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6. Results on ConCon-Chi TEST-UNSEEN
split

In order to compare to the baselines reported in the orig-
inal ConCon-Chi paper [28], we report results on the full
TEST split, which contains 3 validation concepts and 17
unseen concepts. However unlike zero-shot methods like
SEARLE, we use these 3 validation concepts to select the
λ regularization hyperparameter. We evaluate on the TEST-
UNSEEN split in Tab. 9, which excludes these validation
concepts. Our results verify that our accuracy gains hold
for the concepts for which λ was not tuned.

Method Context Concept-only
mRR mAP recall@1 mRR mAP

SEARLE 43.88 30.73 33.49 96.67 61.94
Ours 46.17 31.99 36.29 100.00 70.65

Table 9. Performance on the TEST-UNSEEN split of ConCon-
Chi.

7. Standard Error on DeepFashion2
We report the mean and standard error over 5 runs with dif-
ferent random seeds on the DeepFashion2 test set in Tab. 10
with 5 randomly selected train images for each concept per
run.

8. Ablation Validation Split Results & Hyper-
parameters

We provide the ConCon-Chi validation split results and the
value for the regularization weight hyperparameter λ for the
ablations reported in the main paper: LoRA rank (Tab. 11,
LoRA layers (Tab. 12), and LoRA parameters (Tab. 13). We
performed our search for the value of λ resulting in conver-
gence to the highest accuracy for each setting on the vali-
dation split. We selected our final model setting (rank=1,
layers=12, parameters=V, λ = 0.35) based on the results of
these ablations on the validation split.

9. Comparison to Yeh et al. [38]
Yeh et al. [38] propose a textual inversion approach for
PerVL that meta-learns a per-class basis on large scale data,
over which the V ∗ tokens for new concepts are learned as
a linear combination. Both the V ∗ token and basis are up-
dated at personalization time. Differently from the orig-
inal PerVL setting [7], the tokens for all concepts in the

dataset are learned jointly, with the vision-text contrastive
loss using images of the other concepts as hard negatives
and an additional text-text contrastive loss pushing apart the
text embeddings for different concepts. We exclude their
method from our main comparisons since this is a different
setting than that followed by prior methods. Using the other
concepts as hard negatives gives the method an advantage
at retrieval time since the retrieval database is composed of
images of the concepts in the dataset. For DeepFashion2
in particular, where the concepts are all clothing items and
many are visually similar, using the other concepts as neg-
atives helps the model distinguish its representation of each
concept from visually similar concepts that will appear in
the retrieval database.

To adapt our method to this setting where hard negatives
are provided, we create an additional objective that pushes
personal textual queries for the concept being learned away
from the image embeddings of other concepts in CLIP
space. Specifically we define a negative loss, Lneg , as a
negative MSE loss:

Lneg = − 1

Nc

Nc∑
i=1

(
ψ′
T,c(qi)

||ψ′
T,c(qi)||2

− ψI(I
n
i )

||ψI(Ini )||2

)2

(9)

where for each iteration, {Ini } consists ofNc sampled train-
ing images containing a concept that is not concept c. We
alter Eq. 6 (main text) to be:

L = LMSE + Lneg + λLreg (10)

Note that this training objective differs from Yeh et al.,
which uses a set of contrastive losses between the concepts
during joint training. We introduce Lneg as a means of ac-
comodating hard negatives with minimal changes to our ex-
isting training objective and setting.
Quantitative Comparison We provide a quantitative com-
parison on DeepFashion2 in this setting in Tab. 14. We
use the ViT-B/32 backbone for these experiments and set
λneg = 1 and λreg = 0.1. Without having the other concepts
as hard negatives, our method naturally has lower concept-
only performance, as it does not have the advantage of hard
negatives to disambiguate between similar concepts. With
the addition of negatives, we achieve similar concept-only
performance to Yeh et al., and much higher context per-
formance. These results demonstrate that our method better
balances personal knowledge and generic knowledge than
Yeh et al.’s textual inversion based method.



