
Gaze-LLE: Gaze Target Estimation via Large-Scale Learned Encoders

Supplementary Material

Table of Contents
• 6 Integration of DINOv2 into Existing Methods
• 7 Experiment Details for Section 3.2
• 8 Comparison to Detection Methods
• 9 Runtime Analysis
• 10 Comparison to ViTGaze
• 11 Performance with Estimated Head Bounding Boxes
• 12 Reimplementation of Horanyi et al.
• 13 Additional Ablation Studies
• 14 LoRA Backbones
• 15 Additional Visualizations & Failure Modes

6. Integration of DINOv2 into Existing Meth-
ods

In this section, we provide further details on our experi-
ments in Tab. 1, which integrate DINOv2 into three existing
methods: Chong et al. [9], Miao et al. [43], and Gupta et al.
[23].

Chong et al. Chong et al. [9]’s method employs sepa-
rate head and scene encoders, each of which is composed
of a ResNet50 + 1 additional ResNet layer. The input to
the head branch is a 224 × 224 crop of the head and the
input to the scene branch is the 224× 224 scene image con-
catenated channel-wise with a binary map of the person’s
head bounding box position. The output of each encoder is
a 1024×7×7 feature map (channels×height×width). For
our experiments, we replace the scene encoder with a ViT-
Base DINOv2 encoder. Because the DINOv2 encoder pro-
duces a 768×16×16 feature map, we apply average pooling
with kernel size=3 and stride=2 followed by a convolutional
layer with kernel size=1 and stride=1 to transform the fea-
ture map to the model’s expected size of 1024× 7× 7. We
follow the rest of the existing method, which consists of an
attention mechanism to re-weight the scene features based
on the head features and head position, concatenation of the
head and scene features, 2 convolutional encoding layers,
and a 4-layer convolutional decoder. We consider 3 learn-
ing settings for the DINOv2 encoder:
1. Frozen: We simply replace the scene encoder with the

DINOv2 encoder and freeze it during training. Because
the DINOv2 takes in a 3-channel RGB image, we do not
concatenate the head position map to the input as in the
original method.

2. Frozen + proj: We alter the DINOv2 encoder’s patch
projection layer to take in 4 channels so that the input
to the scene encoder is the concatenated RGB image and
head position map like in the original method. We freeze

DINOv2 Training Learning rate AUC ↑ Avg L2 ↓ Min L2 ↓
Original Method 2.5e-4 0.921 0.137 0.077
Frozen 2.5e-4 0.858 0.196 0.133

1.0e-4 0.857 0.201 0.145
1.0e-5 0.808 0.230 0.166
1.0e-6 0.726 0.287 0.218

Frozen + proj 2.5e-4 0.875 0.191 0.125
1.0e-4 0.872 0.198 0.129
1.0e-5 0.850 0.212 0.143
1.0e-6 0.766 0.282 0.208

Trained + proj 2.5e-4 0.876 0.185 0.120
1.0e-4 0.908 0.167 0.101
1.0e-5 0.870 0.199 0.132
1.0e-6 0.805 0.260 0.187

Table 9. Comparison of integrating DINOv2 into Chong et al. [9]
with different training configurations (DINOv2 encoder learning
strategy & learning rate) on GazeFollow.

all weights of the DINOv2 during training except the
patch projection layer.

3. Trained + proj: We include the altered 4-channel patch
projection layer and train the full DINOv2 encoder dur-
ing training.
Tab. 9 shows our results from trying different training

strategies for the DINOv2 encoder and different learning
rates. We see that learning the projection layer to inte-
grate head position as an input to the scene encoder has a
significant performance gain over using the DINOv2 with
RGB-only inputs, and that training the DINOv2 fully per-
forms best. Importantly, we do not observe overfitting -
the trained results are better than using the frozen DINOv2.
For this method, regular training outperforms LoRA. How-
ever, all results using a DINOv2 encoder in place of the
ResNet50-based scene encoder perform worse than the
original method.

Miao et al. Miao et al. [43] is a more recent work that
expands upon Chong et al.’s architecture by integrating es-
timated depth into the scene encoding and feature fusion, a
global attention mechanism over the scene prior to decod-
ing, and an additional patch-level training objective. Similar
to Chong et al., Miao et al. employ head and scene encoders
composed of a ResNet50 + 1 additional ResNet layer. The
input to the scene branch is a 5-channel concatenation of
the RGB scene image, the binary head position map, and an
estimated depth map from MiDaS [50]. Like with Chong et
al., we replace the scene encoder with a DINOv2 encoder,
and use average pooling and a convolutional layer to trans-
form the scene feature map to size 1024×7×7. We consider



