
Segment This Thing: Foveated Tokenization for Efficient Point-Prompted
Segmentation

Supplementary Material

6. Training Details
6.1. MAE Pre-training
We pre-trained our foveated image encoders using MAE
pre-training for 500K iterations. We use an AdamW op-
timizer with a learning rate of 2→13 and weight decay of
0.001. There is a 10K step linear warm-up of the learning
rate, after which it is held constant. Instead of periodically
dropping the learning rate, we double the batch size every
100K iterations. The initial batch size is 1024. We use the
standard masking ratio of 0.75 and do not apply loss to the
patches provided to the MAE as input. Fixations are sam-
pled uniformly with a margin of 256 pixels.

6.2. Segmentation Training
We trained our full STT models for an additional 250K iter-
ations. We again use AdamW with a weight decay of 0.001,
this time with a learning rate of 2→16, with a 5K step linear
warm-up. The batch size starts at 2048 and doubles after
50K steps. We sample up to 16 fixations per image, and
again use a sampling margin of 256 pixels. We use loss
weights of 20.0 for the focal loss, 1.0 for the dice loss, and
0.01 for the IoU prediction loss.

7. Foveation Pattern
As described in Section 3.1, our foveation patterns consist
of a series of nested rings of patches with a dense grid in
the center. Here we give a more formal definition of the
parameterization of such a pattern.

A pattern with N layers must specify a stride si → Z+
and a grid size gi → Z+ for each level i → [0, N). Gen-
erally, s0 = 1 such that the dense grid in the center is full
resolution. We require si > si→1 for all i, i.e. the layers are
defined in order of increasing stride. Layer i then defines
a grid of patches with a bounding size of gisip, where p is
the patch size (in our experiments p = 16 pixels). In order
to ensure nesting, we further require gisi > gi→1si→1 (the
grids get larger from layer to layer), and

si |
gisi ↑ gi→1si→1

2
,

i.e. the difference in sizes between successive grids is an
even multiple of the stride of the higher level such that the
lower level grid can be centered and surrounded by patches
at the next level, leaving no gaps or overlap.

Successive grids redundantly cover some of the same
pixels. The patch strides are not constrained to be inte-
ger multiples of each other, so retaining redundant patches

g1

s1

g2

g3

g4

g5

s2

s3

s4

s5

Figure 10. The foveated tokenization pattern as used in our ex-
periments with the Segment This Thing model. Each square in the
image indicates the size and location the receptive field of a patch.
The patch sizes are all integer multiples of the smallest patch size,
such that every patch can be downsampled to the same size using
a simple box filter. Patches are colored by level with grid sizes
indicated at left and strides at right.

would increase the number of pixels required to represent
the image and increase bandwidth requirements. We there-
fore drop redundant tokens for efficiency, at each level in-
troducing only those patches that cover regions of the image
that are not already covered by lower levels.

Level (i) Stride (si) Grid size (gi)

1 1 4
2 2 4
3 4 6
4 6 8
5 8 10

Table 3. The precise definition of our foveation pattern. The in-
terpretation of the parameters is given in Section 7. The pattern is
depicted in Figure 10.

The total foveation pattern size in pixels is gN→1sN→1p
pixels. The total token count can be computed as:

N→1∑

i=0

g2i ↑
N→1∑

i=1

si→1gi→1

si

2
(2)

where the first term adds all the grid sizes and the second ac-



Figure 11. The stride of the segmentation map outputs relative to
the input size. SAM outputs segmentation maps at a flat resolution
that is one quarter of the input resolution.

counts for the removal of redundant tokens. We trained our
model with a five-layer foveation pattern, with parameters
listed in Table 3. The pattern and the geometric interpreta-
tion of its parameters are visualizated in Figure 10.

In Figure 11 we show the input and output stride of the
pattern as a function of horizontal or vertical distance from
the center. We also plot the output stride of SAM, indicating
which regions of our output segmentation maps have lower,
higher, or equivalent resolution.

8. MAE Pre-training

To evaluate the effectiveness of MAE pretraining on
foveated tokenizations, we trained size B models for 100K
iterations with various initial weights: random initializa-
tion, a series of MAE checkpoints, and pre-trained publicly
available ViT weights. We plot the training loss curves in
Figure 12. We see that longer pre-training results in gains
that persist through fine-tuning, with eventual diminishing
returns. The ViT weights were trained with standard patch
tokenization on the regular grid and is initially worse than
random initialization. The network is eventually able to re-
purpose these weights, but after 100K steps of training even
a small amount of foveated MAE pre-training yields better
results.

