
Enhancing Facial Privacy Protection via Weakening Diffusion Purification

Supplementary Material

In this supplementary, we first review diffusion models
in Sec. 1 as they form the foundation of our proposed frame-
work. Next, in Sec. 2 and Sec. 3, we introduce the four
target identities and face recognition (FR) models used in
our experiments. Sec. 4 describes the weight factor of ad-
versarial loss. Then, we further assess the effectiveness of
our approach via some ablation studies in Sec. 5. Finally,
we present additional visualization results for a more com-
prehensive assessment in Sec. 6.

1. Background: Latent Diffusion Model
Diffusion models [6, 11, 14] consist of two processes: (1) a
T-step forward diffusion process that progressively corrupts
the input image x with Gaussian noise until it approaches a
Gaussian distribution xT at step T; (2) a reverse denoising
process, which seeks to recover x from xT by gradual re-
ducing noise over T reverse steps. Unlike the denoising dif-
fusion probabilistic model (DDPM) [6], the latent diffusion
model (LDM) [11] operates in the latent rather than pixel
space. In LDM, an autoencoder first compresses the image
into a lower-dimensional latent representation z. The dif-
fusion process then applies noise and denoising within this
latent space. Finally, the latent representation is decoded
back to the original image space. The forward process in
LDM is defined as:

q (zt | zt−1) = N
(
zt;

√
1− βtzt−1, βtI

)
, (1)

where βt ∈ (0, 1] are parameters control the noise level at
each diffusion step t. An important property of the forward
process is that zt can be directly sampled at any time t given
the original latent variable z0 using:

q (zt | z0) = N
(
zt;

√
ᾱtz0, (1− ᾱt) I

)
, (2)

where ᾱt =
∏t

s=1 (1− βs). Given that the reverse process
q (zt−1 | zt) is intractable due to its dependence on the un-
known data distribution q (z0), it can be approximated using
a parameterized Gaussian transition model conditioned on
a context C, which is formulated as follows:

pθ (zt−1 | zt, C) =
N (zt−1;µθ (zt, t, C) ,Σθ (zt, t, C)) , (3)

where µθ and Σθ are mean and covariance matrix. The
mean µθ can be expressed as:

µθ (zt, t, C) =
1

√
αt

(
zt −

βt√
1− ᾱt

ϵθ (zt, t, C)
)

. (4)
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Figure 1. Target identities used for impersonation. The first row
contains images used for training, while the second includes im-
ages used for testing.

Here ϵθ (zt, t, C) is the model’s prediction of the noise
added at time step t, given the conditioning information
C. After training the model ϵθ (zt, t, C), the following sam-
pling method can be employed:

zt−1 = µθ (zt, t, C) + σtz, z ∼ N (0, 1) . (5)

To accelerate image generation, Song et al. [14] introduce
the denoising diffusion implicit model (DDIM), which em-
ploys a non-Markovian reverse process, as shown below:

zt−1 =
√
ᾱt−1/ᾱtzt+

√
ᾱt−1

(√
1/ᾱt−1 − 1−

√
1/ᾱt − 1

)
ϵθ (zt, t, C) . (6)

Equation 6 is derived from Equation 5 by eliminating
the stochastic noise component (σt = 0), following the
DDIM’s principle, and substituting it with a deterministic
process.

2. Target Images
The proposed model is designed to generate protected face
images that deceive malicious FR models into misidentify-
ing those protected faces as a specified target identity. Fig. 1
presents the four target identities provided by [8] mentioned
in the Experiments Section (Sec. 4 in the main paper). To
better mimic real-world scenarios, we ensure that the target
images used during training differ from those used during
testing.

3. Face Recognition Models
For fair comparisons, we adopt publicly available pre-
trained FR models following [8]. Three of these mod-
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Figure 2. Quantitative study on the parameter settings of the
weight factor of adversarial loss.

els are based on ArcFace [3], the state-of-the-art FR al-
gorithm, which processes facial images at a resolution of
112 × 112 and encodes them into 512-dimensional fea-
ture vectors. These models differ in their neural architec-
tures and training datasets: IR152 [5] employs ResNet-152,
IRSE50 [7] uses ResNet-50, and MobileFace [2] is built on
MobileFaceNet. Facenet [12], on the other hand, lever-
ages InceptionResnet [16] and follows the original train-
ing protocols outlined in its paper, using an input resolu-
tion of 160 × 160. To assess the models’ effectiveness,
we report their FR accuracy on the CelebA-HQ dataset:
IR152: 90.70%, IRSE50: 90.80%, MobileFace: 83.00%,
and Facenet: 91.20%.

4. Parameter Settings
We evaluated the impact of varying the adversarial loss
weight, λadv , on both privacy protection and image quality
in Fig. 2. The results indicate that increasing λadv slightly
improves privacy protection performance, as reflected by
higher protection success rate (PSR). However, this comes
at the expense of image quality, as evidenced by deterio-
rating Fréchet inception distance (FID). Conversely, lower
λadv yields better image quality but significantly weaker
privacy protection.