DINOv2 Training Learning rate AUC ↑ Avg L2 ↓ Min L2 ↓
Original Method 2.5e-4 0.934 0.123 0.065
Frozen 2.5e-4 0.858 0.207 0.141

1.0e-4 0.859 0.203 0.138
1.0e-5 0.807 0.236 0.169
1.0e-6 0.702 0.297 0.228

Frozen + proj 2.5e-4 0.892 0.173 0.109
1.0e-4 0.887 0.176 0.113
1.0e-5 0.859 0.203 0.137
1.0e-6 0.761 0.286 0.213

Trained + proj 2.5e-4 0.899 0.165 0.103
1.0e-4 0.910 0.152 0.093
1.0e-5 0.900 0.161 0.098
1.0e-6 0.847 0.220 0.149

Table 10. Comparison of integrating DINOv2 into Miao et al. [43]
with different training configurations (DINOv2 encoder learning
strategy & learning rate) on GazeFollow.

DINOv2 Training Learning rate AUC ↑ Avg L2 ↓ Min L2 ↓
Original Method 2.5e-4 0.933 0.134 0.071
Frozen + proj 2.5e-4 0.893 0.180 0.113

1.0e-3 0.894 0.184 0.116
1.0e-4 0.897 0.175 0.108
1.0e-5 0.874 0.199 0.129
1.0e-6 0.818 0.228 0.161

Trained + proj 2.5e-4 0.908 0.165 0.099
1.0e-3 0.912 0.155 0.091
1.0e-4 0.911 0.159 0.095
1.0e-5 0.899 0.167 0.101
1.0e-6 0.842 0.219 0.149

Table 11. Comparison of integrating DINOv2 into Gupta et al.
[23] (Image-only variant) with different training configurations
(DINOv2 encoder learning strategy & learning rate) on GazeFol-
low.

the same training configurations as we did with Chong et al.,
however we change the learned patch projection to have 5
input channels to account for Miao et al.’s inclusion of depth
as input. As shown in Tab. 10, we achieve the best results by
fully training the DINOv2. However, all configurations still
perform worse than the original method with the ResNet50
backbone.

Gupta et al. Gupta et al. [23]’s approach consists of of
a head-centric module, scene-centric module, and heatmap
decoder. The head-centric module is a ResNet18 encoder
which is supervised to predict 3D gaze from the head crop.
This 3D gaze prediction is processed along with the head
location into spatial gaze cone, which is passed to the scene-
centric module along with the image. The scene-centric
module consists of a separately trained EfficientNet encoder
from different scene modalities: image, predicted depth, or
predicted pose. Optionally, the encoders for the different
modalities may be used together with a learned weighted at-

Method Input size AUC Avg L2 Min L2

Chong et al. - Original 224 0.921 0.137 0.077
Chong et al. - Original 448 0.923 0.138 0.076
Chong et al. - Trained DINOv2 224 0.908 0.170 0.101
Chong et al. - Trained DINOv2 448 0.897 0.169 0.105

Miao et al. - Original 224 0.934 0.123 0.065
Miao et al. - Original 448 0.923 0.151 0.086
Miao et al. - Trained DINOv2 224 0.910 0.152 0.093
Miao et al. - Trained DINOv2 448 0.908 0.154 0.094

Gupta et al. - Original 224 0.943 0.114 0.056
Gupta et al. - Original 448 0.939 0.108 0.052
Gupta et al. - Trained DINOv2 224 0.912 0.155 0.091
Gupta et al. - Trained DINOv2 448 0.908 0.170 0.103

Table 12. Effect of increasing the input scene image size for Chong
et al., Miao et al., and Gupta et al.’s original methods and best
variants with DINOv2. We do not observe clear gains from using
a larger input size.

tention module for fusion. As the training process calls for
separately training each modality, we consider the image-
only variant for our DINOv2 integration experiments. We
replace the EfficientNet-B1 image encoder with DINOv2,
and add an additional learned projection layer to reduce the
dimension from DINOv2’s output dimension of 768 to the
model’s internal dimension of 64. We consider both train-
ing the full encoder and freezing the encoder (with the ex-
ception of the input projection, which must accept the ex-
tra gaze cone channel). We report performance in Tab. 11.
Like the other methods, training the DINOv2 performs bet-
ter than freezing it, but still underperforms compared to the
original method.

