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The contents in this supplementary material are as fol-
lows:

Details on Extended IS3 Dataset (Section 7), Re-visiting
Heads (Section 8), Additional Ablation Results (Section 9),
Computational Overhead (Section 10), Additional Qualita-
tive Results (Section 11), Performance Discrepancy with
DenseAV (Section 12) and Implementation Details (Sec-
tion 13).

7. Details on Extended IS3 Dataset
We extend the IS3 dataset [36] to enable simultaneous
grounding of mixture of audios. The dataset is originally
designed for interactive sound source localization, consist-
ing of 3,420 images, each paired with two general sound
samples corresponding to two visible objects in the scene.
We generate speech samples for each visible object in each
image. These speech samples, created using the Google
gTTS API, read the class categories of the two visible ob-
jects. Then each image contains two objects, each asso-
ciated with one sound and one speech sample. We form
triplets by combining the image with the sound from one
object and the speech from the other, and vice versa. The
sound and speech samples of a triplet are then mixed to-
gether to form a single combined auditory input. This
extension enables simultaneous grounding of mixed audio
types which requires disentangling overlapping auditory in-
puts—sound and speech—and aligning them with the cor-
rect visual objects. The Extended IS3 dataset thus serves as
a comprehensive benchmark for evaluating the capability on
audio-visual interactions in real-world scenarios.

8. Re-visiting Heads
As outlined in our architecture, the audio encoder includes
two specialized heads: one for speech and one for sound.
Additionally, in Section 4.3.2 of the main paper, we discuss
different evaluation approaches for these heads, namely
Specialized Heads and Total Head. Here, we would like
to re-emphasize that the primary focus of the evaluation
should be on the specialized heads, depending on the tar-
get task. The Total Head, introduced by Hamilton et
al. [9], serves as an alternative evaluation approach. In sum-
mary, tasks such as segmentation and retrieval on the Places
dataset should use the Speech Head, while all tasks on the
AudioSet dataset should utilize the Sound Head.

As shown in Table 3 and Table 5 of the main paper,
the Total Head approach exhibits performance degradation

on benchmarks such as AudioSet and Places. This perfor-
mance gap is especially evident in Table 5, where the mixed
audio scenario highlights the limitations of aggregating un-
related similarity volumes (Total Head approach). The in-
clusion of irrelevant information introduces noise, leading
to considerably worse results compared to the Specialized
Head approach, which focuses solely on the relevant au-
dio type and achieves better performance. Similarly, as
mentioned in the main paper (Section 4.3.4), CAV-MAE
performs better than ours in the Total Head for I!A on
AudioSet. However, the target for this task should be the
Sound Head, and the performance degradation from Sound
Head to Total Head can serve as evidence of disentangle-
ment ability of our model, as the Total Head introduces
noise from unrelated sub-modalities.

To highlight the scenario where the Total Head is par-
ticularly useful, we conducted an additional novel task on
the Extended IS3 dataset. This task involves performing re-
trieval using audio inputs that combine speech and general
sounds, along with images containing two related objects.
In this case, using the Total Head is more appropriate as it
better reflects the characteristic of the dataset and the task.
We present results in Table 8 by comparing head selection
methods. Total uses summation across sub-modalities:

Ssum(a,v) =
X

k

(S(a,v)) , (12)

where k refers the number of audio types. Sound Head
and Speech Head directly apply the head selection approach
in (4). Total Head evaluation outperforms both specialized
heads on the Extended IS3 dataset by approximately 10%
or more.

Retrieval R@10
Total Sound Speech

Method I!A A!I I!A A!I I!A A!I
DenseAV [9]CVPR24 25.2 11.7 14.7 9.7 19.0 9.9
Ours 29.7 25.0 18.3 11.9 19.8 16.8

Table 8. Cross-modal retrieval task on Extended IS3.

9. Additional Ablation Results
In Section 4.4 of the main paper, we presented ablation re-
sults to evaluate the impact of our audio-visual alignment
objectives—correspondence and disentanglement. Here,
we provide additional results on the retrieval task for both
clean and mixed audio cases to present a more comprehen-
sive analysis. Results are in Table 9 and Table 10.



