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Supplementary Material

1. Experimental Setup Details
1.1. Details of Datasets

To validate the performance of our proposed method, we
conduct experiments on four publicly available color MQA
datasets: Nehmé er al. [6], SITU-TMQA [1], TSMD [9],
and CMDM [7]. The Nehmé er al. dataset is the largest
public dataset of 3D textured meshes, containing 55 source
meshes distorted by a mixture of geometric and color dis-
tortions to obtain 3000 distorted meshes. The SJTU-TMQA
dataset consists of 21 reference and 945 distorted textured
meshes. Distorted meshes were generated through geo-
metric or color distortions or a combination of both. The
TSMD dataset includes 39 source 3D textured meshes (ex-
cluding 3 source meshes as they were not publicly avail-
able: “Mitch”, “Nathalie”, and “Thomas”), each distorted
at five levels with a combination of geometric and color
distortions, resulting in a total of 195 distorted meshes. Fi-
nally, the CMDM dataset consists of vertex-color meshes,
with 5 source meshes each subjected to geometric or color
distortions, resulting in 80 distorted meshes. Mean opin-
ion scores (MOS) were computed and reported as ground
truth quality labels for all distorted models across the four
datasets, based on subjective evaluations from 4513, 73, 74,
and 72 study participants, respectively. In total, the four
datasets encompass a wide variety and strength levels of
geometric and color distortions. We note that the TSMD
and SJITU-TMQA datasets have overlapping source meshes
which were excluded from the training set (TSMD dataset)
in our generalization test.

1.2. Implementation Details

We use Adam optimizer [3] with the default 1e~> weight
decay and le~* initial learning rate that is gradually re-
duced to 1e~® with cosine annealing scheduler [4]. The
default batch size is set to 8, and the model is trained for
15 epochs by default. The loss balance term A is set to 1.
During training and testing on the CMDM dataset, we skip
the base encoder and directly initialize the feature graph
with raw vertex color, normal, and position values as vertex-
color meshes lack 2D texture maps and UV mapping data.
To allow for faster training and larger batch sizes given the
limitations of our GPU (NVIDIA V100 32GB), we imple-
ment viewpoint dropout, where we randomly select two out
of six camera viewpoints in each training iteration and only
render those two projections.

Data Augmentation. We use camera angle augmentation in

training to enhance the model’s robustness and generaliza-
tion capabilities. Specifically, we set the original azimuth
and elevation angles as the mean of a normal distribution
with a standard deviation of 22.5° and sample new azimuth
and elevation angles in each training iteration. We also em-
ploy flip augmentation on patches extracted from 3D feature
and colored projections.

1.3. Details of Evaluation Metrics

To compare the performance of different MQA methods, we
employ two mainstream evaluation criteria: the Spearman
rank-order correlation coefficient (SRCC) and the Pearson
linear correlation coefficient (PLCC). SRCC measures pre-
diction monotonicity, while PLCC evaluates prediction ac-
curacy [2]. The PLCC score is calculated by using a logistic
non-linear fitting method to align the predicted scores with
the ground truth scale [2]. Higher SRCC and PLCC abso-
lute values signal a higher correlation between MOS and
predicted quality scores and hence a better performance.

2. Further Ablation Studies

We perform additional ablation experiments on Nehmé et
al. dataset [6].

2.1. Cross-attention Mechanism

We perform further ablation studies to highlight the im-
pact of the cross-attention mechanism. Specifically, given
the encoded 3D surface representation f,,, and the textural
representation f;, we replace the proposed cross-attention
mechanism with: (1) addition; (2) weighted addition of
fm and f;, where we learn the weights using a convolu-
tional block that takes the two representations as input; (3)
concatenation; (4) elementwise multiplication; and (5) self-
attention of f,, and f; followed by concatenation. Table 1
presents the results. We can observe that all replacements
result in significant drops in performance. This highlights
the effectiveness of the proposed cross-attention mechanism
in capturing interactions between 3D geometry and textural
representations of the mesh, emphasizing the importance of
these texture-geometry interactions for achieving accurate
MQA.

2.2. Data Augmentations

We also conduct experiments to measure the importance of
camera angle and flip augmentations in the method’s per-
formance. Table 2 presents the results of excluding each of
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Figure 1. HybridMQA clearly outperforms Graphics-LPIPS [6] in gMAD competition [5]. Columns one and two showcase results with
Graphics-LPIPS fixed at low and high quality, respectively, while columns three and four display results with HybridMQA fixed at low
and high quality. In each column, the left objects are the references, while the right ones are the distorted meshes. The most perceptually

important viewpoint of each object is selected for visualization.