5. Ablation Studies
5.1. Optimizing Latent Codes across Timesteps

As mentioned in Sec. 3.4 in the main paper, the denoising
model projects the perturbed noise back toward the natu-
ral data manifold during the reverse diffusion process. One
potential solution to prevent the purification effect could be
considering zi from all timesteps as the latent code, optimiz-
ing it throughout the adversarial latent code learning pro-
cess. Instead of utilizing the learned unconditional embed-
ding proposed in our approach, we conducted an additional
experiment by optimizing zi across multiple timesteps from
t to 0. The results show that the PSR improves from 91.57

IRSE50 IR152 Facenet Mobileface
Ours w/o smoothing 88.87 67.25 59.53 91.57

Gauss3×3 88.47 67.20 59.23 91.47
Gauss5×5 87.61 66.73 58.73 90.26
Gauss7×7 87.06 66.35 57.93 88.56
Mean5×5 86.66 65.75 57.33 87.86

Table 1. Protection success rate (PSR) of our method against adap-
tive adversaries.

to 93.37 when optimizing from z3 to z1, comparable to and
slightly better than our method. However, this improvement
comes at the cost of image quality, as indicated by the in-
crease in FID from 12.72 to 15.71, suggesting that the gen-
erated images exhibit more structural changes. Addition-
ally, the computational complexity increases significantly,
with generation time rising from 15 seconds when optimiz-
ing only z3, to 23 seconds when optimizing from z3 to z1,
and up to 40 seconds when optimizing from z5 to z1 (Ex-
periments were conducted using MobileFace as the target
model).
The comparable performance of null-text guidance indi-
cates that it implicitly approximates the impact of optimiz-
ing the latent codes at different timesteps while offering
substantial benefits in preserving image quality and com-
putational efficiency.

5.2. Effectiveness Against Adaptive Adversaries

An adaptive privacy adversary with advanced knowledge
may deploy additional mechanisms to bypass the protection
method. To evaluate the resilience of our approach under
such adaptive scenarios, we assess its effectiveness against
common image-smoothing techniques. Table 1 presents the
results of applying Gaussian filters with kernel sizes of 3×3,
5 × 5, and 7 × 7, as well as a mean filter with a 5 × 5
kernel—widely used methods in the adversarial robustness
domain. Despite slight degradation, PSR remains relatively
high after smoothing, indicating that our approach main-
tains robust protection against these countermeasures.

5.3. Protection Performances on Commercial APIs

In Fig. 3, we further evaluate the protection performance
of our proposed approach alongside other benchmarks us-
ing two commercial FR APIs, i.e., Face++1 and Tencent2, to
simulate real-world conditions. We randomly select 100 im-
ages from the CelebA-HQ [9] and 100 images from LADN
[4] datasets for protection, recording the confidence scores
returned by each API. These scores range from 0 to 100,
with higher values indicating greater similarity between the
protected image and the target identity. The results show
that our method achieves the highest confidence score com-

1https://www.faceplusplus.com/face-comparing/
2https : / / cloud . tencent . com / product /

facerecognition

https://www.faceplusplus.com/face-comparing/
https://cloud.tencent.com/product/facerecognition
https://cloud.tencent.com/product/facerecognition
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(c) CelebA-HQ on Tencent
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(d) LADN dataset on Tencent

Figure 3. The confidence scores returned from Face++ and Tencent APIs. The higher confidence score indicates better protection per-
formance. Our approach has a higher confidence score compared to four state-of-the-art methods, i.e., AMT-GAN [8], DiffAM[15],
ClIP2Protect[13], and DiffProtect[10].

pared to other approaches.

6. More Visualization Results
Impersonation. To show the effectiveness of our proposed
method in impersonating different identities, we visually
compare the protected face images generated by ours
and recent methods in Fig. 4. Compared to makeup-
based methods, i.e., AMT-GAN [8], DiffAM [15] and
CLIP2Protect [13], which change the makeup styles of
the input images and intensify makeup in special parts
of the face, our method can better preserve image styles.
Compared to DiffProtect [10], which changes the facial
expressions of the input images and smooths them out, ours

preserves facial and hair details and adds perturbation only
to identity-related features.

Obfuscation. A visual comparison between images gen-
erated using a combination of impersonation and obfusca-
tion loss functions and those generated solely with the ob-
fuscation loss function is shown in Fig. 5. The results
demonstrate that the images generated with both losses si-
multaneously appear more natural and exhibit fewer distor-
tions. This suggests that incorporating an impersonation ob-
jective with obfuscation enhances the visual quality of the
generated images, producing faces that maintain more real-
istic features and preserve coherence in appearance.
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Figure 4. Visual assessment of the protected images generated by previous methods and our approach for impersonation. Target images
for each group are shown on the left side. Original images are selected from the CelebA-HQ [9] dataset.
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Figure 5. Visual assessment of the protected images generated by both impersonation and obfuscation losses and those generated with only
the obfuscation loss. The synthesized target image is shown on the left side. (a) and (d) show original images, which are selected from
the CelebA-HQ [9] dataset. (b) and (e) show protected images generated with both impersonation and obfuscation losses. (c) and (f) show
protected images generated with only obfuscation loss.

7. Limitations and Future Directions
Given an input and target image, our approach generates
the protected image in approximately 15 seconds on av-
erage, outperforming DiffProtect [10] (≈19 seconds) and
CLIP2Protect [13] (≈30 seconds). All experiments were
conducted on a single Nvidia GeForce RTX 4090. Despite
its faster performance, the protection time of our approach
can be further reduced by leveraging multiple GPUs and
parallel computing optimizations. While AMT-GAN [8]
and DiffAM [15] generate protected images in under one
second, they require re-training the entire model for each
new target identity, making them less flexible in practical
scenarios.
In future work, we plan to replace the current surrogate
model-based training paradigm, which involves iterative
image reconstruction during latent code optimization, with
a more efficient attack strategy that operates directly within
the semantic space of the UNet proposed by An et al. [1].
This shift is expected to accelerate the execution time of our
method significantly.
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