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A. Training protocol details
A.1. Datasets

The 19 datasets that we use for co-distillation are listed
in Tab. 1, and a few examples per dataset are provided
in Figs. 8 and 9. As can be seen from Tab. 1, the datasets
are quite unbalanced in size. During training, we con-
struct a batch such that it contains an equal amount of ran-
domly sampled images from the datasets associated with
each teacher, i.e. DINO-v2, Multi-HMR and MASt3R.
Access to teacher training data. For presentation clarity
and without loss of generality, in the main paper we assume
that all the data used to train all the teachers is also avail-
able for distillation. This is in practice impossible at times,
either because a subset of the dataset might not be public,
or because of their size. In such cases, one can use only the
subset of the datasets that is available, or source alternative
data across all domains. This extends beyond distillation to
the data used for finetuning.

Name Size Nature Teacher
ImageNet-19K [11, 34] 13,153,480 Real

DINO-v2Mapillary [32] 1,205,907 Real
Google Landmarks v2 [33] 4,132,914 Real

Habitat [19] 284,968 Rendered

MAST3R

ARKitScenes [10] 456,108 Rendered
Blended MVS [35] 98,937 Rendered
MegaDepth [16] 36,949 Real
ScanNet++ [36] 60,188 Rendered
CO3D-v2 [23] 185,100 Real
Map-free [3] 41,300 Real
WildRgb [1] 224,400 Real
VirtualKitti [7] 1,200 Synthetic
Unreal4K [28] 14,386 Synthetic
TartanAir [31] 136,225 Real
DL3DV [18] 208,800 Rendered

BEDLAM [6] 353,118 Synthetic

Multi-HMRAGORA [21] 14,314 Synthetic
CUFFS [4] 54,944 Synthetic
UBody [17] 54,234 Real

Total size: 20,717,472

Table 1. Datasets used for training DUNE models. The teacher
column groups the datasets which are associated with each teacher.

Sample images from all datasets. In Figs. 8 and 9, we
visualize 10 randomly sampled images from each dataset
listed in Tab. 1.

A.2. Table of hyper-parameters

A table with the set of hyper-parameters we use for training
our DUNE models are given in Tab. 2. Further details can
be found on github.
Distillation loss. Following [24], given an image x, we
minimize the combination of the cosine and smooth-ℓ1
losses between the outputs of student si = hi(f(x)) and
each teacher ti = ti(x):

Ldistil =

N∑
i=1

Lcos(si, ti) + Lsℓ1(si, ti), (1)
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Hyper-parameter Value

Encoder

Architecture: ViT-Base
Patch size: 14
Num. registers: 0
QKV bias: True
LayerScale: True
Path drop rate: 0

Projector
Architecture: TP
Num. blocks: 1
Block configuration follows encoder

Image Initial: 336× 336
resolution Fine-tuned: 448× 448
Batch size 128 per GPU
Num. GPUs 4

Optimizer
Type: AdamW
Weight decay: 3e− 2
(β1, β2): (0.9, 0.99)

Learning rate
Min: 1e− 6
Max: 3e− 4× batch-size/256
Schedule: Cosine

Data type AMP with bloat16
Training data All (DUNE-20.7M, see Tab. 1)(Tab 1 in the main paper)
Data sharing Full data sharing(Tab 2 in the main paper)
Training budget 1, 281, 167× 100 images

Table 2. Hyper-parameters used for training DUNE models.

where

Lcos(s, t) = 1− s · t
||s||2 × ||t||2

, (2)

Lsl1(s, t) =

{
0.5× ||s− t||22, for ||s− t||1 < 1,

||s− t||1 − 0.5, otherwise.
(3)

B. Details on decoder fine-tuning

MASt3R. MASt3R relies on a binocular architecture with a
Siamese ViT-encoder to encode the input images, followed
by binocular decoders and prediction head. When finetun-
ing this model, we simply replace the encoder and keep it
frozen using the publicly available code of MASt3R [15].
Given the size of the decoders and heads, we initialize
them with the released models, except for weights that have
a mismatch of size, namely the fully-connected layer be-
tween the encoder and decoder, as our ViT-Base encoder
has a smaller feature dimension than their ViT-Large one
(768 vs. 1024) as well as the output layers that outputs a
pixelwise prediction due the mismatch of patch sizes (14
vs. 16). We finetune the model on 6.5M image pairs with
AdamW on images at different resolutions. For backbone
distilled on 336×336 images, we use {448×448, 448×336,
448×294, 448×252, 448×224, 448×140}, which corre-
sponds to the same number of patches as MASt3R’s set-
ting. For backbone further distilled on 448×448 images, we
use {518×518, 518×392, 518×336, 518×294, 518×252,

