
Precise Event Spotting in Sports Videos: Solving Long-Range Dependency and
Class Imbalance

Supplementary Material

This supplementary presents the following details which
we could not include in the main paper due to space con-
straints:
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S1. Dataset & Implementation Details
Dataset Description

We have utilized event spotting datasets like Tennis [10],
Figure Skating (FS) [3], FineGym [6] and the SoccerNet
V2 [1] action spotting dataset to evaluate our method. Be-
low, we provide the details of these datasets.
SoccerNet V2 [1] is a large-scale dataset of soccer videos
containing 764 hours of data from 500 games, annotated
for tasks like action spotting, camera shot segmentation and
boundary detection, and replay grounding. We have utilized
the action spotting dataset, which designates 17 different
actions as events. This data is processed at 2 FPS. Each
action of this dataset is annotated with a single timestamp
as per the well-established soccer rules. There are 110,458
annotations, averaging one action every 25 seconds. Due to
the nature of events, there is an inherent imbalance among
the classes. For example, card events are much less likely to
occur than other events like fouls or throw-ins. As it can be
seen, Figure S1 (a), “Red Card” and “Yellow→Red Card”
have only a few samples, while the “Ball out of play” class
has thousands of samples.
Tennis dataset, compiled by [4], is an extension of the
dataset proposed in Vid2Player [10]. It contains 3345 clips
from 28 tennis matches (9 original + 19 new) from Wim-
bledon and US Open tournaments. The videos are either
25 or 30 FPS frames. 19 videos were used for training and

validation, whereas the remaining nine were kept for test-
ing. The events are categorized into six classes: “Player
serve ball contact”, “regular swing ball contact” and “ball
bounce” for near- and far-court. Out of the 1.3M frames
in the dataset, only 33,791 frames (2.6%) contain precise
temporal events. Imbalance can also be seen in this dataset;
the “Serve” event (both far court and near court) has signif-
icantly fewer samples than other actions (Figure S1 (b)).
Figure Skating (FS) [3] dataset contains 11 videos featur-
ing performances from the Winter Olympics (2010-2018)
and World Championships (2017-2019). All videos are 25
FPS. The original labels have been re-annotated by [4] con-
sidering four actions: take-off and landing frames of jump
and flying spins. In this dataset also, the sample count is not
uniform; both “Spin” events have significantly less number
of samples compared to the “Jump” event (Figure S1 (c-d)).
Two splits of this dataset are considered for evaluation:
• Competition Split (FS-Comp): All the videos from the

2018 season are kept for testing. So, the generalization
capability of the methods to unseen videos (for example,
change in background) could be evaluated.

• Performance Split (FS-Perf): In this split, each com-
petition is stratified across train, validation and test. This
mainly evaluates the performance of the method when the
skater changes without the unseen background situation.

FineGym [6] dataset contains 5,374 gymnastics perfor-
mances, each treated as an untrimmed video. It has 32
classes, derived from a hierarchy of action categories (e.g.,
balance beam dismount; balance beam turns). The original
annotations denote the start and end of the actions, but here,
these boundaries are considered as events: “balance beam
dismount start” and “balance beam dismount end”. Origi-
nal splits are designed for action recognition, so we use the
split proposed by the [4] for the action spotting task. There
are variations in the input video frame rates, so 50 and 60
FPS videos are resampled to 25 and 30, respectively. In
this dataset, only the “FX side salto” event has less number
of samples. In contrast, all other events have a sufficiently
large number of samples (Figure S1 (e)).

Implementation Details

In addition to the implementation details provided in Sub-
section 4.1 in the main manuscript, we have provided addi-
tional details of the proposed model applied to training on
different datasets. In one training epoch, we sample a fixed
number of clips from each video. During testing, samples
are taken using a sliding window of 128 frames with a 50%
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(e) FineGym dataset [6]. This dataset has total 32 classes, apart from ‘VT’ classes, all other classes have same number of start and end events. So, here we
show the ‘start’ events only.

Figure S1. Class-wise distributions of SoccerNet V2, Tennis, Figure Skating (i.e., FS-Comp & FS-Perf) and FineGym datasets.

overlap. Due to that, the sample size of each epoch varies
from dataset to dataset. The training configuration differs
for each dataset. Below are the specific changes in the train-
ing configuration for each dataset:

• SoccerNet V2: The training data is sampled uniformly
at random without overlap. Fifty clips are sampled from
each video in one epoch. During training, the proposed
model is trained up to 120 epochs. The frames are pro-
cessed at 398 × 224 without cropping, as cropping may
result in the loss of events occurring on the edges of the
frame.

• Tennis: The training data is sampled at uniform random.

Four clips are sampled from each video in one epoch.
Like the SoccerNet V2 dataset, the frames are processed
at 398×224 without cropping. Here, the model is trained
for 100 epochs.

• Figure Skating: The training data is sampled at uniform
random. Ten clips are sampled from each video in one
epoch. Training is conducted using frames cropped to
224 × 224. We have observed that using non-cropped
frames results in increased computation without improve-
ment in the spotting accuracy. Here, the model is trained
for 300 epochs. The same configuration has been utilized
in both FS-Comp and FS-Perf.



