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Supplementary Material

A. Comparison with State-of-the-Art

In Tab. 4, we compare our method against many state-of-
the-art methods across a range of important categories. We
show that our model is the only one that is real-time, ani-
matable, fast to fit and can model the back of the head using
just a single camera for data.

B. Implementation Details

Identity codes, z, and Gaussian features, f , are 512 and 8
dimensional, respectively. We initialize with a UV map of
512× 512 pixels, resulting in 187,779 Gaussians. The sup-
plementary material details our decoder network D’s archi-
tecture. For all parameters, we optimize using the Adam
optimizer [24]. The canonical Gaussians are optimized us-
ing the learning rates from the original implementation of
3D Gaussian Splatting [21]. We optimize z and D with a
learning rate 0.0002. We set the values of the loss func-
tion weights as follows: λ1 = 0.8, λSSIM = 0.1, λα =
0.2, λpercept = 0.5, λσ = 0.01 and λµ = 0.01 for the face
and 0.0001 for the scalp. Prior network training took 4 days
and was performed using 4×A100’s with a batch size of
8 for 250 epochs. The fitting process uses 500 steps for
stages 1 and 2. We use 100 steps for stage 3. The whole fit-
ting process takes 10 minutes on an NVIDIA Geforce 4090
RTX GPU.

C. Further Results

We show further examples of self-reenactment, wherein we
take an unseen video of the subject and use it to drive their
avatar. We show full 360◦ renderings of the head. The
results are shown in Fig. 9 and Fig. 11. Despite having
never seen the back of an actual person’s head, our model
produces plausible results. We also show cross-identity re-
enactment, taking a video from one Avatar to animate sev-
eral others. This is demonstrated in Fig. 9 and Fig. 10.
Video versions of these results are also shown in our sup-
plemental video.

D. Latent space controllability

To demonstrate that our prior model learns a controllable
latent space, we propose a simple method for finding direc-
tions, dk, in the latent space that are semantically meaning-
ful. We then demonstrate that adding or subtracting those
direction from a given identity’s latent vector, zj , leads to
the desired changes in the person’s appearance. The results
of this process are shown in Fig. 12.

To learn dk for a given semantic feature, we group our
training data into samples that have this feature and sam-
ples that do not have it. As our training data is synthetic
and extensively labeled, doing so is a matter of checking
the metadata of the samples. We then take a pre-trained
prior model and extract the zj for each training sample. Fi-
nally, we train a Linear Support Vector Machine [15] that
classifies the training data samples into ones that have the
semantic feature and ones that do not have it, given the sam-
ple’s zj . The direction, dk, estimated by the Linear SVM is
a vector orthogonal to the hyperplane that separate the two
groups in the latent space of the prior model. Thus, adding
dk to a sample’s latent vector, zj , should move it closer to
samples that have the feature, and subtracting it should have
the opposite effect.

We evaluate this approach on three features:

1. Age - this corresponds to the age of the person whose
facial texture was used in the training data sample. The
SVM here was learned to classify age ≥ 45 into a sepa-
rate group from age < 45.

2. Facial hair - here, the SVM was learned to classify sam-
ples with facial hair separately from samples with no fa-
cial hair.

3. Head hair - here, the SVM separated samples with long
hair from samples with short hair.

The results of the evaluation are shown in the supplemen-
tary video as well as in Fig. 12, where each column demon-
strates one of the features we control.

We also show the effects of each stage of the fitting pro-
cess in Fig. 13, as discussed in Sec. 5.5.

E. MLP Architecture

Here, we give more detail about the architecture of our MLP
Decoder, D. The network takes each 8-dimensional Gaus-
sian feature, fi, as input and concatenates them with the
512-dimensional vector, zj, for the identity of the Avatar.
This gives a 512-dimensional vector. These inputs are then
passed through six linear layers with an output dimension-
ality 256. After this, the network separates into separate
branches for position (µ), scale (σ), rotation (r), color (c)
and opacity (o). Each branch has one linear layer with out-
put dimension 256, followed by a final linear projection to
the relevant shape for that attribute. Each linear layer, ex-
cept the final projection, is followed by the ReLU activation
function. Weight normalization is used on each layer. We
visualize this architecture in Fig. 14



Figure 9. Self/Cross Reenactment: We show examples of our model for self-reenactment (top) and cross-identity (bottom). The model
is fit using a frontal view video only (frame with a gray background). Despite never seeing the back of a real person’s head, we still obtain
good-quality results (frames with a black background). More examples are in Fig. 1 and the supplementary.