Method Arch. Context Concept-only
mRR recall@5 mRR mAP

Adapter ViT-B/32 5.9± 0.7 - - -
COLLIE [32] ViT-B/32 7.9± 0.7 - - -
Text Only ViT-B/32 17.6± 0.0 - - -
AvgIm + Text ViT-B/32 18.8± 0.4 - - -
PALAVRA [7] ViT-B/32 28.4± 0.7 39.2± 1.3 - -
SEARLE [4] ViT-B/32 21.90± 0.39 27.15± 0.57 25.97± 0.80 12.74± 0.48
Ours ViT-B/32 34.82± 0.52 44.88± 1.17 59.26± 1.64 28.75± 0.74
SEARLE [4] ViT-L/14 27.62± 0.26 34.12± 0.39 32.07± 0.90 16.17± 0.62
Ours ViT-L/14 40.72± 0.27 51.31± 0.78 65.96± 0.36 35.07± 0.65

Table 10. Results from Tab. 1 (main text, comparison on the DeepFashion2 test set) with standard error reported over 5 runs.

LoRA Reg. Context (Single-Concept) Concept-only VLM cap
rank weight mRR mAP r@1 mRR mAP r@10

r=2 λ=2 52.71 37.30 41.43 100.00 57.21 52.61
r=4 λ=6 52.51 37.20 42.45 100.00 57.54 52.50
r=8 λ=24 52.52 37.20 42.45 100.00 57.54 52.51
r=16 λ=100 52.62 37.34 41.45 100.00 57.53 52.48

r=1 λ=0.35 52.75 37.82 41.51 100.00 57.49 52.47

Table 11. Validation split performance and regularization weight for ablation of LoRA rank on ConCon-Chi. For each rank, we sweep over
different values for λ and report the best-performing value.

Layer(s) Reg. Context (Single-Concept) Concept-only VLM cap
weight mRR mAP r@1 mRR mAP r@10

11,12 λ=2 52.42 37.36 42.40 100.00 56.99 52.66
10,11,12 λ=4 52.03 37.32 41.45 100.00 57.46 52.56
all layers λ=40 44.45 32.46 34.91 83.33 53.23 52.37
1 λ=1 43.39 32.68 33.96 83.33 54.19 52.21

12 λ=0.35 52.75 37.82 41.51 100.00 57.49 52.47

Table 12. Validation split performance and regularization weight for ablation of LoRA layers on ConCon-Chi. For each layer set, we sweep
over different values for λ and report the best-performing value.

Param(s) Reg. Context (Single-Concept) Concept-only VLM cap
weight mRR mAP r@1 mRR mAP r@10

Q λ=0 23.17 15.09 13.21 38.89 8.77 52.15
K λ=0 19.82 14.93 9.43 2.36 5.81 52.11
O λ=100 51.22 33.69 42.45 83.33 51.69 52.62
Q,K,V,O λ=500 51.14 33.86 42.45 83.33 51.90 52.66
Q,V λ=2 53.04 37.76 42.40 100.0 56.66 52.63
MLP1 λ=50 44.01 28.45 33.96 100.0 48.05 51.64
MLP2 λ=200 50.57 33.12 38.68 100.0 49.81 51.25
final proj λ=700 52.42 35.77 39.62 100.0 53.91 51.09

V λ=0.35 52.75 37.82 41.51 100.00 57.49 52.47

Table 13. Validation split performance and regularization weight for ablation of LoRA parameters on ConCon-Chi. For each parameter
set, we sweep over different values for λ and report the best-performing value.

Method Context Concept-only
mRR recall@5 mRR mAP

Yeh et al. 34.4± 0.7 45.2± 1.1 69.3± 1.8 40.0± 1.0
Ours 34.82± 0.52 44.88± 1.17 59.26± 1.64 28.75± 0.74
Ours + negs 42.23± 0.23 52.57± 0.35 69.66± 0.98 40.65± 0.59

Table 14. Comparison to Yeh et al. [38], which uses the other concepts as hard negatives during training. We include our method in the
original setting (Ours), and our method adapted to also use negatives (Ours + negs). All results use the ViT-B/32 architecture and report
mean and standard error over 5 runs.



# Train Imgs Method Context Concept-only
mRR mAP recall@1 mRR mAP

0 Coarse (class name) 24.21 16.83 14.48 - -
Discriminative† 43.16 30.16 31.92 - -
Rich† 40.58 27.65 29.98 - -

1 PALAVRA 34.39± 1.68 22.56± 1.29 24.59± 1.94 - -
Pic2Word 37.15± 1.76 25.23± 1.20 26.35± 1.85 - -
SEARLE 41.07± 0.92 28.16± 0.55 31.16± 0.94 - -
Ours 44.68± 0.61 30.99± 0.48 34.45± 0.55 98.83± 1.62 65.10± 0.96

5 PALAVRA [7] 35.99 23.59 26.75 - -
Pic2Word [31] 38.62 26.39 27.68 - -
SEARLE [4] 43.93 30.74 33.49 100.00 61.68
Ours 46.33 32.33 36.16 100.00 68.71

Table 15. Comparison to prior work on the ConCon-Chi benchmark, including the single training image setting. For single image training,
we report the mean and standard deviation. Our approach achieves state-of-the-art results in both the 1-image and 5-image settings. †
indicates oracle descriptions.

