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A. Experimental Protocol

A.1. Training Protocol of GenieRedux and
GenieRedux-G.

The architecture and training parameters of the Tokenizer
and the Dynamics module of GenieRedux-G are shown re-
spectively in the Tab. 1 and Tab. 2. GenieRedux shares
those choices, with the addition of LAM defined as in Tab.
3. For the purpose of the case study, we use 7 latent actions.
Training parameters can be seen in Tab. 4.

We train the Tokenizer on 8 A100 GPUs for 72k itera-
tions, with batch size 112 and patch size 4, on a dataset of
all 483 environments (50 sessions per environment obtained
with a random agent).

Component Parameter Value
Encoder num blocks 8

d model 512
num heads 8

Decoder num block 8
d model 512

num heads 8
Codebook num codes 1024

latent dim 32

Table 1. Tokenizer hyperparameters

Component Parameter Value
Architecture num blocks 12

d model 512
num heads 8

Sampling temperature 1.0
maskgit steps 25

Table 2. Dynamics hyperparameters

Component Parameter Value
Encoder num blocks 8

d model 512
num heads 8

Decoder num blocks 8
d model 512

num heads 8
Codebook num codes 7

latent dim 32

Table 3. LAM hyperparameters

Parameter Value
max lr 1× 10−4

min lr 5× 10−5

β1 0.9
β2 0.99

weight decay 1× 10−4

linear warmup start factor 0.5
warmup steps 5000

Table 4. Optimizer Hyperparameters

Our Dynamics module is trained with sequences of
16 frames, processed by the pretrained tokenizer. Dy-
namics module is trained with batch size 80 on 8
A100 GPUs for 185k iterations on Platformers-200
(GenieRedux-G-200), and fine-tuned for 80k iterations on



Platformers-50 (GenieRedux-G-50), batch size 160.
For an agent (random or AutoExplore Agent), we ob-

tain a dataset of 10k sequences of length 800. We fine-
tune GenieRedux-G-50 on a set for 10k iterations to obtain
GenieRedux-G-50-ft, with batch size 160.

We always use the Adam optimizer with a linear warm-
up and cosine annealing strategy.

We note that GenieRedux has ∼ 350M total parame-
ters, broken down as follows: Tokenizer (100M), LAM
(170M), and Dynamics (80M). Meanwhile, GenieRedux-G
has ∼180M total parameters: Tokenizer (100M) and Dy-
namics (80M).

A.2. Testing Protocol of GenieRedux and
GenieRedux-G.

For our test set, we train Agent57 per environment, using
the available environment reward. In order to have many
diverse episodes in our datasets and all the actions to be rep-
resented, we mix, using an ϵ-greedy approach, the agent’s
actions with random actions. We collect 1000 episodes as
the test set (with episode length 700) and evaluate on se-
quences of size 12 with step size 20 in two settings. While
our model can handle a single frame as input, for a fair eval-
uation, we choose to provide two, as a single frame does not
provide motion information and there are multiple valid so-
lutions (see Sect. F.7). We provide two frames and predict
the next 10, given all actions. In the usual case, we perform
MaskGIT inference with 25 iterations for all 10 images at
once. We obtain much fewer artifacts and higher level of
control if we adapt an autoregressive approach - iteratively
generating 2 frames at a time given all previous tokens in the
sequence, each with 25 iterations. However, as this is com-
putationally heavy, we provide autoregressive results for our
best models only in our evaluations.

A.3. Training Protocol of AutoExplore Agent

For each of the environments, we train for 300 epochs with
the following schedule for each epoch: 1. Run the current
agent for 200 steps in 8 running environments in parallel to
collect data in the replay buffer. Actions are sampled with
temperature 1.0, with an epsilon-greedy algorithm with ϵ
starting from 0.1 and linearly decaying to 0.01 over the
course of 150 epochs. 2. Train the agent for 200 steps,
sampling from the buffer, with batch size 128. Actor-critic
loss is used with entropy regularization over the actions to
prevent greedy behavior. In the end, we choose the agent
with the highest evaluation return throughout training.

