2K 0.36 0.29 0.71 153.61

ESD [7] 78 23.42 136.5K 90.7K 276.2K 1.50 0.29 0.71 155.38

FMN [46] 76 24.00 101.4K 98.7K 272.2K 1.03 0.29 0.71 155.56

Salun [4] 76 24.06 9.3K 166.1K 208.8K 0.06 0.29 0.71 152.98

Scissorhands [44] 80 24.24 58.2K 124.0K 241.7K 0.47 0.29 0.69 152.15

SPM [23] 80 23.28 91.0K 80.5K 243.3K 1.13 0.29 0.71 155.43

AdvUnlearn [48] 78 22.91 95.3K 91.8K 257.0K 1.04 0.29 0.71 155.34

Vanilla [33] 76 23.84 92.4K 89.7K 244.6K 1.03 0.29 0.71 155.65

Table 11. Ablated Images: Garbage Truck.



EMD

Detection

(%)
PSNR[dB] E,N R,N E,R dN (E,R) CLIP-Score

Cosine

distance

Euclidean

distance

ESD [7] 90 22.84 591.0K 89.9K 870.8K 6.57 0.32 0.61 147.20

FMN [46] 92 23.30 424.6K 94.1K 746.6K 4.51 0.32 0.61 146.73

SPM [23] 90 23.13 419.8K 86.6K 702.0K 4.85 0.32 0.61 146.76

UCE [8] 94 23.09 452.9K 87.4K 741.9K 5.18 0.32 0.61 146.87

AC [20] 92 23.28 545.8K 89.9K 837.2K 6.07 0.32 0.61 147.23

AdvUnlearn [48] 90 23.03 481.6K 83.2K 759.6K 5.79 0.32 0.61 146.99

Vanilla [33] 94 23.22 421.4K 86.2K 700.0K 4.89 0.32 0.61 146.89

Table 12. Ablated Images: Van Gogh.
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Figure 17. Erased concepts generations. Arbitrary latents vs. our retrieved latents for different ablating methods.



Salun [4] FMN [46] ESD [7] EraseDiff [45]
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Scissorhands [44] SPM [23] UCE [8] Vanilla [33]
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Figure 18. Choosing the right renoising parameter. Using Renoise [10], we see that after a certain amount of iterations, the NLL drops

dramatically, making it harder to perform a likelihood analysis.



Concept
Vanilla UCE [8]

PSNR[dB] dN (E,R) PSNR[dB] dN (E,R)

Nudity 35.77 0.76 35.76 0.57

Parachute 34.02 0.59 34.01 0.75

Table 14. Our analysis on Flux using RF-Inversion.
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Figure 19. Erasing is a challenging task. We produce 1K distant

memories of a single image. The mean pair-wise cosine distance

between the latents is 0.71, and minimal distance is 0.56.


