
Appendix
A. Ethical Considerations
Our work points to potential privacy threats that may occur
when parameter-efficient fine-tuning (PEFT) is applied un-
der the federated learning (FL) setup. Since (to the best of
our knowledge) privacy concerns under PEFT based FL ap-
plications are under-explored, our observations suggest an
important challenge that local data can be revealed if no ad-
ditional defense mechanism is applied. Users involved in
training might be oblivious to these risks. As a malicious
server can deploy such attacks by merely poisoning model
parameters, it is crucial to explore robust verification algo-
rithms to examine the authenticity of the models received
from the server. Furthermore, defense strategies such as
differential privacy under the PEFT setting can prevent the
server from observing the true local gradients with a small
impact on utility. We hope that our work will motivate new
research directions towards certifiable privacy, integrity, and
authenticity guarantees for PEFT mechanisms.

B. Algorithm
We provide the pseudocode of our proposed attack,
PEFTLeak, in Algorithm 1.

C. Additional Experiments
In this section, we provide additional experimental results
for our proposed framework. Unless stated otherwise, for
all the experiments below, we use a batch size 32, bottleneck
dimension r = 64 and ViT-B/16 architecture in accordance
with the experiments in Section 5.

C.1. Recovered Images for CIFAR-10
In Fig. 9, we demonstrate the recovery of a batch of 32 im-
ages from the gradient for the CIFAR-10 dataset. As we
observe, 106-out-of-128 image patches, i.e., 82.8% of the
patches are recovered.

C.2. Comparison with the Optimization-Based
Baseline

We now describe the details of the optimization-based gra-
dient inversion attack baseline. To the best of our knowl-
edge, there are no successful optimization-based attack
baselines under the PEFT setting. Reference [67] studied
the performance of the optimization-based attack from [70]
for PEFT and observed that it was not successful under the
PEFT setup. Attack from [20] improves over [70] in terms
of the reconstruction performance by taking the direction of
the gradient into consideration. Essentially, the goal is to
find a batch of images X that minimize the cosine distance
between the true gradient and the predicted gradient,

Algorithm 1: PEFTLeak
Input: Pretrained model wF , adapter parameters wA, adapter

gradients ∂Li
∂wA

of user i (victim)

Output: Recovered patches x(t,m) for t ∈ [N ],m ∈ [M ] of
user i, where N is the total number of patches and M is
the number of images in the batch

// Server: Poisoning pretrained model, wF

// (Position encoding vectors)

1 Select E(n)
pos ∼ N (0, σ) for n ∈ {0, . . . , N}

// (Linear embedding matrix)
2 Set E in (6) to 0.5ID
// (MSA layer parameters)

3 Set Wh
Q, Wh

K , Wh
V = IDh×Dh

for head h ∈ [L] ▷ Equation
(9)

4 Set bh
Q, bh

K , bh
V = 0 for head h ∈ [L] ▷ Equation (10)

5 Set WMSA = ID×D ▷ Section 4.2
// (MLP layer parameters)

6 Design weights WMLP,1,WMLP,2 according to (28), (29)
7 Design biases bMLP,1 = γ14D , bMLP,2 = −γ1D ▷ Section

4.5
// (LN1 and LN2 layer parameters)

8 Set weights wLN1, wLN2 = σ1D ▷ Sections 4.1, 4.4
9 Set biases bLN1, bLN2 to 0D ▷ Sections 4.1, 4.4

10 Send wF to the users ▷ sent once prior to training
// Server: Poisoning global adapter, wA

11 Set weights in down-projection layer to E
(t)
pos for target position

t ∈ [N ] ▷ Section 4.3
12 Design biases in down-projection layer according to (19)
13 Set weights and biases in up-projection layer to 0 ▷ Section 4.3
14 Send wA to the users ▷ sent in each training round

// User i: Local training
15 Compute loss Li(wF ,wA) for batch of images
16 Compute gradient ∂Li

wA

17 Send ∂Li
wA

to the server ▷ sent in each training round

// Server: Reconstruction from gradients

18 Recover embeddings y(t,m) for t ∈ [N ],m ∈ [M ] ▷ Equation
(24)

19 Recover patch x(t,m) for t ∈ [N ],m ∈ [M ] ▷ Equation (25)
20 Return x(t,m) for t ∈ [N ],m ∈ [M ] ▷ recovered patches

X∗ = argmin
X

F(X) (30)

such that,

F(X) ≜ 1−
〈
∆g,∆gpred

〉∥∥∆g
∥∥∥∥∆gpred

∥∥ + TV (X) (31)

where ∆g is the actual gradient received from the victim
user, ∆gpred is the predicted gradient from training on
dummy images. The total variation regularization TV(·) is
used as a standard image prior to ensure the smoothness of
the recovered image. We note that this attack considers ad-
versaries with limited capability, who do not adopt any ma-
licious tampering with the protocol, such as changing the
model parameters or architecture.