Firstly, as shown in Table 9, omitting the disentangle-
ment loss causes the Speech Head to perform numerically
higher (indicating worse performance) on AudioSet by ap-
proximately 30%, and the Sound Head to perform worse on
Places by over 20% in clean retrieval. This suggests that the
opposite heads are being activated by the incorrect audio
type, which is undesirable. A similar trend is observed in
the mixed retrieval results in Table 10, although the perfor-
mance gap is slightly smaller. These findings indicate that
without the disentanglement loss, the heads fail to special-
ize effectively for their intended roles. Secondly, we exam-
ine the impact of omitting the correspondence loss by eval-
uating the specialized head for each dataset. In both Table 9
and Table 10, performance drops by over 15% on AudioSet
and ⇠3% on Places, confirming that Lcor effectively enables
audio-visual matching necessary for cross-modal retrieval.
It is noteworthy that the model trained only with Lcor strug-
gles with mixed audio, as Ldis provides robustness against
noise from the opposite audio type due to efficient disentan-
glement.

Clean Retrieval R@10
AudioSet Places

Total " Sound " Speech # Total " Sound # Speech "
Method I!A A!I I!A A!I I!A A!I I!A A!I I!A A!I I!A A!I
Lcor 48.6 47.4 34.0 35.8 38.3 38.7 92.3 91.9 23.7 42.1 92.0 92.5
Ldis 29.2 28.5 30.9 32.0 4.7 7.1 91.5 90.5 2.1 6.3 91.1 91.2
Ours 45.5 46.6 51.2 50.0 3.7 8 92.0 93.1 2.3 10.5 94.0 94.0

Table 9. Cross-modal retrieval task on Places and AudioSet.

Mixed Retrieval R@10
AudioSet Places

Total " Sound " Speech # Total " Sound # Speech "
Method I!A A!I I!A A!I I!A A!I I!A A!I I!A A!I I!A A!I
Lcor 14.0 11.4 11.3 9.6 7.5 9.4 49.8 51.2 7.8 21.4 52.1 53.3
Ldis 19.4 19.9 29.3 28.3 3.6 3.1 76.5 80.8 1.7 3.2 82.7 83.6
Ours 17.8 20.3 44.3 42.6 1.6 1.3 79.0 82.8 1.4 1.4 87.3 86.2

Table 10. Cross-modal retrieval task on Places and AudioSet
with mixture of audios.

10. Computational Overhead

Model DenseAV Ours
FLOPs(G) 4151.25 12002.54

Table 11. Computational overhead during training.
Our approach uses multiple forward passes through the im-
age and audio encoders to process clean audios, their paired
images, and mixed audio inputs (Figure 2), increasing over-
head during training compared to DenseAV [9] (Table 11).
However, this overhead is only present during training, as
the test phase is a single forward pass.

11. Additional Qualitative Results
11.1. Segmentation Benchmarks
Due to space constraints in the main paper, we included
only a limited number of qualitative results from the Simul-

taneous Segmentation experiment. In this supplementary
material, we provide additional qualitative results for the
standard segmentation task, including Sound-Prompted Se-
mantic Segmentation, Speech-Prompted Semantic Segmen-
tation, and Simultaneous Segmentation on the Extended IS3
dataset, as shown in Figure 4, Figure 5, and Figure 6, re-
spectively.

11.2. Real-world Scenarios
The examples in Figure 7 qualitatively compare our model
with DenseAV in real-world scenarios from YouTube.
When sound and speech overlap, our model grounds both
the sound source and the object mentioned in speech more
robustly. Our model demonstrates strong performance not
only on evaluation dataset composed of TTS-generated
speech but also on real-world speech samples.

11.3. Failure Cases
We present two failure cases: (1) When the interacted ob-
ject is too small or occluded, the model may capture both
the object and the person (Figure 8, left). (2) When addi-
tional background noise or music increases the complexity
of the audio, it makes localization harder (Figure 8, right).
Despite these challenges, our model remains more robust
than DenseAV.