9. Varying the Token Count

We also ran a small experiment to evaluate the effect of the
foveation pattern on segmentation accuracy. Our foveation
patterns exists in a high-dimensional design space, and each
new pattern requires its own MAE pre-training. We thus fo-
cused on the token count, performing a somewhat abbrevi-
ated training run (300K steps pre-training, 100K steps train-
ing) for one pattern with fewer tokens and one pattern with
more. The patch size and overall receptive field were kept
fixed, and all models are size L. The segmentation accuracy
is presented in Table 4. As expected, performance increases
with increased token count.

Token Count Cityscapes EgoHOS VISOR
100 (-42%) 0.364 0.551 0.531

172 0.390 0.594 0.568
268 (+56%) 0.403 0.614 0.590

Table 4. Segmentation accuracy of models with more or less to-
kens than the baseline 172-token model. Note that results for the
baseline differ from table 5 due to the abbreviated training sched-
ule.

10. Full Evaluation Results
We list the full evaluation results in tabular form in Table 5.

Figure 12. Training Loss by Initialization (Log/log scale)

11. STT Performance Analysis
In this section we describe two investigations into the per-
formance of STT relative to the baselines to deepen the un-
derstanding of the model.

11.1. Breakdown by Distance from Prompt
To gain further insight into the relative performance of SAM
and STT we measured the pixel-wise precision, recall, and
overall accuracy as a function of distance from the prompt
on a subset of three evaluation datasets. The results are plot-
ted in Figure 13. Both precision and recall decrease for both
models with increased distance as expected. The particular
shape of the curve varies significantly by dataset but some
trends hold across all three.

The first trend to note is the distinctive ”swoosh” shape
of the accuracy plots — accuracy is high in the vicinity of
the prompt, drops to its lowest value for both models with
a somewhat increased distance, then begins to asymptoti-
cally approach 1.0. The cause can be clearly seen in the
plot of the positive label rate by distance. The nadir of each
accuracy curve reliably occurs at the point the positive rate
crosses 0.5. We note than even in the datasets where SAM is
generally more accurate than STT, there is at least a narrow
region centered on the prompt with a radius of 4-8 pixels
in which STT is more accurate. This is perhaps due to the
higher resolution in this region as shown in Figure 11 and
described in Section 3.2.2.

Finally, we note an interesting trend in the precision and
recall curves. As distance increases, STT tends towards
higher precision and lower recall compared to SAM. This



Accuracy (mIoU)
Method ADE20K Cityscapes EgoHOS NDD20 PPDLS TimberSeg VISOR ZeroWaste WoodScape

SAM
H 0.543 0.393 0.582 0.826 0.762 0.674 0.604 0.629 0.301
L 0.537 0.392 0.601 0.817 0.764 0.644 0.606 0.634 0.296
B 0.547 0.384 0.620 0.798 0.771 0.524 0.599 0.607 0.300

MobileSAM 0.471 0.302 0.557 0.733 0.640 0.338 0.549 0.579 0.234

EfficientSAM S 0.553 0.405 0.632 0.771 0.678 0.507 0.618 0.628 0.323
Ti 0.544 0.378 0.615 0.786 0.747 0.473 0.572 0.598 0.320

STT (Ours)
H 0.552 0.410 0.620 0.754 0.730 0.434 0.596 0.620 0.308
L 0.553 0.412 0.607 0.719 0.758 0.421 0.582 0.595 0.310
B 0.541 0.393 0.596 0.732 0.735 0.398 0.571 0.583 0.291

Table 5. A full numerical listing of all segmentation accuracy results.

could be a function of the inductive bias in the network
caused by the centering of the input on the prompt. STT
apparently estimates positive labels for fewer distant pix-
els, sometimes missing parts of the segment which results
in lower recall. On the other hand, when it does estimate
positive labels for pixels far from the prompt, it is correct
more often than SAM.

11.2. Alternative Evaluation Modes

When evaluating SAM and EfficientSAM, we followed the
standard protocol. Both methods accept the full frame as
input and then rescale it to 1024 ↓ 1024. However, STT
requires a 1280 ↓ 1280 crop centered on the prompt, and
we do not rescale the input. If the ground truth segment
extends beyond the crop boundaries, STT therefore simply
pays the penalty for failing to include those pixels.