518×168} which corresponds to the resolutions close to the
ones from MASt3R but that are multiple of 14.
Multi-HMR. To evaluate our model on the task of Hu-
man Mesh Recovery (HMR), we use the training framework
and public code of Multi-HMR [4]. We discard the projec-
tor modules and freeze the weights of the distilled student
model. The Human Perception Head (HPH) proposed in
Multi-HMR is used to predict HMR from the outputs of
the backbone, with two transformer blocks prepended to it.
This head is trained from scratch on the BEDLAM dataset,
using images at a resolution of 672×672. Training is done
with a learning rate of 4e−5, a batch size of 16, and a cosine
decay schedule over 200k iterations. After training, evalu-
ation is performed on the BEDLAM validation set with a
non-maximum suppression (NMS) kernel of size 3 and a
detection threshold of 0.3, following the Multi-HMR proto-
col.

Notably, this evaluation procedure favors the teacher
model, as its native resolution is 672×672, whereas the stu-
dent model is distilled on images of resolution 448×448
only due to computational constraints.
Semantic segmentation and depth estimation evalua-
tions. Semantic segmentation and depth estimation are
dense prediction tasks, both formulated as classification
tasks in this work, and solved following the simple setup
proposed in [20], also followed by the most recent related
works [22, 24]. We extract the tokens from the last output
layer of the student model and use as input to a linear pre-
diction head. For semantic segmentation, we additionally
use the Transformer Projector of the DINO-v2 teacher as
part of the frozen encoder, and train a linear head on top
of the projector. to predict class logits from a patch token.
This yields a 32×32 logit map that is upsampled via bilinear
interpolation to the original image resolution of 512×512.

For depth estimation, we first upsample patch features
by a factor of 4 via bilinear interpolation, concatenate them
along the feature dimension with the CLS token, and use
these vectors as input to a linear layer. Depth prediction is
treated as a soft classification task following [5]; we use 256
uniformly distributed bins.

C. Attention map visualizations
In Fig. 2 of the main paper, we present a visualization of
the encoder outputs from the teacher models and our stu-
dent model using principal component analysis (PCA). This
analysis is conducted on three randomly selected images
from the Map-free and BEDLAM datasets. The visualiza-
tion reveals that patch similarity patterns differ across the
teacher models, while our student model appears to simul-
taneously attempt to capture and integrate multiple patterns
from the different teachers.

To further investigate this phenomenon, we visualize
in Fig. 2 the attention probabilities obtained at the last en-



coder layer of the student model, as well as those of the
three teacher-specific Transformer Projectors (TP) attached
on top during distillation. More concretely, given an image
of size 448×448, we extract the 32×32 attention map for all
the 1024 patches (the patch size for the student model is 14).
In order to see the most prototypical attention patterns, we
flatten all patch attentions and cluster them via k-Medoids
(k = 9), with the version available in Scikit-Learn.1

We indeed observe different attention patterns for the last
encoder block and the Transformer projectors. For instance,
the projector for MASt3R yields much more localized atten-
tions regardless of the input image compared to the projec-
tor for DINO-v2, whose attentions have much wider spatial
extent. We also notice that the projector for Multi-HMR fo-
cuses mainly on the human, when there is one in the image
(see Fig. 2).

Looking at the attentions of the last layer of the encoder,
however, we observe once again that it seems to try to cap-
ture a mixture of the attentions of the three projectors: They
exhibit a strong locality as in MASt3R, a spatial extent sim-
ilar to DINO-v2, and also a strong preference for humans.

D. Additional Results

In this section, we provide additional evaluations for DUNE
models. We report results for MASt3R with a DUNE en-
coder on multi-view depth estimation and camera pose re-
gression tasks, as well as semantic segmentation perfor-
mance on additional datasets and comparisons to 2D-to-3D
distillation methods. Furthermore, we evaluate our models
on Feat2GS, a recently proposed benchmark for assessing
models’ 3D awareness in geometry and texture via novel
view synthesis, and present extended qualitative results.