Method Real-time Animatable Single Camera ±90◦ Rendering Back of the Head Fast Fitting Models Hair

Athar et al. [1] ✓ ✓ ✓ ✓ ✗ ✓ ✗
Cao et al. [6] - ✓ ✓ ✓ ✗ ✗ ✗

Mihajlovic et al. [31] ✗ ✓ ✗ ✓ ✗ ✗ ✓
Grassal et al. [13] - ✓ ✓ ✗ ✗ ✗ ✓
Zheng et al. [55] ✗ ✓ ✓ ✗ ✗ ✗ ✓

Bharadwaj et al. [2] ✗ ✓ ✓ ✓ ✗ ✓ ✓
Zielonka et al. [57] - ✓ ✓ ✗ ✗ ✓ ✓

Hong et al. [19] ✓ ✓ ✓ ✗ ✗ ✓ ✓
Xiang et al. [47] ✓ ✓ ✓ ✗ ✗ ✓ ✓
Zheng et al. [54] ✗ ✓ ✓ ✓ ✗ ✗ ✓

Xu et al. [50] ✓ ✓ ✓ ✓ ✗ ✓ ✓
Buehler et al. [4] ✓ ✓ ✓ ✓ ✗ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 4. A Table detailing the comparisons between our work and related state of the art works. Our model is the only one that is real-time,
animatable, fast to fit and can model the back of the head using just a single camera for data. A ✓means that a model meets a given criteria,
a ✗that it doesn’t and a − that it is not stated. We define real-time as over 25fps and fast fitting as under an hour.

Subject Test Cameras Subject Test Cameras

36

221501007
222200040
222200044
222200046

37

221501007
222200040
222200044
222200045

57

221501007
222200040
222200044
222200046

74

221501007
222200040
222200042
222200044

100

221501007
222200039
222200042
222200045

145

221501007
222200042
222200044
222200045

165

221501007
222200042
222200044
222200045

251

221501007
222200042
222200044
222200045

Table 5. Cameras selected as the most extreme view for each sub-
ject. The selection was performed empirically.

F. Experimental Setup

Here, we discuss the exact setup of the experiments in the
main paper. Recall we consider three experimental setups:
Monocular, Single Frame and Multi Camera.

Monocular. For each training subject, we used
the following sequences as training data: EMO-1-
shout+laugh, EMO-2-surprise+fear, EMO-3-angry+sad,
EMO-4-disgust+happy, EXP-2-eyes, EXP-3-cheeks+nose,
EXP-4-lips, EXP-5-mouth, EXP-6-tongue-1, EXP-7-
tongue-2, EXP-8-jaw-1, EXP-9-jaw-2. For all subjects ex-
cept 57, the camera 222200037 was selected as the most
frontal, for subject 57 this was 222200038. These are the
cameras we used in training. We subsample every other
frame.

Single Image. For each training subject, we used the
first frame of the sequence EMO-1-shout+laugh for train-
ing data. For all subjects except 57, the camera 222200037
was selected as the most frontal, for subject 57 this was



Figure 10. Additional Cross Reenactment Results. We show several more examples of cross-reenactment. We use the input image on
the left to drive the avatars on the right. Each Avatar is trained in the Monocular Setting.

222200038. These are the cameras we used in training.

Multi Camera. For each training subject, we used
the all 16 Cameras from following sequences as training
data: EMO-1-shout+laugh, EMO-2-surprise+fear, EMO-
3-angry+sad, EMO-4-disgust+happy, EXP-2-eyes, EXP-3-
cheeks+nose, EXP-4-lips, EXP-5-mouth, EXP-6-tongue-1,
EXP-7-tongue-2, EXP-8-jaw-1, EXP-9-jaw-2. In order to
reduce the size of these datasets, we sub-sampled every 10th
frame, effectively taking each video at 7fps.

Testing. Testing on all subjects was performed using the
FREE sequence, which has no overlap with any of our train-
ing sets. We used cameras as shown in Tab. 5. For the

main quantitative results, we subsample every 5th frame to
reduce computational overhead. For generating the qualita-
tive videos we use every frame of the FREE sequence.

G. Three Frame Model

Some other few-shot Avatar models (e.g., [4, 5]) address a
related but different experimental setup using three frames,
one frontal facing, one from the left and one from the right.
While these models are not available for comparison, we
replicate their setup here. For this, we select one image
from the front, left and right of a model. We show some
of the results in Fig. 16. It can be seen here that our model
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Figure 11. Additional Self Reenactment Results. We show several more examples of self-reenactment with 360◦ rendering. We show
models fit to a single image (Top), a monocular video (Middle) and multiple views (Bottom). In each case, the back of the head is never
included in the fitting data.

performs somewhat better on novel expressions from one of
the training views (the left and right columns) and has sig-
nificantly fewer artifacts on a novel view (middle column).