12. Performance Discrepancy with DenseAV
Our approach builds on DenseAV [9] by introducing joint
learning objectives (Mix-and-Separate approach), while
strictly following the official DenseAV GitHub implemen-
tation without any modifications. All results related to
DenseAV reported in our paper were obtained using the of-
ficial DenseAV checkpoint. The differences between our re-
ported results and those presented in the original DenseAV
paper can be attributed to two main factors. (1) DenseAV
proposes three settings: Sound-only, Speech-only, and
Sound-and-Speech. Since the DenseAV paper suggests that
a single model can distinguish both sound and speech, one
might expect that all reported results use the Sound-and-
Speech setting. However, most of the results in the origi-
nal paper are based on the Sound-only and Speech-only set-
tings, with the exception of the disentanglement evaluation.
In contrast, our work focuses on simultaneous grounding of
sound and speech within a single model, and thus we adopt
the Sound-and-Speech setting as our baseline. (2) The eval-
uation sample list for AudioSet used in the cross-modal re-
trieval task was not publicly available. To ensure fairness,
we evaluated multiple random combinations of 1,000 Au-
dioSet test samples. While the exact results could not be
reproduced, we observed that performance was generally
consistent across different splits. We therefore report re-
sults from one representative combination. As a result of
these differences in evaluation setup, the DenseAV scores



reported in our segmentation and retrieval experiments may
appear lower than those presented in the original paper. We
include this clarification to help avoid potential confusion
and to ensure fair and transparent comparison.

13. Implementation Details
13.1. Regularizers
We incorporate several regularization terms proposed by
Hamilton et al. [9] to improve training stability. We re-
emphasize that while these techniques do not significantly
impact the model’s performance, they contribute to more
stable training. Disentanglement Regularizer encourages
different similarity volumes to specialize in distinct audio-
visual associations by penalizing simultaneous activations
across heads:

LDisReg = Mean(|S(ab,vb)[1] � S(ab,vb)[2]|), (13)

where � denotes element-wise multiplication and ab, and vb

refers to audio and image feature of bth sample from a batch
respectively. The Stability Regularizer consists of several
smaller regularization terms. The Negative Audio Splicing
Regularizer prevents self-attention mechanisms from col-
lapsing by relying exclusively on specific tokens. It intro-
duces negative audio regions into audio clips and penalizes
activations in these regions. This is defined as:

LSplice = WeightedMean(S(ab,vb)
2
,mb), (14)

where mb represents a soft mask identifying spliced re-
gions. The Calibration Regularizer ensures that the cal-
ibration temperature ⌧ remains stable by penalizing values
over 1.0, expressed as:

LCal = max(log(⌧), 0)2. (15)

The Non-Negative Pressure Regularizer promotes posi-
tive feature similarity by penalizing similarity scores below
zero:

LNonNeg =
1

|⌦|
X

⌦

min(S(ab,vb0)[k, f, t, h, w], 0)
2
,

(16)
where ⌦ is a set of randomly selected coordinates from
the similarity volumes and b

0 refers to another sample from
the batch. Lastly, the Total Variation Smoothness Reg-
ularizer ensures temporal consistency by penalizing rapid
changes in activations over time, defined as:

LTV = Mean((act(1 : t� 1)� act(2 : t))2), (17)

where activations over time are defined as act(1 : t � 1) =
(S(ab,vb)[:, :, t0, :, :])

t�1
t0=1. Combining these terms, Hamil-

ton et al. [9] defined the overall stability regularizer as:

LStability =�SpliceLSplice + �CalLCal

+�NonNegLNonNeg + �TV LTV ,
(18)

where �Splice = 0.01, �Cal = 0.1, �NonNeg = 0.01, and
�TV = 0.01.
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Figure 4. Sound prompted semantic segmentation on dataset from [9].
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Figure 5. Speech prompted semantic segmentation on dataset from [9].
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Figure 6. Simultaneous semantic segmentation on Extended IS3



“A man is trying to cut the tree.”
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“The dog is listening to the music.”

Figure 7. Real-world scenarios.
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Figure 8. Failure cases.