Input Size Because we do not include a separate head
branch that operates on a higher-resolution crop of the head
in our main method, we use an input size of 448 × 448 in-
stead of 224 × 224 like these prior works. To validate that
our method’s gains are not only a result of the larger in-
put to the scene encoder, we retrain Chong et al., Miao et
al.’s, and Gupta et al.’s original methods as well as the best
variant with a DINOv2 scene encoder with scene input size
448 × 448 in Tab. 12. For Gupta et al.’s original method,
we use their full multimodal model. We perform average
pooling on the resultant scene feature maps when necessary
to reduce the spatial dimensions to the expected shape for
compatibility with the rest of the model. For Chong et al.’s
method, the results are largely the same between using 224
vs. 448, while for Miao et al., using 448 actually decreases
performance. For Gupta et al.’s architecture, increasing the
resolution to 448 results in worse AUC, which is the pri-
mary metric on GazeFollow, but achieves slight gains on
the L2 metrics. We thus do not see clear improvements from
using an increased input size, illustrating that a larger scene
input size is not necessary when a high-resolution head crop
is already provided to the model.



Transformer Decoder

Linear (d → 256)
Trans. Layer (dim=256, heads=8, mlp dim=1024)

ConvT(256 → 256, k=2, s=2)
Conv(256 → 1, k=1, s=1)

Sigmoid

Conv Decoder

Conv (d → 768, k=1, s=1)
Conv(768 → 384, k=1, s=1)
Conv(384 → 192, k=2, s=2)
ConvT(192 → 96, k=2, s=2)

ConvT(96 → 1, k=2, s=2)
Conv(1 → 1, k=1, s=1)

Sigmoid

Table 13. Architecture details for Transformer Decoder and Con-
volutional Decoder for experiments in Section 3.1

7. Experiment Details for Section 3.2
In this section, we provide further details about our exper-
iments in Sec. 3.2 that investigate early vs. late head po-
sition integration, transformer vs. convolutional decoding,
and head & scene branch vs. scene-branch only design.

Scene & Head Backbones We use a frozen DINOv2 ViT-
Base backbone for both the scene branch and the head
branch. For the scene branch, we use input size 448× 448,
yielding a feature map xscene ∈ R768×32×32. Because the
head occupies a smaller portion of the full-resolution im-
age, we use input size 224 × 224 for the head branch and
upsample the resulting feature map to xhead ∈ R768×32×32

so it can be concatenated with xscene. We concatenate
xscene and xhead channel-wise to form the combined fea-
tures x ∈ R1536×32×32. For the scene-only variant, we set
x = xscene ∈ R768×32×32.

Head Position Integration For “early” integration of the
head position, we change the patch projection layer of the
DINOv2 scene branch to have 4 input channels (RGB + bi-
nary head position map) instead of 3. During training, we
learn this patch projection layer while keeping the rest of
the DINOv2 frozen. For “late” integration, we do not alter
or train the projection layer. Instead, we downsample the
binary head position map map to size 1× 32× 32 and con-
catenate it with x to form x′ ∈ Rd×32×32 where d = 1537
or d = 769 depending on the inclusion of the head branch.
For “early” integration, we do not concatenate the head po-
sition map, so x′ = x ∈ Rd×32×32 where d = 1536 (head
& scene branch) or d = 768 (scene branch only).

Decoder We provide architecture details for the trans-
former and convolutional heatmap decoders in Tab. 13.
Each produce a 64 × 64 gaze heatmap from x′. The con-
volutional decoder is based on the network design used by
Chong et al. [9] and several subsequent methods, consisting

of 6 convolutional layers (each followed by batch normal-
ization and a ReLU activation) to progressively project the
feature map to a smaller dimension while upscaling it to the
output heatmap size. The transformer decoder consists of
a single transformer layer of dimension 256 followed by 2
shallow convolutional layers. Both decoders have approxi-
mately the same number of learned parameters (1.85M for
the scene-branch only model with late head position inte-
gration).

Training Details We train the models on GazeFollow for
15 epochs using the Adam optimizer, cosine scheduling
with initial learning rate 1e-3, and batch size 60. We use
the same data augmentations during training that we use in
our main experiments (random crop, flip, and bounding box
jitter).

8. Comparison to Detection Methods
A set of recent works formulate gaze target estimation as
a set detection problem, jointly predicting a set of head
bounding boxes and their corresponding gaze locations [65–
67]. We exclude these works from our main comparisons in
Sec. 4.1 due to differences in the evaluation setting, as these
methods perform bipartite matching using the ground truth
gaze targets at test time. In this section, we provide further
details about the difference in evaluation setting, and pro-
vide quantitative comparison with Tonini et al. [65] in our
setting using their open source codebase.

Formulation Tu et al. [66] provided the first set detec-
tion formulation for joint head and gaze target detection
by proposing HGTTR, a DETR [3]-based transformer de-
tection framework. Given an image ximg ∈ R3×Hin×Win ,
HGTTR predicts a fixed number of N human-gaze in-
stances, where each instance y is composed of a head
bounding box prediction ybbox ∈ [0, 1]4, a binary classifi-
cation score yclass ∈ [0, 1] indicating the probability that
the instance is indeed a head, a prediction of if the gaze
is in or out of frame yin/out ∈ [0, 1], and a gaze heatmap
yheatmap ∈ [0, 1]Hout×Wout . Notably, the difference between
this setting and the traditional problem formulation (which
we follow) is that a head bounding box is not given as input.
Instead, the model predicts all head bounding boxes along
with their associated gaze target as output.