H. User Study

For our user study, we ask participants to rate the quality
of each method. We show each method the FREE sequence
played from the four extreme test cameras in Tab. 5. Each
participant is shown each combination of method and train-
ing setting (Monocular, Single Frame and Multi-Camera)
for an individual subject, meaning a total of 13 images

per user (Four methods times three settings plus the Sin-
gle Frame setting for ROME [22]). Images are shown in a
grid of two-by-two using each of the four camera angles.
We do this for each of the eight test subjects we have run
evaluation on, with users being assigned one of these sub-
jects at random. Video order is also randomized to prevent
bias. We conducted the user study with 40 participants us-
ing Amazon’s Mechanical Turk. The results are shown in
Tab. 1 and Tab. 2.
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Figure 12. We demonstrate that the latent space learned by our prior model is controllable by finding directions in it that correspond to
semantic features such as age, facial hair and hair length.

Figure 13. Examples showing how the three stages in our fitting
process resolve the domain gap of the synthetic prior. Stage 1
(Top) optimizes within the prior, Stage 2 (Middle) finetunes the
MLP, D, and Stage 3 (Bottom) refines the individual Gaussians.
Note the beard and eyes.
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Figure 14. The architecture of our MLP decoder D. f and z are
concatenated and passed through 6 linear layers with output size
256. The network then splits into per-attribute branches. Each
block represents a linear layer followed by ReLU and using weight
normalization.

I. Ablations

We use subjects A, B, and C for our ablation study. We con-
sider the monocular setup described in Appendix F. In ad-
dition to the qualitative results displayed in Tab. 3, we also
show the results of our ablation study qualitatively. Fig-
ure 15 shows the effect of training our prior on differing
numbers of subjects, ranging from using no prior, to using
the complete 1K subjects. In each case, we select all frames
from the first N training subjects in the synthetic training
dataset for a prior with N subjects. Figure 15 also shows the
effect of using a different number of Gaussian primitives in
the model. Here, we use varying UV map resolutions for the
initialization (see Sec. 3.4); we consider maps of resolution
64 × 64 (2926 Gaussians), 128 × 128 (11, 758 Gaussians),



Figure 15. Ablations: We show the qualitative effect of using differing numbers of subjects to train the prior (top) and different numbers
of Gaussians (bottom).

Figure 16. Qualitative comparisons of our method with existing
state-of-the-art in the Three Image Setting, using the top 3 images
as input. We show both novel expression and novel view synthesis
in this setup.

Figure 17. The training loss curves for λpixLpix + λpercepLpercep

with (blue) and without (orange) the canonical Gaussians. Note
the improved training stability and better overall loss.

256 × 256 (46, 928 Gaussians) and our full model using
512× 512 (187, 776 Gaussians).

Canonical Gaussians: In addition to the ablations shown
in the main paper, we also validate our claim that canonical
Gaussians improve training stability. To show this, we plot
the image space loss curves for λpixLpix + λpercepLpercep in
Fig. 17.

J. Ethical Concerns

We recognize the potential for misuse of our model. We feel
strongly about preventing this. We are actively researching
watermarking methods for avatars and metadata labeling



Figure 18. A comparison of our method (Right) compared to
Cafca [4] (Middle), using the input image on the left. Our model
performs better on the side of the head, such as on the ear, while
being thousands of times faster to render. Our model can also be
animated, while Cafca cannot.

methods, such as the C2PA Initiative. We are also consid-
ering systems for likeness management, for example, only
allowing a single account to operate an avatar. Before de-
ploying any avatar system using our method, we will con-
sult a wide range of stakeholders to mitigate the possibility
of harm through our model.

Our model has advantages over others that have built pri-
ors over non-synthetic data. If we expose our prior to a
user training their avatar, we do not run the risk of dataset
distillation attacks. This means that there is no risk of pri-
vacy violations wherein an adversary could obtain personal
data about subjects that have been used to train the prior.
This also helps avoid legal issues around GDPR and con-
sent. There is no chance of a subject withdrawing consent
and requiring our prior to be retrained or detained.

K. Comparison to Cafca
Cafca [4] is a NeRF-based synthetic prior model that shares
several similarities with our work. However, there is some
crucial differences. Their method is only capable of model-
ing static expressions and cannot be animated. Furthermore,
rendering for Cafca takes 20 seconds per frame on a 4 TPU
machine. Our model, conversely can be freely animated and
rendered at 70fps on a much more available NVIDIA 4090
RTX GPU. Despite our models much faster rendering time,
we are able to achieve a similar level of quality, with our
model better capturing the ear and back of head detail, but
not quite getting as much high-frequency detail. A com-
parison can be seen in Fig. 18. As Cafca is not publicly
available, we take their results directly from their project
page.
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