We applied this attack to our PEFT setting and stud-
ied how well this gradient matching algorithm performs



(a) Original images (b) Recovered

Figure 9. CIFAR-10 (recovered images for a batch of 32 images).

(a) Recovered from [20] (b) Recovered (PEFTLeak)

Figure 10. Comparison with optimization-based benchmark from [20] (TinyImageNet).

(a) Recovered from [20] (b) Recovered (PEFTLeak)

Figure 11. Comparison with optimization-based benchmark from [20] (CIFAR-10).

Architecture ViT-B/16 ViT-L/16 ViT-B/32

% Patches recovered 81 81 20.2 (naive) 79.6 (improved)

Table 3. Reconstruction for a batch of 32 images (TinyImageNet).

by leveraging the adapter gradients only. For this, we run
the experiments for the images in Figs. 5a (in our main
paper) and 9a from TinyImageNet and CIFAR-10 datasets
(CIFAR-100 results were already provided in Fig. 8 in
our main paper.) We demonstrate our results in Figs. 10
and 11, where we present the images reconstructed by
the optimization-based attack vs. PEFTLeak. As we ob-
serve from Figs. 10 and 11, the optimization-based attack
fails to reconstruct any of the images in the batch whereas
PEFTLeak recovers most of the images with high fidelity.

C.3. Different Model Architectures
Table 3 shows our results for ViT-L/16 and ViT-B/32 with
a batch size of 32. We observed that for a fixed embed-
ding dimension D, more encoders (ViT-L/16) can speed up
our attack. ViT-L/16 (24 encoders) recovers an image in
just 2 rounds, compared to 4 rounds for ViT-B/16 (12 en-
coders). When the number of encoders is fixed, we ob-
served an interesting relation between D and patch size
P . In ViT-B/32, each (P, P ) = (32, 32) patch flattens
to a P 2C = 3072-dimensional vector (C channels). If
D ≥ P 2C, as in ViT-B/16 (P = 16, D = 768) and ViT-
L/16 (P = 16, D = 1024), all pixels can be recovered. In
ViT-B/32, D < P 2C, limiting naive recovery to D = 768
pixels. A simple solution is then to recover an average pixel
from each (2, 2) region, yielding a lower resolution recon-



(a) Varying batch size (b) Varying r (c) Varying # adapter layers

Figure 12. Percentage of patches recovered with varying batch size, bottleneck dimension, and number of adapter layers used within a
single training round (CIFAR-10).

(a) Varying batch size (b) Varying r (c) Varying # adapter layers

Figure 13. Percentage of patches recovered with varying batch size, bottleneck dimension, and number of adapter layers used within a
single training round (TinyImageNet).

Figure 14. Recovered images from different model architectures.

struction. Fig. 14 illustrates this for a recovered sample.

C.4. Ablation Study
Varying batch size. We next demonstrate the recon-
struction performance with varying batch size, bottleneck
dimension and number of adapter layers for CIFAR-10 and
TinyImageNet dataset (CIFAR-100 results were provided in
Section 5 in our main paper). In Figs. 12a and 13a, we
observe that even for batch sizes as large as 64, 96, 128, a
notable amount of the patches are recovered.
Varying bottleneck dimension. We next report the recon-
struction rate for varying r, the bottleneck dimension within
each adapter layer. Higher value of r implies that more neu-
rons are available in each adapter layer that can be leveraged
for reconstruction. In Figs. 12b, 13b, we observe that as r

increases, more patches are recovered.
Benefits of using multiple adapter layers. For the exper-
iments in Figs. 4b, 5b and 9b, we have allocated 5 adapter
layers for the reconstruction of patches from each position.
As mentioned in Section 5, images from CIFAR-10 and
CIFAR-100 datasets are divided into 4 patches. Therefore,
for 4 patches, we utilize 20 adapter layers in total within
a single training round. For TinyImageNet, each image
is divided into 16 patches. The server aims to recover 4
patches from 20 adapter layers per training round. For this,
the server sends malicious adapter parameters to recover
patches from 4 target positions by leveraging the adapter
gradients received from the user in each round. Hence, all
the patches are recovered over 4 training rounds. In this
regard, we next demonstrate the benefit of using multiple
adapter layers in terms of attack success. In Figs. 12c and
13c, we report the percentage of patches recovered per train-
ing round. As we observe, more patches are recovered as
more adapter layers are being utilized.