10. Single Training Image Experiments on
ConCon-Chi

The original ConCon-Chi paper [28] also reports results
where only a single training image is used per concept. We
report results for our method in this setting in Tab. 15. We
use the same hyperparameters as our main ConCon-Chi ex-
periments where all 5 training images per concept are used.
We report the mean and standard deviation over each of the
5 training images. Our method performs best in the single-
image setting, and our single-image method even outper-
forms the other methods when they use all 5 training im-
ages. This result demonstrates the effectiveness of POLAR
even with a single training image per concept.

Method Iters Personalization time (ms)

Text. Inv. (1 tok) 50 1597.62
Ours 50 219.54

Text. Inv. (1 tok) 500 15961.97
Ours 500 1940.34

Table 16. Total personalization time for a concept in milliseconds
of our method vs. textual inversion.

11. Personalization Time Analysis
POLAR is fast to personalize and does not require pretrain-
ing. For all experiments in Section 4 (main text), we op-
timize for 500 iterations to ensure all variants converge;
however for our main method setting (rank=1, layers=12,
params=V, λ=0.35), our model converges within 50 iter-
ations. We provide runtime analysis in Tab. 16, showing
the full personalization time of our ViT-L/14-based method
with 5 training images for a concept on a single NVIDIA
V100 GPU. We report the personalization time for both 50
iterations and 500 iterations. Because we backpropagate

only through the final layer of the text encoder, our method
is significantly faster to optimize than traditional textual in-
version.

12. Additional Implementation Details
DeepFashion2. We train our ViT-B/32 model for 50 iter-
ations, and our ViT-L/14 model for 200 iterations. We use
the Adam optimizer with learning rate 0.001. We use the
token “sks” as V ∗.
ConCon-Chi. We train our ViT-L/14 model for 500 itera-
tions. We use the Adam optimizer with learning rate 0.001.
We do not append the classname to V ∗, because the class-
names are less likely to be aligned with the concept. For
example, several concepts have the classname “puppet” as
they are animal-like objects created from household mate-
rials, but this is unlikely to align with CLIP’s concept of
“puppet” based on its pretraining. We use the token “sks”
as V ∗.

13. Evaluation of General Knowledge
VLM Captions. To generate the captions for calculating
our VLM caption recall@10 metric, we prompt LLaVA-
1.5-7B [22] with the image and the prompt “Caption this
image in 1-2 sentences.” To assess noise in the captions, we
manually checked 100 of the captions, finding 88 accurate,
10 with minor errors, and 2 wrong. The metric is intended to
assess the performance delta from original CLIP, so a noisy
caption equally affects both methods. We choose a permis-
sive threshold of r@10 because the ground truth is deter-
mined as the single image from which the caption is gen-
erated, but ConCon-Chi has multiple similar images. Our
method performs similarly to CLIP across different thresh-
olds, as shown in Tab. 17.
Evaluation on general retrieval task. We also evaluate



Method r@1 r@5 r@10 r@50

Original CLIP 13.27 39.62 52.69 78.07
Ours 13.39 39.61 52.62 78.07

Table 17. Evaluation with different recall thresholds for our VLM
caption metric.

retention of general knowledge by performing general im-
age retrieval on Flick30k [39] with the parameter update for
a concept applied. We report results in Tab. 18, showing
parity with original CLIP.

Method r@1 r@5 r@10

Original CLIP 67.76 89.78 94.26
Ours 68.16 89.79 94.43

Table 18. Evaluation on the Flick30k general image retrieval task.

Evaluation with ConCon-Chi discriminative captions.
The ConCon-Chi dataset also includes discriminative de-
scriptions for each concept, which are human-annotated text
descriptions that differentiate the concepts from one another
(e.g., “bird sprayer puppet”). These descriptions provide
an oracle baseline for the benchmark. We also evaluate re-
tention of general knowledge by evaluating image retrieval
on ConCon-Chi where each personal concept’s place in the
image caption annotations is replaced by the concept’s dis-
criminative description. Results are provided in Tab. 19,
showing similar performance to original CLIP.