D.1. Multi-view depth evaluation

We follow the protocol of [26] and evaluate multi-
depth stereo depth evaluation on KITTI [12], DTU [2],
ETH3D [25], Tanks And Temples [14] and ScanNet [9]. We
report the Absolute Relative Error (rel) and the Inlier Ratio
(τ ) with a threshold of 1.03 on each test set, as well as the
averages over all test sets. To extract depth prediction of
one image, we follow DUSt3R [30] and extract depthmaps
as the z-coordinate of the predicted pointmaps; and when
multiple pointmaps are available for one image from differ-
ent image pairs, we simply rescale the predicted depthmaps
and average them with weights given by the predicted con-
fidence values. Results are reported in Table 3. DUNE per-
forms similarly to MASt3R and DUSt3R on this task over-
all, while using a smaller ViT-Base image encoder.

1https://scikit-learn-extra.readthedocs.io/
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Figure 1. Evaluating DUNE on the Feat2GS benchmark. The
spider plot shows comparisson of different encoder models. The
Feat2GS benchmark [8] evaluates Novel View Synthesis as a
proxy for 3D awareness. In all metrics, larger distance to the cen-
ter indicates better performance. Note that models vary in size:
RADIOv2 is a ViT-H, MASt3R a ViT-L and DINO-v2 and DUNE
a ViT-B.

D.2. Multi-view camera pose regression evaluation

Following the protocol of [15, 29], we evaluate on the task
of multi-view pose estimation on the CO3Dv2 [23] and
RealEstate10K [38] datasets using sequences of 10 images.
Matches obtained as output of the MASt3R decoder and
head for an image pair are used to estimate Essential Ma-
trices and relative pose. We report the Relative Rotation
Accuracy (RRA) and Relative Translation Accuracy (RTA)
on image pairs at a threshold of 15°, as well as the mean
Average Accuracy (mAA30), i.e., the area under the accu-
racy curve of the angular differences (RRA@30, RTA@30).
Results are reported in Table 4. DUNE performs on par
with DUSt3R and MASt3R on the object-centric Co3Dv2
dataset, while it outperforms them on the more challeng-
ing RealEstate10K dataset. Once again, DUNE uses a ViT-
Base encoder while DUSt3R and MASt3R are based on a
ViT-Large encoder.

D.3. Evaluating DUNE on the Feat2GS benchmark

In Fig. 1 we compare different encoder models in the
Feat2GS benchmark [8]. The Feat2GS benchmark has three
modalities, i) Geometry: When only geometry parameters
are predicted from features and texture is free-optimized for
Novel View Synthesis. ii) Texture: When only the texture
is predicted from encoder features and the geometry is free-

https://scikit-learn-extra.readthedocs.io/


Method Encoder KITTI ScanNet ETH3D DTU T&T Average
rel. ↓ τ ↑ rel. ↓ τ ↑ rel. ↓ τ ↑ rel. ↓ τ ↑ rel. ↓ τ ↑ rel. ↓ τ ↑

DeepV2D [27] Hourglass 10.00 36.20 4.40 54.80 11.80 29.30 7.70 33.00 8.90 46.40 8.60 39.90
DUSt3R [30] ViT-Large 5.88 47.67 3.01 72.54 3.04 75.17 2.92 73.94 2.93 78.51 3.56 69.56
MASt3R [15] ViT-Large 3.54 65.68 4.17 65.22 2.44 82.77 3.46 66.89 2.04 87.88 3.13 73.69
DUNE ViT-Base 4.88 50.76 4.24 59.68 2.48 77.97 2.69 75.63 2.60 79.19 3.38 68.65

Table 3. Multi-view depth evaluation with the absolute relative error (rel) and the inlier ratio (τ ) on several test sets, and the average
across all test sets in the last column. DeepV2D uses ScanNet in the training set, explaining its better performance on this dataset. DUNE
uses a ViT-Base encoder while DUSt3R and MASt3R a ViT-Large encoder.

Method Encoder Co3Dv2 ↑ RealEstate10K ↑
RRA@15 RTA@15 mAA(30) mAA(30)

DUSt3R [30] ViT-Large 93.3 88.4 77.2 61.2
MASt3R [15] ViT-Large 94.6 91.9 81.8 76.4
DUNE ViT-Base 92.2 90.7 78.8 79.9

Table 4. Multi-view pose regression evaluation on the CO3Dv2 [23] and RealEstate10K [38] datasets with 10 random frames. DUNE
uses a ViT-Base encoder while DUSt3R and MASt3R a ViT-Large encoder.