B. Super-resolution Network
We upscale the outputs of GenieRedux-G from 64x64 to
256x256 by a U-Net based super-resolution network, with
MSE loss for both training and evaluation. The train-
ing data consists of 256x256 images that we captured

from the original environments. Three configurations were
tested: (1) a small U-Net with feature channel dimensions
[64,128,256,512] and approximately 31 million parameters,
trained on 16,000 images (12,000 for training and 4,000 for
testing), achieving a test loss of 0.0081; (2) the same small
U-Net trained on a larger dataset of 50,000 images (45,000
for training and 5,000 for testing), achieving a test loss of
0.0047; and (3) a larger U-Net with feature channel di-
mensions [128,256,512,1024] and 124 million parameters,
trained on the same 50,000-image dataset, achieving a test
loss of 0.0029. All models were trained with a batch size of
128, a learning rate of 0.0001, and a step-based scheduler
(step size=25, gamma=0.5) for 300 epochs, using Adam
optimizer.

C. Multi-Environment Models Additional Ex-
periments

C.1. Qualitative Results of GenieRedux-G-50

In Fig. 1 we show examples of 10-frame predictions from
GenieRedux-G-50. They are sampled from the test set and
the actions that resulted in the ground truth sequence were
given to the model to produce the predictions. As seen, the
model was able to produce outcomes from the actions that
are close to the ground truth. In Fig. 2 is shown the de-
velopments of 3 actions over time for GenieRedux-G-50,
showing a smooth trajectory and the action being executed.

In our experiments, we test the ability of our models
to simulate multiple environments in virtual environments
already observed by the models. For new unseen envi-
ronments, our models show limited generalization abilities,
characterized by pausing motion and visual artifacts. We
believe that generalizability can be improved by training our
tokenizer on a larger video dataset, however, with care taken
to preserve the learned background token strategy learned,
as it brings important properties to our exploration reward
and the Dynamics module.

C.2. Autoregressive Evaluation

For one of the environments - SuperMarioBros, we
provide comparison of all our models using autoregressive
evaluation. This evaluation is more computationally heavy,
so we originally compare them with a single-pass eval-
uation, and evaluate autoregressively only the fine-tuned
models on both strategies - with a random agent and Au-
toExplore Agent. As for small characters and uniform
backgrounds, single-pass evaluation appears to produce
close results between all models in terms of controllabil-
ity, we choose to perform full autoregressive evaluation on
SuperMarioBros (where these conditions are present)
to show the benefit of our approach. Results are shown in
Tab. 5. The newly autoregressively evaluated models are
GenieRedux-G-50 and GenieRedux. It can be concluded
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Figure 1. Qualitative Results of GenieRedux-G-50. Given 2 frames, we show the predictions of 10 future frames. Ground truth is shown
for comparison.

Table 5. SuperMarioBros Autoregressive Quantitative Evaluation.

Environment Strategy Model FID↓ PSNR↑ SSIM↑ ∆PSNR↑

Super Mario Bros.

Random Autoregressive GenieRedux-G-50 30.48 34.59 0.94 0.55
GenieRedux-G-50-ft 30.84 34.85 0.95 0.57

Exploration Autoregressive
Tokenizer-ft 8.08 42.00 0.99 -

GenieRedux-G 9.46 34.38 0.95 0.07
GenieRedux-G-50-ft 9.33 37.77 0.97 0.76

Table 6. Quantitative results of GenieRedux-G-50, fine-tuned on AutoExplore Agent’s data of all three environments together. Re-
sults show that our method can be used to improve the multi-environment performance of the model. GenieRedux-G-50 is our pretrained
world model on 50 environments. GenieRedux-G-50-ft are fine-tuned models using data from a random agent or AutoExplore (Explo-
ration). GenieRedux-G denotes a non-fine-tuned model, trained with the exploration data.