Matching Algorithm Like DETR, HGTTR uses the Hun-
garian algorithm [34] to determine a one-to-one mapping
between the predicted instances and the ground truth in-
stances in order to calculate loss at train time. The optimal
matching is found by considering all possible mappings w
between the predicted instances and ground truth instances
and selecting the one that minimizes

Lcost =

N∑
i=1

Lmatch(yi, ŷw(i)) (4)



where Lmatch(yi, ŷw(i)) is a pairwise matching cost function
between the i-th ground truth instance yi, and the predicted
instance with index w(i), ŷw(i). In HGTTR, Lmatch is de-
fined as a weighted sum of loss functions:

λ1Lbbox + λ2Lclass + λ3Lin/out + λ4Lheatmap (5)

where Lbbox is an IoU loss on the predicted bounding box,
Lclass is a binary classification loss on predicting if the in-
stance is a head or not, Lin/out is a binary classification loss
on predicting if the gaze is in or out of frame, and Lheatmap is
heatmap loss between the predicted and ground truth gaze
target. The model always predicts N instances, with N be-
ing chosen to exceed the number of ground truth instances
present in each image in the dataset (all existing methods
use N = 20, which is significantly larger than the typical
number of people present in a single image in GazeFollow).
Because there are always less ground truth instances than
predicted instances, the ground truth instance list is padded
with ∅ so that it is length N . Predicted instances mapped
to ∅ are excluded from cost and loss calculation. See Tu et
al. [66] and DETR (Carion et al.) [3] for further details on
matching.

Tonini et al. [65] expand upon this formulation, training
their model to also predict all objects in the scene as an
auxiliary training objective, and including depth as an input.
They also add a term yvector to each instance, which is a
predicted gaze vector, and use this as auxiliary supervision.
Their matching cost is defined as:

λ1Lbbox +λ2Lclass +λ3Lin/out +λ4Lheatmap +λ5Lvector (6)

For all approaches, the mapping between the ground
truth and predicted instances is determined by finding the
closest subset of predicted instances to the ground truth
based on bounding box, class, and gaze.

Evaluation Setting At inference time, these methods
use the same matching cost Lcost to determine which pre-
dicted instances are evaluated against which ground truth
instances, and use this to calculate the gaze performance
metrics (e.g. heatmap AUC, L2 distance). This is inherently
a different evaluation setting than ours because the ground
truth gaze labels are used at inference time to retrieve the
predicted instances that are compared against the ground
truth instances. Because the fixed number of predicted in-
stances (N = 20 for HGTTR) is much higher than the typ-
ical number of ground truth instances per image, a model
can predict multiple instances with the same head bounding
box, but different gaze targets (see Fig. 6 for visual exam-
ples of this). In this case, the matching algorithm will match
each ground truth instance to the predicted instance with the
closest gaze and calculate the gaze metrics between these

Method AUC ↑ Avg L2 ↓ Min L2 ↓
with ground truth gaze matching

Tu et al. [66] 0.917 0.133 0.069
Tu et al. [67] 0.928 0.114 0.057
Tonini et al. [65] 0.922 0.069 0.029
Tonini et al.* [65] 0.924 0.068 0.030

no ground truth gaze matching

Tonini et al.* [65] 0.767 0.211 0.148
Ours 0.956 0.104 0.045

Table 14. Quantitative comparison with detection-based meth-
ods on GazeFollow. The results with ground truth gaze match-
ing use the ground truth gaze labels to perform bipartite matching
at test time, and thus are not a direct comparison to our method
and prior work. The no ground truth gaze matching results re-
port our method compared to Tonini et al.’s model evaluated with
the altered matching cost function in Equation 7, which excludes
ground truth gaze information. (∗Results we obtained ourselves
by running Tonini et al.’s published code.)

pairs, discarding the extra incorrect predictions from eval-
uation. In this way, the gaze performance metrics alone do
not penalize overdetection. They characterize recall by as-
sessing the accuracy of the predicted instances that are clos-
est to the ground truth, but do not assess precision by pe-
nalizing the model for predicting additional instances with
incorrect gaze targets. Additionally, the matching algorithm
does not enforce that the ground truth instance is matched to
a detection with a similar predicted head bounding box; if
the heatmap loss dominates the matching cost, an instance
may be selected based only on similarity between the pre-
dicted gaze heatmap and ground truth (see Fig 6 for exam-
ples). Thus, the model does not need to correctly associate
people with their respective gaze targets to achieve high per-
formance. For these reasons, the gaze metrics in this eval-
uation setting are not a direct comparison against our work
and prior methods that follow the traditional problem for-
mulation.

