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Figure 7. LIM training losses. (Left) The triplane MSE loss LT only supervises LIM on keyframes km. (Right) The causal consistency
loss Lcausal samples in-between keyframes with an additional forward-pass to LIM. Note that the second pass of LIM takes as input the
intermediate features from LIM instead of the intermediate features from LRM.

A. Additional Evaluations
We recommend looking at the project page
[https://remysabathier.github.io/lim.github.io], to see
the video results. In particular, the webpage contains video
result of RGB interpolation, XYZ canonical tracking,
monocular reconstruction and mesh reconstruction.

Evaluation on OOD data We provide qualitative results
on the Consistent4D eval set, which includes real-world
scenes, in Table 5.

B. Additional Method Insights
Weight Initialization. The composition of blocks in LIM
and LRM is presented in Fig. 2. We initialize LIM with
LRM to take advantage of the learned 3D intermediate
representation. More specifically, the intermediate-features
cross-attention layers are derived from the self-attention
layers from LRM. Furthermore, the image cross-attention
layers are initialized using the image cross-attention layers
from LRM, and the self-attention layers are initialized from
the self-attention layer of LRM. Initialization is similar for
LRM and LIM (presented in Fig. 9).

Model size. We ablate the choice of the number of layers
in Tab. 6. We observe that LIM accuracy is proportional to
the number of blocks in the architecture. However, adding
more blocks in LIM slows down the interpolation. We set
Nlayer = 6 as a good trade-off between speed and accuracy.

Dataset details Our 3D dataset includes 142,123 assets,
while the 4D dataset comprises 6,052 rigged models, each

with 16 to 128 keyframes. We render the keyframes using
Blender and the Cycles engine.

Figure 8. Causal-loss ablation. We show triplane interpolation
result from LIM models trained either with the triplane MSE loss
LT only, or with both LT and the causal-consistency loss Lcausal.

Table 5. Monocular reconstruction (out of distribution OOD).

Inf. Time Consistent4D set

LPIPS FVD

Consistent4D ∼90 min 0.428 1134.7
TripoSR ∼0.5 min 0.497 1428.2

LIM (Our) ∼3 min 0.114 781.9



Figure 9. LIM framework. (Left) Given multi-view RGB images on 2 timesteps k and k + 1 and XYZ canonical renders on timestep k,
LIM interpolates any intermediate 3D representation of the XYZ canonical coordinate at k + α, α ∈ [0, 1]. This gives direct correspon-
dences in 3D space between the source shape at k and the interpolated shape at k + α. In practice, our LIM architecture has 6 blocks and
LRM 12 blocks. (Right) Block structure of LRM and LIM. We include layer normalization before each module in blocks.

PSNR ↑ PSNRFG ↑ LPIPS ↓
LIM- 3 layers 22.35 14.56 0.079
LIM- 8 layers 23.19 16.2 0.075

LIM 23.11 16.12 0.075

Table 6. Performance as a function of # layers reporting interpo-
lation accuracy of LIM while varying the number of transformer
blocks in the architecture.

Causal consistency loss. We illustrate in Fig. 7 the behav-
ior of the triplane MSE loss LT and the causal-consistency
loss Lcausal (see Sec. 3). LT involves a single pass of LIM
and two passes of LRM, while Lcausal involves 2 passes of
LRM and 2 passes of LIM. Note that during LIM training,
the weights of LRM are frozen. In practice, we discovered
that the causal consistency loss was essential to achieve pre-
cise and accurate interpolation over a range of shapes and
motions. We show interpolation results (in the same setting
as Sec. 4.1) in Fig. 8, with a LIM model trained either with
Lcausal activated or deactivated.

Positional Encoding We apply positional encoding to the
interpolation time α ∈ [0, 1] with ϕ : R → R2D, such
that ∀i ∈ [1, D], ϕ(α)[2i] = cos(αf2i);ϕ(α)[2i + 1] =
sin(αf2i+1), and fi = exp[− log 10.000

D .i]; we set D = 512
so that 2D matches the LRM embedding dimension.

4D reconstruction with ARAP regularization . We ob-
serve that our mesh-tracking framework can incorporate
ARAP regularization to mitigate issues like triangle inver-
sion or self-intersection. Instead of relying solely on direct
matching through nearest neighbor search in the space of
canonical coordinates (refer to Section Sec. 3.4), we imple-
ment a concise optimization loop. This loop incorporates
both canonical-coordinate matching and ARAP energy as
objectives to minimize.