Table S1. Analysis of various Temporal networks on Tennis [10]
dataset test set. The metric of comparison is mAP.

Method Tennis

δ = 0 δ = 1 δ = 2

Baseline with Bi-GRU 45.34 96.10 97.70
Proposed with Bi-GRU 61.01 96.21 97.75

with Deformable Attention 53.71 88.50 97.33
with Bi-GRU 2 Layers 51.22 88.42 97.44
with Transformer (L1H8) 52.83 89.23 97.10
with Transformer (L2H8) 52.89 90.49 96.95
with Bi-LSTM 52.54 88.06 97.63
with MSTCN 59.90 95.26 97.37

• FineGym: In FineGym, the training data is sampled at
uniform random, taking 10 clips at a time from each
video. The model is trained with random crops of 224 ×
224, while during testing, we center crop the video to
224× 224. The model is trained for 100 epochs.

The model is trained on multiple GPUs with a batch size of
2 at each GPU in all datasets. The best-performing model is
chosen based on the score in the validation dataset, and the
same model generates the results. Additionally, we use the
Soft-NMS with a window size of 20 to process the results.

We reproduce the results from the author-provided
checkpoint of E2E-Spot1, COMEDIAN2, UGLF3 and T-
DEED4 methods only when the corresponding results are
not provided in their respective paper.

S2. Analysis on Different Temporal modules
In our proposed approach, we opted for the bidirectional
GRU (Bi-GRU) as the long-range dependency module in
the temporal block. The main paper shows the results of
using different networks on the SoccerNet V2 [1] dataset.
In Table S1, we present the results obtained from the Ten-
nis [10] dataset. The results align with what we have ob-
served in the main paper. There is a significant improve-
ment in the scores across all the tolerances. Compared to
the baseline method of E2E-Spot [4], which also uses Bi-
GRU as the temporal module, there is an improvement of
15.67% in the δ = 0 setting on the Tennis dataset. This
reiterates the importance of the proposed ASTRM module
and SoftIC Loss function.

S3. Further analysis on the effect of clip length
In the main paper, we analyzed the effect of clip length
on the SoccerNet V2 dataset. To further study its effect,
we performed additional experiments on the Tennis dataset,

1https://github.com/jhong93/spot
2https://github.com/juliendenize/eztorch
3https://github.com/Fsoft-AIC/UGLF
4https://github.com/arturxe2/T-DEED

Table S2. Study of various clip lengths on Tennis dataset

Method δ = 0 δ = 1 δ = 2 δ = 4

Clip length = 100 59.61 95.39 97.49 97.86
Clip length = 128 61.01 96.21 97.75 98.05
Clip length = 144 60.39 96.08 97.65 97.99

Table S3. Analysis with different random-seeds.

Proposed mAP-Tight mAP-Loose

ASTRM 67.99± 0.23 74.70± 0.40
ASTRM + ASAM 72.65± 0.01 78.40± 0.03
ASTRM + ASAM + Soft-IC loss 73.41± 0.06 78.83± 0.08

and the results are shown in Table S2. Clip length = 128
provides the best results, as observed in the main paper ab-
lations. Given that some videos in the Tennis dataset con-
tain only 160 frames, we consider clip length up to 144 for
this study.

S4. Effect of Randomness

Training a neural network involves several steps where ran-
domness plays a significant role. This starts with the initial
values assigned to the weights and includes various aug-
mentations applied to the training data. Consequently, the
outcomes are influenced by these random initial conditions.
To illustrate the impact of different initial conditions, we
conducted experiments using three different random seeds
and recorded the mean and variance of the mean Average
Precision (mAP) values, as presented in Table S3. Our re-
sults indicate that using ASAM reduces the variance, sup-
porting its optimization effectiveness.

S5. Efficiency Comparison

This paper demonstrates that our proposed method outper-
forms existing SOTA methods, especially in tight settings
with a simpler network architecture. Here, we have quanti-
tatively validated this claim in detail. In Table S4, we pro-
vide a quantitative analysis of its efficiency, specifically in
terms of the number of parameters and the computational
complexity measured in GFLOPs. For a fair comparison,
all the calculations are done from the models on their re-
spective repos with an input size of 3 × 100 × 224 × 398.
Our proposed method requires 77.49 GFLOPs and 6.46 mil-
lion parameters, showcasing a substantial reduction in both
computational complexity and model size compared to re-
cent SOTA methods [2, 4, 7–9] except E2E-Spot (RegNet-Y
200MF) [4] and T-DEED (RegNet-Y 200MF) [9]. Among
them, only COMEDIAN (ViSwin) [2] achieves comparable
results but with a significantly larger number of parame-
ters and higher computational requirements. Similarly, Spi-
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Figure S3. Per-class score comparison on δ = 1 in mAP on Tennis
and Figure Skating (i.e., FS-Comp & FS-Perf) datasets.

vak [7] and ASTRA [8] achieve similar results only in the
loose-mAP setting, even with increased parameters.