Quantitative Results We show the reported results of the
3 detection-based methods and our results on GazeFollow
in Tab. 14. To quantitatively characterize the difference in
evaluation setting, we also re-evaluate Tonini et al.’s [65]
method on GazeFollow with the ground truth gaze label re-
moved from the matching cost, using their published code-
base. We alter the matching cost from Equation 6 to exclude
the ground truth gaze label. This altered matching cost is
defined as:

L′
match = λ1Lbbox + λ2Lclass (7)

With this cost, the model retrieves a prediction for each
ground truth instance based only on bounding box over-
lap and class similarity. This reflects our use case, where
the model is used to predict a gaze target for a certain per-



son based on their head location, and does not have knowl-
edge of the ground truth gaze. Without the use of ground
truth gaze in the matching cost at inference time, we ob-
serve a significant performance drop. This quantitatively
indicates the overdetection of gaze instances, as the altered
matching cost results in the model selecting detections that
have more bounding box overlap and class similarity2 to
the ground truth, but a less accurate gaze target. However,
it is important to note that we do not exhaustively attempt
to adapt their method to this setting (e.g. by developing
a new matching algorithm for training or a non-maximal
suppression method). We include this result to quantita-
tively demonstrate the difference in evaluation setting and
use case between our method their method as-is. We note
that Tu et al. [66, 67] do not publish code or models so we
do not re-evaluate their methods.

Qualitative Results We visualize the output instances of
Tonini et al.’s default matching algorithm that uses ground
truth gaze as part of the cost function, and our altered
matching algorithm that does not use ground truth gaze
in Fig. 6. The first two rows demonstrate cases where
the matching algorithm chooses an instance with a pre-
dicted bounding box that is not associated with the cor-
rect person; the heatmap loss dominates the matching cost.
With our altered matching function, an instance with a pre-
dicted bounding box for the correct person but incorrect
gaze heatmap is retrieved. The third row shows an exam-
ple of overdetection, where multiple instances are predicted
with a head bounding box for the correct person, but differ-
ent gaze targets. With the use of ground truth gaze during
matching, the instance with the most correct heatmap is se-
lected. However, without this ground truth information, the
model does not select the best instance and produces an in-
correct gaze prediction. These examples visually illustrate
the difference in evaluation setting: when ground truth gaze
information is used at test time, a model can achieve high
performance by producing instances that capture different
potential gaze targets and relying on the matching algorithm
to retrieve the best instances to evaluate with. However, the
gaze metrics do not characterize the model’s ability to de-
termine which of these instances are indeed gaze targets and
associate them with the correct person.

9. Runtime Analysis

Inference Speed Our ViT-Base model runs in 15ms (≈
66fps) on a single NVIDIA RTX 4090 GPU. We compare
the inference time of our model with existing methods in
Fig 7a. For Miao et al. [43], we include the auxiliary

2We observe that matching is mainly based on bounding box overlap.
Changing the weight of class similarity in the matching cost has little effect
on performance both in the original setting and our altered setting where
gaze is not used in matching.

depth estimation model (DPT-Hybrid[50]) in runtime cal-
culation. Compared to Miao et al., our approach is both
faster, and achieves better performance. In fact, the infer-
ence time of the DPT-Hybrid depth model (17ms) exceeds
the entire inference time of our approach. This result high-
lights the benefit of using a single encoder, both in inference
speed and performance. Chong et al.’s approach [9], which
does not use any models for auxiliary modalities like depth,
runs faster than our model. However, this comes with a sig-
nificant drop in performance compared to our method. As
shown in Tab. 3, recent convolutional methods all use at
least one auxiliary model to augment performance. While
these approaches may use faster backbones than a ViT, re-
quiring auxiliary models ultimately increases runtime.

Multi-Person Scaling We also investigate how our
model’s runtime scales with estimating the gaze for mul-
tiple people per image (Fig. 7b). We measure the inference
time for 1-10 people per image for both our default method,
and our variant that uses a head position token (tpos) and
decodes gaze via cross attention and a dot product with the
scene features (Tab. 7 configuration 1b 2b). Because the
majority of our model’s computation can be attributed to
the DINOv2 scene encoder (>95% of computation), which
is run once regardless of the number of people, our model’s
runtime does not increase much with addition of more peo-
ple (15ms for 1 person vs. 19ms for 10 people). The token
variant of our model with cross attention scales even better,
as it decodes gaze for all people from the same final feature
map. However, as shown in Fig. 7a, this is accompanied by
a slight performance decrease.

