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S1. Losses Derivations
Distortion Loss. If one breaks down the rate of defor-
mation tensor in Eq. (9), D it is the symmetric part of the
velocity gradient →V plus its transpose. It is called the rate
of deformation tensor which gives the rate of stretching of
elements. Since V : R3 ↑ R3, D is a 3↓ 3 matrix, it is also
related to stress tensor in continuum mechanics. We adopt
the second invariants of the deviatoric stress tensor [30]
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The second invariant equal to zero implies that there is no
shape-changing (distortional) component in the deformation
or stress. In this case, all principal stresses or strains are
equal, leading to a purely hydrostatic (isotropic) stress or
strain state [16, 53].
Stretching Loss In fact, the term is related to the (right)
Cauchy strain tensor and also related to distortion loss. As
in Eq. (12), the deformation term F→F := C is called the
Cauchy strain tensor [31]. The term F→F ↔ I := E is
called Green-Lagrange strain tensor and used to evaluate
how much a given displacement differs locally from a rigid
body displacement. Write it in gradient tensor, i.e., →V , we
have
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Therefore, Eq. (14) can be seen as projecting the rigid dis-
placement to the tangent space of point x. Even from a
different perspective, our formulation coincides with the
stretching loss in NFGP [55]. Different is we have an ex-
plicit formulation of deformation operator F.
Normal Deformation Even though our method does not re-
quire an oriented point cloud as input. If normal information
is available from the given point clouds, one could utilize
the natural property of implicit representation to add normal
deformation constraints. We follow the projection from our
stretching loss, for any vector t1 and t2 in the tangent space
of point x with normal n, then we have n(x) · t1 = 0 and
n(x) · t2 = 0. The deformation transform t1 to t↑1 = Ft,
and t↑2 = Ft2 the F is the same as in Eq. (12). Therefore,
t↑1 and t↑2 lie in the tangent space of the deformed surface
point x↑, thus, the normal in x↑, denoted as n↑ should be
perpendicular to t↑1 and t↑2, that is,

n↑ · t↑1 = 0, n↑ · t↑2 = 0 . (s.18)

Then we have

n↑ · Ft1 = 0, n↑ · Ft2 = 0 . (s.19)

This implies
F→n↑ = ωn . (s.20)

We normalized it and get the Normal Deformation Loss as
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S2. Training Details
In this section, we summarize the training efficiency of our
method and the comparison methods. We plot the average
training time (per pair) in Fig. S.7. LipMLP [32] trains the
fastest as they do not have discrete time steps during train-
ing. Our method trains as fast as [45] per pair. However,
our method can directly train on temporal sequences with-
out manually switching training pairs. In addition to that,
NFGP [55] requires more than 75 hours to train a 5-step in-
terpolation and LIMP [13] trains only on meshes with 2, 500
vertices and takes longer than our methods.
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Figure S.7. Training time visualization. We plot the rough train-
ing time with comparison methods to show the efficiency of our
methods.

LIMP Training Protocol. LIMP [13] learns a latent space
of meshes and constructs an interpolation constrained under
geometric properties. This method supports both isometric
and non-isometric deformations. However, the input meshes
are required to be in pointwise correspondence and labeled
based on stylistic classes. Additionally, a pre-processing
step is needed on the input meshes to reduce the number of
vertices to 2500 and this step is done using iterative edge
collapse [24]. The model supports sequence training and
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training for 20,000 epochs takes about 30-40 minutes for
pair training.

NISE Training Protocol. NISE [38] is a method that learns
both isometric and non-isometric deformations between two
input meshes. It relies on a pair of pre-trained SDF networks
to linearly interpolate neural implicit surfaces, which form
the foundation for modeling the deformation. In the paper of
NISE [38], the author mentioned that the method can inter-
polate along a pre-defined linear path as well. However, this
path needs to be defined per point and it can only interpolate
linearly according to the Euclidean coordinates of the points.
The method can only be trained on mesh pairs, and training
each pair, including pre-training the SDF network to fit the
input, requires approximately 4 hours for 20,000 epochs.
Excluding the pre-training time is approximately 2 hours per
pair.

NFGP Training Protocol. Training NFGP [55] requires
first training an SDF network that fits the implicit field on
the input shapes, which takes about 2 hours for 100 epochs.
After that, a set of points is defined per deformation step as
handles, along with the necessary rotation and translation pa-
rameters to transform these handle points into target points.
To be able to use NFGP [55] as a time-dependent interpola-
tion network that generates t intermediate shapes, one needs
to train the network t times and decide how the gradual de-
formation at each time step should appear. Therefore, the
process of defining handle points requires a thorough under-
standing of how to set rotations and translations to obtain
physically plausible interpolation. Moreover, visualization is
essential for selecting handles and targets from the vertices
of the meshes reconstructed from their SDF network. The
training for 500 epochs per deformation time step takes 8
hours. Thus, 50 hours — including the training for the im-
plicit network — are required for deformation with 5 time
steps.

S3. Visualizations of Quantitative Evaluated Se-
quences

In this section, we show the visual results of Tab. 2 on 4D-
Dress [54] in Fig. S.8. And the visual results of Tab. 3
on SMAL [56] dataset in Fig. S.9, to show the deformation
of non-human objects.

S4. More Visualization

We show more visualization results of our method on real-
world datasets. We show more sequences from BeHave [4]
in Fig. S.10 and Fig. S.11. We also show more visualiza-
tion of high-resolution real-world mesh interpolation on 4D-
Dress [54] in Fig. S.12.

Figure S.8. Visual results on human isometric deformation. We
show the visualization of our interpolated meshes on 4D-Dress [54].
LIMP [13] can recover reasonable movement, however, it turns the
leg in the wrong direction.

S5. Upsampling Video
We use our method to upsample sequences in BeHave [4] to
30FPS and render video for it. Please visit our project page
https://4deform.github.io/.
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Figure S.9. Visual results on non-human object deformation.
We show the visualization results for an animal data in SMAL [56].
LIMP [13] can only handle 2, 500 vertices, thus the interpolated
mesh is low-quality.



Figure S.10. Upsampling on real-world data. We show examples of the BeHave [4] sequence. Starting from a sparse set of keyframes
(1fps, colored point clouds), our method lets us interpolate the registration (first row), as well as the real Kinect point clouds (second row)
between keyframes at an arbitrary continuous resolution.



Figure S.11. Upsampling on real-world data. We show examples of the BeHave [4] sequence. Starting from a sparse set of keyframes
(1fps, colored point clouds), our method lets us interpolate the registration (first row), as well as the real Kinect point clouds (second row)
between keyframes at an arbitrary continuous resolution.



Figure S.12. Deformation on real-world mesh. We examples of the 4D-Dress [54] sequence. Starting from a sparse set of approximated
registration of SMPL model [33], our method lets us interpolate the real-world, high-resolution meshes (second row, around 40, 000 vertices)
between keyframes.
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