Method r@1 r@5 r@10

Original CLIP 31.92 55.17 66.51
Ours 31.62 54.76 66.00

Table 19. Evaluation on ConCon-Chi general image retrieval using
discriminative concept descriptions in captions.

14. Comparison to Weight Decay
We regularize our personalized parameter updates via the
||AL,c||2 = 1 constraint and imposing a squared-L2 penalty
on BL,c. This strategy is similar to weight decay, which
also encourages learning small weights, but differs in two
key aspects. First, weight decay is typically applied to all
parameters, while we only impose a penalty on the size of
BL,c. Second, weight decay is implemented differently, di-
rectly subtracting a portion of the weights during the opti-
mizer update. Tab. 20 compares our regularization scheme
to simply using weight decay with the Adam optimizer
(with a tuned value of 1e-4) and the AdamW optimizer with
default hyperparameters. These results show that simply us-
ing Adam/AdamW struggles both with learning the concept

(due to applying weight decay to AL,c) and retaining gen-
eral knowledge.

Method Context (Single-Concept) Concept-only VLM cap
mRR mAP r@1 mRR mAP r@10

Adam + wd 47.58 32.34 38.64 100.00 65.59 51.20
AdamW + wd 49.61 34.08 39.46 97.50 59.72 51.24
Ours 51.64 36.73 41.77 100.00 68.71 52.62

Table 20. Comparison of our regularization strategy with opti-
mizer weight decay.

15. Generalization of Ablations to DeepFash-
ion2

While we report our main ablations on the ConCon-
Chi dataset, we observe similar trends on DeepFashion2.
Tab. 21 shows ablating the parameters on which the LoRA
is learned on DeepFashion2 for a single run of 5 training im-
ages. We see similar results to ConCon-Chi (Tab. 6), with
the value transform performing best.

Params Context Concept-only
mRR r@5 mRR mAP

K 23.97 29.41 13.51 00.08
O 35.15 44.80 58.51 30.55
Q,V 36.36 47.96 60.21 32.60
Q,K,V,O 35.37 45.34 60.09 32.12
V 41.35 49.32 65.48 35.02

Table 21. Ablation of LoRA parameters on DeepFashion2.

16. Limitations
Like existing approaches in the space of personalized gen-
eration that use a fixed V ∗ token in place of new concepts,
we experience sensitivity to the choice of V ∗. Similar to
prior work [14, 19, 24] we find unique single tokens to
be the most effective, and we use the token for “sks” in
our main experiments. We observe that selecting a V ∗ for
which CLIP likely has a strong existing representation (e.g.,
“dog”) makes it more challenging to successfully teach the
model the new personalized meaning with limited param-
eter updates. Future work may explore dynamically deter-
mining hyperparameters such as the rank of the LoRA up-
date and the regularization weight for different choices of
V ∗ to eliminate this sensitivity and allow referral to con-
cepts in natural language without the substitution of V ∗.

Additionally, by updating only the text encoder ψT and
not the image encoder ψI, our performance is inherently
bounded by the frozen image encoder’s ability to capture
distinguishing visual details. While this choice makes sense
practically for our task setting (the image features for all im-
ages in the retrieval database can be precomputed by regular
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Figure 5. Our method sometimes struggles to differentiate between concepts of the same class with similar visual attributes such as color
and pattern. We show concept-only queries from DeepFashion2 where such failures occur, with correct retrievals shown in green and
incorrect retrievals shown in red. In row 1, the model retrieves other outfits that also have a white shirt and blue skirt, but the pattern of the
shirt differs from the correct concept (e.g., polka dot vs. striped). In row 2, the model fails to disambiguate between black skirts of different
shapes. In row 3 where the concept has a black and white polka-dot pattern, the model retrieves some incorrect concepts that also have a
black and white polka-dot pattern.

CLIP and then the incoming textual queries are encoded by
ψ′

T), our approach may struggle to differentiate between vi-
sually similar concepts such as different people or objects of
the same class. Some works on related tasks avoid this issue
by using domain-specific specialized models such as facial
feature detectors for personal concepts [1, 18]. However our
focus is on minimally adapting CLIP without introducing
additional domain-specific models. We show cases where
our model fails to distinguish between visually-similar con-
cepts in Fig 5.
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