We include Tonini et al.’s [65] detection method for com-
parison, which is designed to simultaneously predict the
gaze and bounding boxes for all people in an image and thus
has a constant runtime across different numbers of people.
We include both the 2D variant (which does not use depth),
and the 3D variant (which uses depth), accounting for the
inference time for a DPT-Hybrid depth estimator for the 3D
variant. Because our model requires head bounding boxes,
we include a YOLOv5 head detector in the displayed run-
times for our model. We observe that our default method is
faster than Tonini et al.’s 2D method for up to 7 people, and
our token variant with cross attention is faster for all num-
bers of people. Due to the inclusion of running the depth
model and modeling differences to include depth, the 3D
version of Tonini et al.’s method is slower than the 2D ver-
sion and our method.

10. Comparison to ViTGaze

We acknowledge concurrent work ViTGaze [55], which
also proposes a single-branch transformer architecture
for gaze target estimation based on DINOv2 pretrained
weights. In contrast to Gaze-LLE, ViTGaze fully trains its



…

…

…

Ground
Truth

Gaze Instance Selected 
by Matcher with 

Ground Truth Gaze

Gaze Instance Selected by 
Matcher without Ground 

Truth Gaze
Gaze Instance 3 Gaze Instance 4 Gaze Instance 20

Figure 6. We show the output gaze instances (predicted head bounding box & gaze heatmap) from Tonini et al.’s model [65] for 3 examples.
We identify the instances selected by Tonini et al.’s matching cost (which uses the ground truth gaze) and our altered matching cost (which
excludes ground truth gaze and instead performs matching based on bounding box overlap). Tonini et al.’s matching algorithm selects the
instance with the closest gaze prediction to the ground truth, but the bounding box prediction does not always correspond to the correct
person (Rows 1-2). Additionally, we observe overdetection, where the algorithm predicts multiple instances for the same person with
different gaze heatmaps (Row 3). Without the use of ground truth gaze information, the model cannot determine which of these instances
is best.

ViT-S backbone (initialized from DINOv2 weights) end-to-
end, and uses the attention weights between image patches
as its feature representation. Gaze-LLE has the advantage
of using the frozen DINOv2 features out-of-the-box, which
is ideal for settings where general-purpose features are pre-
computed and used for several downstream tasks. With
its smaller backbone, ViTGaze is lightweight and may be
better suited for on-device applications, where Gaze-LLE’s
ViT-B or ViT-L backbone may be too large to run. We note
that ViTGaze produces predictions for the L2 metric dif-
ferently than prior gaze methods: while prior work deter-
mines the maximal gaze point from a standard-sized 64×64
heatmap, ViTGaze uses additional postprocessing [72] to
bypass the limitations of the low resolution of the output
heatmap. ViTGaze also uses a higher input resolution (512).

11. Performance with Estimated Head Bound-
ing Boxes

Tu et al. [66] report that 2-stream methods suffer major
performance drops when using head bounding boxes from
a detector rather than the dataset ground truth. In contrast,
we observe almost no performance degradation when pair-
ing our method with a YOLOv5 head detector trained on
CrowdHuman [1, 54] (Tab. 15). This result demonstrates
that our single-stream design, which uses a coarse, down-

Method AUC ↑ Avg L2 ↓ Min L2 ↓
ViT-B + GT 0.956 0.104 0.045
ViT-B + YOLO 0.955 0.106 0.047

ViT-L + GT 0.958 0.099 0.041
ViT-L + YOLO 0.958 0.101 0.043

Table 15. Gaze-LLE achieves consistent results when using head
detections from an out-of-the-box YOLOv5 detector instead of
head ground truth bounding boxes.

sampled head position map, is less dependent on an ex-
act head crop, and works well with out of the box head
detections. Given DINOv2’s strong performance on tasks
such as semantic segmentation with linear probing, future
work may explore integrating head detection directly into
the pipeline by predicting heads from the same frozen DI-
NOv2 features.

12. Reimplementation of Horanyi et al.

We use our own implementation of Horanyi et al. [26]
for our main comparison. We choose to reimplement this
method because the reported results are outliers among
other methods, and there is imbalance between the reported
metrics (e.g., 0.932 AUC on GazeFollow, but very low L2
error). Since the method is largely constructed from ele-



(a) Runtime vs. Performance

(b) Runtime scaling for multi-person inference

Figure 7. Runtime analysis of our approach: we show the tradeoff
of inference time vs. performance (7a), and analyze how differ-
ent variants of our approach paired with a head detector scale for
multi-person prediction, compared to detection methods (7b). All
experiments are performed on a single NVIDIA RTX 4090 GPU.