Environment Strategy Model FID↓ PSNR↑ SSIM↑ ∆PSNR↑

Random GenieRedux-G-50 43.57 27.55 0.82 0.65
GenieRedux-G-50-ft 43.98 27.74 0.82 0.78

Combined Environments Exploration
Tokenizer-ft 14.02 37.98 0.98 -

GenieRedux-G 14.88 28.91 0.88 0.25
GenieRedux-G-50-ft 14.61 31.29 0.91 1.09

Random Autoregressive GenieRedux-G-50-ft 43.69 28.19 0.83 0.79
Exploration Autoregressive GenieRedux-G-50-ft 14.49 33.14 0.93 1.46
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Figure 2. Controllability of GenieRedux-G-50. We show a detailed per frame prediction for right, left and jump actions, showing the
development of the actions.

that, with our exploration approach, we obtain significantly
better results in terms of visual fidelity and controllability.

C.3. Multi-Environment Fine-tuning

In this experiment, we take the diverse datasets, col-
lected from the three environments we have stud-
ied - AdventureIslandII, SuperMarioBros and
Smurfs, and fine-tune GenieRedux-G-50 on all of them
together. In this way, we evaluate the effect of our method
on multi-environment training. Results are shown in Tab. 6.
Using AutoExplore Agent’s data, the model has improved
its visual fidelity and controllability across the test set, con-
taining all three environments (equal number of samples
each). This shows that our method is applicable for im-
proving multi-environment training as well.

C.4. Qualitative Evaluation of Fine-tuned Models

In Fig. 3 are shown examples per environment of predic-
tions from a model, fine-tuned on a random agent versus a
model fine-tuned on AutoExplore Agent’s data. The model,
trained on AutoExplore Agent’s data, exhibits much higher
visual quality and less artifacts. We also note that the tok-
enizer plays a role in improving visual quality. After explo-
ration, the tokenizer is able to fit better to new visuals of the
environment, which reduces visual artifacts.

In Fig. 4 we show AutoExplore Agent’s data helping to
achieve better controllability compared to the random agent.
As typical for controllability evaluation, we give a single
frame as input. We observe that in cases where the motion
is ambiguous (e.g. where a character might be going up or
down), fine-tuning with exploration data leads to more con-
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Figure 3. Qualitative Results of GenieRedux-G-50-ft for random and AutoExplore agents. They are compared to the ground truth
(Original). It can be seen that AutoExplore Agent’s data produces a model with significantly higher visual quality and less artifacts.
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Figure 4. Controllability of GenieRedux-G-50-ft for random and AutoExplore agents on SuperMarioBros. In ambiguous cases
like this where the agent can be going up or down, exploration data shows to improve performance.

fidence and hence realistic sequence generation. In contrast,
models trained on random data cannot resolve the situation
and copy the frame multiple times.

D. AutoExplore Agent Behavior Study

The agent was trained with the five actions that the world
model was trained with. While initially in training the agent
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Figure 5. AutoExplore Agent Behavior. We show the behavior
of our AutoExplore Agent on the three environments studied. It
can be seen that the agent learned to progress by moving right,
jumping over obstacles and dealing with enemies.

learns simpler strategies like jumping, eventually it achieves
better returns by learning to move forwards in an environ-
ment (and reveal new scenes). To progress even further, the
agent learns to overcome obstacles and enemies. In Fig. 5,
we show the behavior of the agent on the three environments
used after training. The agent is observed to move forward
in the environment, to overcome enemies, jump over obsta-
cles. Interestingly, the strategy in Smurfs was to sometimes
wait to be attacked by an enemy, which caused the player
to disappear and the camera to move before spawning. This
seems to cause an increase in world model uncertainty in
that environment. In other cases (flying enemies), the agent
tries to avoid. In Smurfs, there is an action of entering a
door. We observe that sometimes the agent enters a door
that causes the character to reappear from a different side
on the screen.

E. User Studies
E.1. General Quality User Study Details

We provide extra details about our user study to evaluate the
models fine-tuned on data from a random agent and from
AutoExplore Agent. In Fig. 6 we show the interface for a
single sample given to the user. A clip is shown with two
parts that the user should compare and rate. The order of
the samples is random. The instructions given to the users
at the start of the study are provided below.

Thank you for participating in our study! You will watch
a total of 120 video samples. Each sample consists of two
clips:
Top clip: Reference
Bottom clip: Comparison clip
Please compare the two clips in each sample and rate how
closely they match in terms of visual quality and content.
Use the scale provided:
1 : The two clips completely differ in terms of visual quality
and/or content
5 : The two clips closely match in terms of visual quality
and content

Figure 6. General User Study Sample.