We further provide the illustration of the recovered
patches in Figs. 15-20. Figs. 15, 16, and 17, demonstrate
the recovery of the patches from the first position, i.e., top-
left patch of the images from Figs. 9a, 4a and 5a. As de-



(a) 1st layer (b) 2nd layer (c) 3rd layer

(d) 4th layer (e) 5th layer

Figure 15. Recovered patches from the first position using multiple adapter layers (CIFAR-10).

(a) 1st layer (b) 2nd layer (c) 3rd layer

(d) 4th layer (e) 5th layer

Figure 16. Recovered patches from the first position using multiple adapter layers (CIFAR-100).

scribed in Section 4, the weight and bias parameters in the
adapter layers are designed such that patches from the target
position can be recovered by leveraging the adapter gradi-
ents. Patches from all other positions will be filtered out by
the activation function. We observe that by utilizing multi-
ple adapter layers, we recover most of the target patches for
this position. Moreover, in Figs. 18, 19, and 20, we demon-
strate the recovered patches from the same target position
for r = 8 in comparison with r = 64. As we observe, more
patches are retrieved from the adapter gradients when r is
increased from 8 to 64.

C.5. Robustness Against Defense Mechanisms
Fig. 21 presents the attack performance against potential
defense mechanisms, including noise addition [1], pruning
(top-K) [4, 35] and stochastic quantization [3]. Attack per-
formance is measured in terms of average LPIPS score [65]
between recovered and ground-truth images. In Fig. 21a,
we vary the standard deviation of added Gaussian noise with
respect to the gradient norm.

C.6. Attack to FedAvg
We next consider the FedAvg setup, where each user per-
forms multiple rounds of local training before sending the
gradient to the server. We again leverage the activation
structure from [17] (proposed for the FedAvg setting) in
the down-projection layer within each adapter. At each
global training round, each user performs local training for
5 epochs, and sends the local gradient to the server. We
demonstrate the reconstructed images in Fig. 22b, and ob-
serve that image patches can be recovered with high fidelity.

C.7. Reconstruction on Additional Images
In Fig. 23, we further demonstrate the reconstructed images
from a larger batch size. For this, we consider the images
from CIFAR-100 dataset for a batch of size 64. As we ob-
serve in Fig. 23, successful reconstruction of 75% of the
patches is obtained from the adapter gradients.

σ 1 2 3 5 10

Gaussian 12 30.4 52.3 77.3 85.9
Laplacian 12.5 35.1 57.8 70 92.9

Table 4. % patches recovered with different σ and distributions.

C.8. Attack Detectability
Our attack leverages the fact that users implicitly trust the
server for the pretrained model and fine-tuning parameters.
However, our malicious design may cause the users to ques-
tion the integrity of the server. As described in Section 4.3,
to recover patches from a target position, our attack sets the
weight rows to be identical in the first linear layer of the
adapter modules. To make this design more stealthy, the
server can introduce non-malicious weight rows and biases
in-between. Moreover, for position encoding, any distribu-
tion can be used if they meet the criteria outlined in (12) and
Section 4.1. Table 4 shows our results with lower standard
deviation σ across multiple distributions to improve stealth.
Even with a σ as small as 3, our attack can recover 57.8%
of the patches (batch size 32, CIFAR-100).

C.9. Reconstructed Images from the ImageNet
Dataset

In Fig. 24, we present sample images from ImageNet.



(a) 2nd layer

(b) 3rd layer

(c) 4th layer (d) 5th layer

Figure 17. Recovered patches from the first position using multiple adapter layers (TinyImageNet). None of the patches are recovered
from the 1st layer gradients.

(a) r = 8

(b) r = 64

Figure 18. Impact of bottleneck dimension r on patch reconstruction (CIFAR-10).

(a) r = 8

(b) r = 64

Figure 19. Impact of bottleneck dimension r on patch reconstruction (CIFAR-100).

(a) r = 8

(b) r = 64

Figure 20. Impact of bottleneck dimension r on patch reconstruction (TinyImageNet).



(a) Noise (b) Pruning (c) Quantization

Figure 21. Performance against mitigation strategies (CIFAR-100, batch size 32). Lower LPIPS denotes better reconstruction.

(a) Original images (b) Recovered

Figure 22. Recovered images for FedAvg with 5 local training rounds (CIFAR-100).

(a) Original images (b) Recovered (PEFTLeak)

Figure 23. Recovered images for a batch of size 64 (CIFAR-100).

(a) Ground-truth (b) Recovered
Figure 24. Recovered images (ImageNet).


	Problem Formulation
	Additional Experiments
	Recovered Images for CIFAR-10
	Comparison with the Optimization-Based Baseline
	Different Model Architectures
	Ablation Study
	Robustness Against Defense Mechanisms
	Attack to FedAvg
	Reconstruction on Additional Images
	Attack Detectability
	Reconstructed Images from the ImageNet Dataset