GazeFollow VideoAttentionTarget
Experiment AUC ↑ Avg L2 ↓ Min L2 ↓ AUC ↑ L2 ↓ APin/out ↑
Frozen Aux. Angle 0.869 0.217 0.146 0.802 0.234 0.720
Trained Aux. Angle 0.896 0.196 0.127 0.832 0.199 0.800

Table 16. Experimental results for our implementation of Horanyi
et al.[26] on GazeFollow and VideoAttentionTarget. We consider
the setting where we freeze the auxiliary 3D gaze angle model vs.
where we train it along with the rest of the network.

ments that are present in other works (e.g., constructing a
“gaze cone” from estimated 3D gaze and depth [17, 23, 65],
providing estimated depth as input to the scene encoder
[17, 23], and using a ResNet50-based scene encoder + 4-
layer convolutional decoder [9, 43]), it is difficult to identify
the source of large reported performance gains. There is not
published code for this work. The original paper provides
limited implementation details, so we follow some choices
from Chong et al.’s codebase [9].

The model consists of a 3D Field-of-View (FoV) map
construction module, a scene encoder, and a gaze decoder.
The FoV module uses an auxiliary depth estimator and 3D
gaze angle estimator to produce an FoV heatmap for a per-
son over the scene. The estimated depth, FoV map, and
224 × 224 map are passed to a ResNet50-based scene en-
coder and decoded into gaze predictions. Figure 8 illus-
trates the architecture details for our reimplementation. We
use the same auxiliary models used in the original approach
[26]: Gaze360 [32] and Monodepth2 [21]. We follow
the version of their scene encoder without non-local (NL)
blocks. The FoV module uses the construction equation
from Horanyi et al. [26]:

Mind = min max scaler
(

(i− hx, j − hy , k − hz) · (gx, gy , gz)
∥i− hx, j − hy , k − hz∥2 · ∥gx, gy , gz∥

)
(8)

We make the assumption that k-coordinate comes from
the normalization of the estimated depth map. We follow
the high-level architecture described in the text: a ResNet50
trainable scene encoder, two convolutions for encoding,
and a 4-layer convolutional decoder. Because details such
as hidden dimensions and kernel sizes are not specified,
we generally follow Chong et al.’s open-source code [9]
since Horanyi et al.’s described architecture mostly matches
Chong et al.’s. We conduct experiments in two settings
on the Gazefollow and VideoAttentionTarget datasets. The
first setting keeps both the auxiliary gaze angle and depth
estimation models frozen, as suggested in the text [26]. In
the second setting, we train the gaze angle model. For the
GazeFollow experiments, we use batch size 128, learning
rate 4e-4, and the Adam optimizer. For VideoAttentionTar-
get, we finetune the GazeFollow-trained model with batch
size 32 and learning rate 1e-4. The results of these experi-
ments are shown in Tab. 16. We observe training the aux-
iliary gaze angle model performs better, so we report these
results in the main paper.

13. Additional Ablation Studies

We provide additional ablations for our ViT-Base model on
GazeFollow in Tab. 17. We find there is benefit to using a
smaller internal dimension for our gaze estimation module,
both in performance and reduction of learnable parameters
(Tab. 17a). Our model produces competitive results with
prior work using only 1 transformer layer (Tab. 17b); how-
ever, we achieve sizeable performance gains by increasing
the number of layers to 3. Beyond 3 layers, the perfor-
mance is largely stable. To balance performance with re-
ducing learnable parameters, we select dimension 256 with
3 layers as our default configuration.



1 x 3 x 224 x 224 1 x 1 x 224 x 224

Depth
Model

Image Input 3D Angle
Model

FoV Map
Generator

1 x 1 x 224 x 224

Concat

1 x 5 x 224 x 224

Additional Resnet Conv Block
Planes = 256
Strides = 1

1 x 64 x 112 x 112

1, 1024, 7, 7

1, 1, 64, 64

1 x 1x 64 x 64 Output Heatmap

Deconv1
k=(3,3), s=(2,2), p=0

BatchNorm (dim=256)
ReLU

Deconv2
k=(3,3), s=(2,2), p=0

BatchNorm (dim=128)
ReLU

Deconv3
k=(4,4), s=(2,2), p=0
BatchNorm (dim=1)

ReLU

1, 256, 15, 15

1, 128, 31, 31

Conv Layer
k=(1,1), s=(1,1)