Figure 7. Action Quality User Study Sample.

Submit your rating for each sample through this form. Your
feedback is important and greatly appreciated!

E.2. Action Quality User Study Details

We conduct a second user study to specifically evaluate the
gains in action quality of our model fine-tuned on data from
the AutoExplore agent over the baseline. Observing that
our model is particularly beneficial in scenarios with am-
biguous initial frames, we use this user study to test this.
We use single initial frames with the agent in mid-jump.
Participants interact with an interface shown in Fig.7. The
user is shown pairs of synchronized videos, generated by
the baseline and the exploration model (left/right position is
randomized). Both videos depicted the same action — left,
jump, or right—which was explicitly labeled in bold red
below them. Participants were instructed to assess the qual-



Table 7. Visual Fidelity of TA models.

Model Basic Test Set
FID↓ PSNR↑ SSIM↑

Tokenizer-TA 12.10 39.53 0.97
LAM-TA 47.73 28.24 0.85

GenieRedux-TA 13.26 25.47 0.82
GenieRedux-G-TA 13.01 32.09 0.94

ity of the action performed, disregarding any differences re-
lated purely to visual quality, and select one of the following
options:

• Left: The left clip depicts the action more accurately.
• No Difference: Both clips depict the action equally well.
• Right: The right clip depicts the action more accurately.

F. GenieRedux Evaluation on CoinRun Case
Study

In this section, we qualitatively evaluate our Genie imple-
mentation - GenieRedux and its variant GenieRedux-G on
the CoinRun case study. We also quantitatively and quali-
tatively study the effect of using data from a trained agent
in the Coinrun environment (GenieRedux and GenieRedux-
G). We study the behavior and limitations of the model and
compare our implementation with a concurrent one.

F.1. CoinRun Case Study Details

We train the Tokenizer and the Dynamics module on Coin-
Run environment datasets, one obtained from a random
agent, and one obtained from a trained agent using envi-
ronment reward.

For training the agent for exploration, we enable veloc-
ity maps on CoinRun. These maps also need to be enabled
for the agent during data collection. When evaluating mod-
els trained on different datasets (random agent vs. trained
agent), to be fair, we exclude the velocity map regions by
setting their pixels to black on all sets.

Throughout the training, we use a batch size of 84 and a
patch size of 4 for all components. We use the Adam Opti-
mizer with a linear warm-up and cosine annealing strategy.

We refer to the test set obtained from a random agent as
Basic Test Set and to the one obtained from a trained agent
as Diverse Test Set.

F.2. Comparison of GenieRedux with Jafar

We compare with Jafar Willi et al. [1] - a concurrent with
our implementation of Genie (in JAX). We obtain and train
their model as instructed. We train GenieRedux with Ja-
far’s model parameters and like them separate LAM from
Dynamics in training. The latter significantly worsened

Figure 8. GenieRedux-G-TA Controllability Across Horizons.
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Figure 9. GenieRedux Quantitative Evaluation. We present a
few sequences from the test set with predictions from GenieRe-
dux. On the example at the top we show a successful jump action.
On the example at the bottom we show a successful motion pro-
gression.

GenieRedux’s action representation. Despite that, Ge-
nieRedux shows significantly better visual fidelity metrics,
achieving 17.91 PSNR (46.12 FID), compared to Jafar’s
12.66 PSNR (154.12 FID). GenieRedux does not exhibit
Jafar’s artifacts or the reported problematic ”hole digging”
behavior (more in App. F.6).

F.3. Prediction Horizon Evaluations

We evaluate the controllability of our best model (at 50k
iterations) over varying prediction horizons in Fig. 8. As
expected, predictions become more challenging further into
the future. The first prediction is also difficult due to in-
sufficient motion information - we obtain 0.4 ∆tPSNR for
t = 1. To address this issue, we provide the model with 4
frames and actions (predicting 10), and observe an improve-
ment of our best model (GenieRedux-G-TA) from 34.79
PSNR (12.75 FID) in our results in the main paper to 38.31
PSNR (12.29 FID) on Diverse Test Set.