Model Cityscapes NYUv2 ScanNet Avg.
(mIoU ↑) (mIoU ↑) (mIoU ↑) (mIoU ↑)

Pri3D [13] 56.3 54.8 61.7 57.6
MASt3R [15] 58.9 60.2 57.0 58.7
DUNE (no proj.) 65.6 66.1 61.2 64.3
DUNE 70.6 68.2 65.2 68.0

Table 5. Additional semantic segmentation evaluations. As de-
scribed in the paper, for improved segmentation performance we
can use the DINO teacher projector as part of the frozen encoder,
and learn a linear classifier on top.

optimized. And iii) All: When both geometry and texture
are predicted from features. Our DUNE encoder leads to
the best performance when All the parameters are predicted
from features (to our understanding the most challenging
setting) and leads to the largest area over all settings and
metrics. For more detailed results, we also present Tab. 7
with per-dataset evaluations of all metrics and modalities.
While all encoders use a ViT architecture, they vary signif-
icantly in size, mainly due to the absence of ViT-B models
for certain methods. Namely, RADIOv2 only has a ViT-H
model open-sourced and MASt3R a ViT-L, DINO-v2 and
our model DUNE are ViT-B. Thus, the fact DUNE is obtain-
ing the overall best performance compared to much larger
models is even more remarkable.

D.4. Comparison to 3D-to-2D distillation and 3D-
uplifting methods

In Tab. 5, we report semantic segmentation evaluations on
three datasets, comparing DUNE to Pri3D [13] (a 3D-to-2D
distillation method) and MASt3R. For DUNE, we present
results using the encoder outputs directly, DUNE (no proj.),

Model NYUv2
(RMSE ↓)

FiT-3D [37] 0.380
DUNE 0.358

Table 6. Comparisson to Fit-3D on monocular depth.

and with the DINO-v2 projector applied after the encoder,
DUNE. In all cases, only a linear layer is trained to predict
patch labels. DUNE significantly outperforms both Pri3D
and MASt3R.

In Tab. 6, we evaluate depth estimation performance on
NYUv2, comparing DUNE to FiT-3D [37], a recent method
that enhances DINO-v2 features for 3D tasks. DUNE
achieves substantially better performance than FiT-3D.

D.5. Qualitative comparisons of teacher outputs to
DUNE

MASt3R. In Figs. 3 to 5 we present qualitative results for
MASt3R and our student side-by-side. We see that the stu-
dent clearly improves over the teacher in some cases.
Multi-HMR. In Figs. 6 and 7 we present qualitative results
for images randomly sampled from the bedlam validation
set, comparing the outputs of the student and teacher. Both
models achieve results of comparable visual quality.
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Figure 2. Visualization of attention maps. Given an image of resolution 448× 448 (1st column), we extract using our student model the
attention probability map (of size 32× 32) for each patch from either the last encoder layer or the Transformer projector for each teacher.
Then, we flatten each map and run k-medoids clustering with k = 9, and visualize centroids.



Input images Student output Teacher output

Figure 3. Qualitative results for the MASt3R teacher and our student. Each row presents two input images and corresponding 3D
reconstructions. Images were sampled from the Niantic dataset. With a red square, we highlight regions where our student seems to
outperform the teacher.
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Figure 4. Qualitative results for the MASt3R teacher and our student. Each row presents two input images and corresponding 3D
reconstructions. Images were sampled from the Niantic dataset. With a red square, we highlight regions where our student seems to
outperform the teacher.
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Figure 5. Scene reconstructions from longer input sequences for the MASt3R teacher and our student. With a red square, we
highlight regions where our student seems to outperform the teacher.
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Figure 6. Qualitative Human Mesh Recovery results. Qualitative comparison of outputs between teacher and student. Images sampled
in the validation set and sorted by alphabetical order. The two models produce outputs of comparable visual quality.
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Figure 7. Qualitative Human Mesh Recovery results (continued). Qualitative comparison of outputs between teacher and student.
Images sampled in the validation set and sorted by alphabetical order. The two models produce outputs of comparable visual quality.
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Figure 8. Visualization of random samples from datasets. We visualize 10 randomly sampled images from each dataset listed in Tab. 1.
See Fig. 9 for the visualization of the remaining datasets.
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Figure 9. Visualization of random samples from datasets (continuation of Fig. 8). We visualize 10 randomly sampled images from
each dataset listed in Tab. 1. See Fig. 9 for the visualization of the remaining datasets.
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