Standard Resnet-50

Reshape

1, 1, 7, 7

2 x In-Out Conv Blocks
k=(1,1), s=(1,1), p=0

BatchNorm (dims=[512, 1])
ReLU

Fully Connected Layer
Dim=49

1 x 1 Output In-Out Probability

1, 512, 7, 7

2 x Scene Conv Blocks
k=(1,1), s=(1,1), p=0

BatchNorm (dims=[512, 512])
ReLU

Depth Map

Head AngleImage Input

FoV Map

FoV Map Generator

Depth Map

Estimated Gaze 
Direction

Image Input

Head Location

FoV Map Generator FoV Map Generator

FoV Map

Figure 8. Architecture details for our reimplementation of Horanyi et al.’s model [26]. The model consists of a FoV Map Generator (shown
on right), which uses an auxiliary 3D gaze angle estimator and an auxiliary depth model to produce an FoV map for a given person. The
FoV map, estimated depth, and image are passed to a ResNet50-based encoder and convolutional decoder to produce a gaze prediction. In
our experiments, we consider both freezing vs. training the 3D gaze angle estimator as part of the model.

dmodel Params AUC ↑ Avg L2 ↓ Min L2 ↓
128 1.2M 0.956 0.106 0.046
256 (default) 2.8M 0.956 0.104 0.045
384 5.0M 0.956 0.105 0.046
512 7.7M 0.953 0.108 0.049
768 14.8M 0.953 0.108 0.049

(a) Dimension of gaze estimation module.

Layers Params AUC ↑ Avg L2 ↓ Min L2 ↓
1 layer 1.2M 0.953 0.115 0.054
2 layers 2.0M 0.955 0.108 0.049
3 layers 2.8M 0.956 0.104 0.045
4 layers 3.6M 0.956 0.103 0.045
5 layers 4.4M 0.956 0.104 0.045

(b) Number of transformer layers.

Table 17. We investigate the effect of different internal model
dimensions and number of transformer layers for our gaze esti-
mation module with a ViT-Base DINOv2 backbone. We observe
diminishing returns as we increase the dimension and number of
layers. We select dmodel = 256 with 3 transformer layers as our
default configuration.

14. LoRA Backbones

To investigate if training the backbone improves perfor-
mance, we explore using Low Rank Adaptation (LoRA)
[27] on GazeFollow in Tab. 19. LoRA updates the backbone
while introducing limited additional learnable parameters

Backbone Params AUC ↑ Avg L2 ↓ Min L2 ↓
One Human 0.924 0.096 0.040

ViT-B 2.8M 0.956 0.104 0.045
ViT-B + LoRA 3.1M 0.957 0.103 0.045
ViT-L 2.9M 0.958 0.099 0.041
ViT-L + LoRA 3.7M 0.960 0.097 0.040

Table 18. LoRA-tuned DINOv2 Backbones

Table 19. Frozen vs. LoRA-tuned DINOv2 backboneswith Gaze-
LLE on GazeFollow.

by learning weight update matrices as low rank decompo-
sitions. We update the query and value projections of the
DINOv2 backbone using rank 16. We observe limited im-
provements, which we attribute to (1) the effectiveness of
the frozen encoder’s feature representation for our task and
(2) that our models with frozen encoders already achieve
extremely close performance to the inter-rater performance
of the human annotators, which serves as a soft upper bound
on the L2 metrics.

15. Additional Visualizations & Failure Modes

We provide additional visualizations of our ViT-B model’s
predicted heatmaps on the GazeFollow, VideoAttentionTar-
get, ChildPlay, and GOO-Real datasets in Figure 9. We



(a) GazeFollow

(b) VideoAttentionTarget

(c) ChildPlay

(d) GOO-Real

Figure 9. Additional qualitative results on the 4 evaluation datasets: For each example, we show our model’s predicted heatmap with its
maximum point on the top, and the ground truth gaze annotations on the bottom.



Figure 10. Lower performing cases: we observe errors in some cases where the head is facing away from the camera (examples 1-2), the
head is occluded (examples 3), or the face is blurred (examples 4-5).

show examples where our model does not perform as well
in Figure 10. These cases are representative of error modes
we observe across the evaluation datasets. Our model is
more likely to exhibit errors when the person is positioned
with the back of their head towards the camera (examples
1-2) or their face is heavily occluded (example 3). In these
cases, we observe our model selects potential targets (such
as faces) that are broadly in person’s field of view, but does
not always refine this prediction to the ground truth gaze
target. It is not surprising that the model does not perform
as well on these cases, as the ground truth is often inher-
ently more ambiguous in such examples. We observe sim-
ilar errors in cases where the person’s face and eyes are
blurred (examples 4-5), which is more common in video
datasets like VideoAttentionTarget and ChildPlay. Future
work may explore using temporal information from sur-
rounding frames to resolve ambiguities in these cases.


	Integration of DINOv2 into Existing Methods
	Experiment Details for Section 3.2
	Comparison to Detection Methods
	Runtime Analysis
	Comparison to ViTGaze
	Performance with Estimated Head Bounding Boxes
	Reimplementation of Horanyi et al.
	Additional Ablation Studies
	LoRA Backbones
	Additional Visualizations & Failure Modes