Configurations | SRCC  PLCC

addition: f,, + f: 0.842  0.842
weighted addition: fr, +w © f: 0.846  0.861
concat.: f, ® fi 0.845  0.857
multiplication: f,, © ft 0.848 0.849
self-att. + concat.: SA(f) @© SA(f:) | 0.852  0.857
cross-attention (proposed) 0.892 0.897

Table 1. Ablation on cross-attention mechanism on Nehmé et al.

the two data augmentations. We observe that both data aug-
mentations improve performance, with camera angle aug-
mentation having a more pronounced effect.

Angle Aug.  Flip Aug. | SRCC  PLCC
v - 0.876  0.883
- v 0.857  0.857
v v 0.892  0.897

Table 2. Ablation on data augmentations on Nehmé et al.

2.3. Viewpoint Dropout & Batch Size

We conduct further experiments to evaluate different config-
urations of viewpoint dropout and batch size, as introduced
in Sec. 1.2. Specifically, we evaluate three configurations:
randomly selecting two or four viewpoints in each training

iteration or using all six viewpoints (no dropout). These
configurations are tested across batch sizes of 2, 4, and 8.
We note that the largest possible batch size varies depend-
ing on the number of viewpoints: 8 for two viewpoints, 4 for
four viewpoints, and 2 for six viewpoints. Table 3 presents
the results. We can see that performance improves as the
batch size increases for each viewpoint configuration. No-
tably, the best performance is achieved with two viewpoints,
which allows for a batch size of 8—the largest among the
tested configurations. This demonstrates the effectiveness
of the viewpoint dropout mechanism.

NAN, | 2 4 8

2 Views | 0.837/0.844  0.864/0.873  0.892/0.897
4 Views | 0.859/0.867  0.866/0.873 OOM

6 Views | 0.838/0.846 OOM OOM

Table 3. SRCC/PLCC results of the ablation on the number of
viewpoints and batch sizes in training on Nehmé e al. N, and
Ny, denote the number of viewpoints and batch size, respectively.
OOM stands for out of memory.

3. Further Qualitative Results

3.1. gMAD Competition

We perform gMAD competition [5] to qualitatively com-
pare the performance of HybridMQA with Graphics-LPIPS



[6]. gMAD competition identifies 3D meshes that one
method estimates to be of similar quality, while the other
method rates them as having significantly different qual-
ity. Through this competition, at least one of the meth-
ods will be discredited due to producing quality judgments
that do not correlate with human opinions. We perform the
gMAD competition on the SJTTU-TMQA dataset [1], where
we gather quality judgments of the two methods on all val-
idation sets of the 5-fold cross-validation test.

Figure 1 presents the results of the competition, where
HybridMQA clearly outperforms Graphics-LPIPS. As we
can see, Graphics-LPIPS judges the 3D meshes in the first
column (pottery vessel and watermelon) to be of similarly
low quality. This is clearly in contradiction with human
judgments as well as HybridMQA predictions. The sec-
ond column shows a similar trend: HybridMQA predic-
tions align with human judgments, while Graphics-LPIPS
incorrectly rates the girl 3D mesh as having high quality.
We then switch the roles of the two methods in the third
and fourth columns. In column three, Graphics-LPIPS as-
signs higher quality prediction to the girl compared to the
bread. However, both 3D meshes are severely contaminated
by JPEG compression [1] and judged by human viewers to
be of similarly low quality. HybridMQA successfully rates
the two meshes as having poor perceptual quality. Simi-
lar conclusions can be made in the fourth column, where
HybridMQA accurately assigns high quality scores to both
meshes. These results demonstrate the clear superiority of
HybridMQA over Graphics-LPIPS in colored MQA.

3.2. GradCAM on meshes

Figures 2 and 3 provide additional examples of Grad-
CAM [8] applied to graph features in the model branch.
The highlighted regions successfully identify noticeable ge-
ometrical artifacts that align well with human perception.
This showcases the model branch’s effectiveness in captur-
ing geometry-aware quality representations.

3.3. GradCAM on Cross-attention

Figure 4 provides additional examples of GradCAM [8] ap-
plied before and after cross-attention. The two branches
concentrate on distinct regions, with the model branch em-
phasizing geometric artifacts. Through cross-attention, the
framework effectively identifies and focuses on perceptu-
ally important regions by exploring interactions between
geometry and texture. This demonstrates the effectiveness
of our hybrid method in exploiting interactions between
representations learned in texture and model branches.
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Figure 2. More GradCAM [8] results on meshes.
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Figure 3. More GradCAM [8] results on meshes.
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Figure 4. More GradCAM [8] results on cross-attention.
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