F.4. GenieRedux-G Qualitative Evaluation

In Fig. 9 we show quantitative results demonstrating that
GenieRedux-G can perform motion progression and action
execution.

F.5. GenieRedux-TA Qualitative Evaluation

In Fig. 10 we demonstrate that GenieRedux-TA is able to
execute actions and complete motion. In Fig. 11 we show
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Figure 10. GenieRedux-TA Qualitative Comparison. We
present a few samples from the test set with various actions. We
demonstrate that GenieRedux-TA performs the actions correctly.
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Figure 11. GenieRedux-TA Controllability. We show predic-
tions for all environment actions of GenieRedux-TA.

that the model is capable of executing all actions of the en-
vironment.

F.6. Jafar Qualitative Comparison

We compare with Jafar Willi et al. [1] - a concurrent
with ours implementation of Genie (in JAX). We obtain
and train their model as instructed. We train GenieRedux
with Jafar’s model parameters and like them separate LAM
from Dynamics in training. The latter significantly wors-
ened GenieRedux’s action representation. Despite that, Ge-
nieRedux shows significantly better visual fidelity metrics,
achieving 17.91 PSNR (46.12 FID), compared to Jafar’s
12.66 PSNR (154.12 FID). GenieRedux does not exhibit
Jafar’s artifacts or the reported problematic ”hole digging”
behavior. Moreover, we observe that Jafar lacks causality,
which we find problematic.

In Fig. 12 we show Jafar’s reconstruction of 10 frames
into the future, given the first frame and a sequence of ac-

Figure 12. Jafar Qualitative Results. The results are on the vali-
dation set. We give only a single image and actions and predict 15
frames in the future.
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Figure 13. GenieRedux with Jafar’s Parameters Qualitative
Results. We show 15 frames into the future given actions and an
initial frame of our model.

tions. The results are on the validation set after training.
We observe an abundance of artifacts. We note that if we
provide the images instead of providing the first frame, we
get much less artifacts. This seems to hint that Jafar relies
on future images to make predictions for the current frame,
which might be an inherent problem of the model not being
causal.

We additionally report test set results for Jafar - 0.48
SSIM and for GenieRedux (with Jafar parameters) - 0.62
SSIM.

In addition, we show the version of GenieRedux that we
trained to match Jafar in Fig. 13. While it can be noticed
that the model prefers inaction when encountering actions,
it successfully progresses motion - e.g. moving a character
through the air. We also notice fairly good visual quality.

F.7. Additional GenieRedux-G-TA Qualitative Re-
sults and Limitations

We provide additional visuals of our best performing
GenieRedux-G-TA in Fig. 14 and Fig. 15. We see that our
model performs well under different actions and scenarios.

Next, we discuss the limitations of GenieRedux-G-TA
and visualize the known cases in Fig. 16. One possible
failure case occurs whenever the environment state or the
actions suggest that a major exploration of the environment
will unfold - for example, when falling down from mid-
jump. As the agent is only given a single frame and can-
not possibly know the layout of the level, it attempts to re-
construct something that is not guaranteed to be the actual
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Figure 14. GenieRedux-G-TA Extra Qualitative Results. More
sampled sequences from the test set, showing good match with the
ground truth when enacting actions.
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Figure 15. GenieRedux-G-TA Controllability Demonstration.
We show that GenieRedux-G is able to perform all Coinrun envi-
ronment actions.
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Figure 16. GenieRedux-G-TA Limitations. Two failure cases
of GenieRedux-G-TA - whenever a sizeable new unknown part of
the environment is revealed; whenever an in-progress motion is
ambiguous.

level. Often, the agent exhibits uncertainty in these cases,
as shown in the results.

Another possible weakness occurs whenever on the first
frame a motion is already in progress - for example, in
progress of jumping. In that case the model observes a sin-
gle frame with the agent in the air and has no information
about which direction the agent is heading - going up or
going down. In that case, the model could exhibit uncer-
tainty in the form of artifacts suggesting that the agent is
both landing and jumping up, or alternatively not perform
an action at all. This is a state from which the agent often
recovers in a few steps. Still, we find that it can be avoided
by providing more input frames to the model that can give
motion information.
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