This does mean that STT and the baselines receive input
images with differing receptive fields. To determine the im-
pact of this, we gave EfficientSAM the same 1280 ↓ 1280
crops used by STT as input and re-evaluated both methods
only on this region (ignoring any labels outside the crop).
The results are given in Table 6. We note that both methods
see an increase in performance, due to the restricted evalu-
ation domain and, in the case of EfficientSAM, a potential
increase in the input resolution after rescaling.

We further evaluate EfficientSAM on foveated versions
of the same 1280 ↓ 1280 crop. This is done by pass-
ing the crop through the foveation process and then re-
structuring them into an image as done for visualization
(c.f. Section 3.1.1). Evaluating in this mode, both meth-
ods receive exactly the same input and EfficientSAM also
benefits from the same reduced bandwidth requirements
as STT. However, as can be seen in Table 6, the perfor-
mance of EfficientSAM drops significantly when operating
on foveated inputs, indicating that STT can process such
reduced-bandwidth data both more efficiently and more ef-
fectively.

Eval Mode Accuracy (mIoU)

Model Cr
op

pe
d

Fo
ve

at
ed

Ci
ty

sc
ap

es

Eg
oH

O
S

V
IS

O
R

EfficientSAM ↭ 0.444 0.640 0.619
↭ ↭ 0.410 0.560 0.540

STT (Ours) ↭ ↭ 0.403 0.604 0.576

Table 6. Evaluating EfficientSAM (size S) and STT (size L) in
different evaluation modes.

12. Computing FLOPs

We follow Kaplan et al. in computing FLOP counts for
transformer architectures (c.f. [19], Table 1). Specifi-
cally, we omit non-linearities, biases, normalizations, and
other such operations with negligible contributions relative
to the FLOPS counts incurred by the remaining operations.
However, Kaplan et al. focus on language models and give
counts per token. We are interested instead in the cost
per image. The expressions we use to calculate FLOPS
are given below. Note that these expressions yield FLOPS
counts for a single layer or application of the indicated func-
tion, and thus omit the multiplier by layer count given in
[19]. We also include expressions for linear and convolu-
tional layers as these are used to compute the FLOPS in the
mask decoder.

Here dmodel is the hidden dimension of the transformer
model dattn is the total dimension over which attention is
computed, i.e. the sum of the dimension of each head.
These values are typically the same but need not be. dff
is the inverse bottleneck dimension, which is typically set
to 4dmodel. Note that we differentiate between the num-
ber of keys and the number of values to include cross-
attention, as used for example in the two-way transformer
in the mask decoder of all models considered. In the case



Cityscapes EgoHOS VISOR
Pr

ec
isi

on
R

ec
al

l
A

cc
ur

ac
y

Po
s.

R
at

e

Figure 13. The top three rows show the pixel-wise precision, recall, and accuracy of SAM and STT, respectively, as a function of the
distance of a pixel from the prompt. The last row shows the fraction of pixels with a positive label as a function of distance from the
prompt.

Operation FLOPS
Attention: QKV 2dmodeldattn(nquery + 2nkey)
Attention: QK Logits 2nquerynkeydattn
Attention: Softmax 3nquerynkeynhead
Attention: Reduce V 2nquerynkeydattn
Attention: Project V 2nquerydmodeldattn
Feedforward 4nquerydmodeldff
Linear 2nvalsdinputdoutput
Convolution 2dinputdoutputwouthoutwkernelhkernel

of self-attention, nkey = nquery.
We also have to treat the windowed attention layers

in the SAM image encoder specially. Given a function
flops(dmodel, ntokens, nheads) that returns the FLOPS count
for a transformer encoder layer (with the default settings of
dattn and dff), the global attention layers in the SAM ViT en-
coder require about flops(dmodel, s2, nheads) for a token map
of size s ↓ s. Given a window size w, the local windowed
attention layers require about ↔ s

w ↗2flops(dmodel, ws, nheads)
FLOPS. For mask decoders, we include the cost of the
MLPs, the deconvolutions, and the dot product used to com-

pute the logits and omit all other terms.


	Introduction
	Related Work
	The Segment This Thing Model
	Foveated Tokenization
	Visualization

	Segment This Thing
	Image Encoder
	MaskDecoder


	Experiments
	Training
	Foveation Center Selection

	Evaluation
	Gaze-based Prompting

	Conclusion
	Training Details
	MAE Pre-training
	Segmentation Training

	Foveation Pattern
	MAE Pre-training
	Varying the Token Count
	Full Evaluation Results
	STT Performance Analysis
	Breakdown by Distance from Prompt
	Alternative Evaluation Modes

	Computing FLOPs