E2E-Spot (RegNet-Y 200MF), T-DEED (RegNet-Y
200MF), and our proposed method utilize similar structured
networks, but some modules differ. Consequently, the pro-
posed method has more GFLOPs than both methods. Mean-

Table S4. Efficiency Comparison in terms of GFLOPs and num-
ber of parameters of the proposed and recent SOTA methods. *
indicate that the GFLOPs value is calculated from the temporal
network only without feature extractors. Here, ASTRA model uti-
lized the features extracted from Baidu model which is made up of
5 large networks.

Methods GFLOPs
# of Parameters

(in Millions)

E2E-Spot (RegNet-Y 200MF) 39.61 4.46
E2E-Spot (RegNet-Y 800MF) 151.4 12.64
ASTRA 8.83* 44.33
Spivak 461.89 17.46
COMEDIAN (ViSwin) 222.76 70.12
T-DEED (RegNet-Y 200MF) 21.96 16.36
T-DEED (RegNet-Y 800MF) 85.58 46.22
Proposed 60.25 6.46

while, the T-DEED (RegNet-Y 200MF) has a significantly
larger number of parameters than the proposed method.
Nonetheless, our proposed method outperforms both meth-
ods significantly. This balance between efficiency and per-
formance is crucial for practical applications, particularly in
environments with limited computational resources. This
makes it an appealing choice for real-world deployments
where both computational efficiency and high performance
are essential.

S6. Per Class Score Comparison

In addition to the per-class score analysis shown in Figure
1 and Figure 4 in the main manuscript, we have included
some additional analyses. Specifically, in Figure S2, we
have presented the tight-mAP scores of the SoccerNet V2
dataset for classes that were not covered in Figure 1 of the
main paper. Additionally, Figure S3 presents the per-class
score analysis on δ = 1 setting for the Tennis and Figure
Skating (FS-Comp and FS-Perf) datasets. The per class
score of the FineGym dataset is presented in Figure S4.

In Figure S2, it is evident that the proposed method
achieves comparable performance with the COME-
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Figure S4. Per-class score comparison on δ = 1 in mAP on FineGym [6] dataset. Graph split on multiple rows for better visualization.

DIAN [2] method despite having significantly fewer pa-
rameters and lower computational complexity. While from
Figure S3 and Figure S4, it can be observed that the pro-
posed method achieves comparable performance in most of
the classes while outperforming the T-DEED [9] in many
instances.

S7. Result on non-sports dataset

In this work, we primarily focused on event spotting within
sports videos. However, our proposed method is not limited
to sports and can be adapted for non-sports datasets. To
evaluate this hypothesis, we conducted experiments using
the FineAction [5] benchmark dataset.

FineAction [5] is a large-scale temporal action localiza-

tion dataset with fine-grained labels. It contains 106 action
classes with three levels of granularity: four coarse-level ac-
tions (Household, Personal care, Socializing-Relaxing, and
Sports-Exercise) and 14 middle-level actions, in addition
to the 106 fine-level actions. For our experiments, we fo-
cused on a few middle-level action classes, as using the
fine-level classes would complicate the training process. We
tested three scenarios: activities based on plants and two
mixed environments (comprising of both plant and outdoor
classes).

Similar to FineGym experiments, we adapted the actions
for precise event-spotting. Specifically, we identified the
start and end of each event as two separate events and noted
their corresponding timestamps as the occurrence time of



Table S5. Analysis on non-sports videos under diff categories

Model Plants Mix (2 Classes) Mix (3 Classes)

δ = 10 δ = 50 δ = 10 δ = 50 δ = 10 δ = 50

T-DEED 24.82 38.58 27.42 34.67 18.85 25.71
Proposed 26.45 39.36 33.98 44.09 18.84 30.95

the event. The videos in the dataset vary in resolution; how-
ever, we only used the 720p landscape videos for the train-
ing and inference, resizing them to 224p while maintaining
the same frames per second (FPS). Under those conditions,
we selected the data and split it into training, validation,
and testing sets in a 60-20-20 ratio. We kept other training
hyperparameters consistent with those used in the Soccer-
netV2 experiments.

For a fair comparison, we retrained the T-DEED model
on the same dataset. Table S5 presents the results in
terms of mAP for different tolerance levels (δ=10, 50).
Our method, with minimal hyperparameter tuning, outper-
formed T-DEED in most cases.

S8. Limitations

In the main manuscript, we noted that our proposed method
is focused on sports events, which might give the impres-
sion of limited applicability. However, it is important to
clarify that none of the components of our method are
specifically tailored for sports videos, as validated in the
previous section. The concept of precise event spotting has
primarily been defined in relation to sports, which is why
the existing precise event spotting datasets predominantly
consist of sports videos. On the other hand, the scarcity
of datasets featuring non-sports videos has also forced pre-
cise event-spotting methods to focus on sports videos only.
Moreover, everyday events are typically characterized by
specific starting and ending times and rarely occur instanta-
neously. While we could approach the problem as detecting
the precise start and end times of events, as done for Fin-
eGym and FineAction dataset, this may not always be the
most appropriate solution for the intended application.
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