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Supplementary Material

A. Overview
• Appx. B shows that our QAP formulation is general

enough to accommodate the commonly used distance
and similarity measures: Mutual k-NN, CKA and the
Gromov-Wasserstein distance.

• Appx. C follows up on the experiment in Sec. 3. It shows
that the vision-language similarity measured by our dis-
tortion metrics decreases as the amount of shuffling in-
creases. Furthermore, it elaborates on why randomly ini-
tialized networks exhibit a similar trend to pre-trained
networks.

• Appx. D compares the original Hahn-Grant solver to
our factorized Hahn-Grant solver including a correctness
proof, implementation details and an ablation showing the
improvements in primal and dual estimates by our solver.

• Appx. E gives more details on the used models, datasets
and specific setups for the individual experiments.

• Appx. F provides results for other model and dataset com-
binations. It shows that pre-training appears more im-
portant than the model size for the matching accuracy
in small-scale alignment. Also, it shows that the results
for solver comparison consistently hold for all considered
model and dataset combinations including unsupervised
classification.

• Appx. G shows that the Gromov-Wasserstein optimal
transport solvers can be seen as solvers for a relaxation
of our QAP.

B.Mutual k-NN and CKA as distortion metrics
In Sec. 4, we introduce the notation of distortion metrics
in terms of a unimodal kernel function kx and ky , and a
distance function l, which is decomposable as

l(A,B) = f1(A) + f2(B)→ h1(A)h2(B). (15)

In this section, we show how Mutual k-NN [17], the
centered kernel alignment (CKA) [22], and the Gromov-
Wasserstein (GW) distance [33] fit into this formulation.
Mutual k-NN [17]. Mutual k-NN is defined as the average
overlap between the nearest neighbors in both modalities,
i.e., for one sample, it is

mkNN(xi,yi) =
1

k
| topxk(i) ↑ topxk(i)|. (16)

Here, we define the top-k indices in terms of the highest
inner product as topxk(i). Following Huh et al. [17], we

exclude i from this set. To include this into our framework,
we define the kernel function as

kkNN
x (xi,xj) =

1
↓
Nk

[j ↔ topxk(i)], (17)

and accordingly for the language embeddings. Then, the
similarity matrices are

XkNN
ij = kkNN

x (xi,xj) and YkNN
ij = kkNN

y (yi,yj). (18)

Furthermore, we use the negative inner product as our dis-
tortion function:

linner(A,B) = →A ·B, (19)

which trivially satisfies Eq. (15) with f1 = f2 = 0 and
h1, h2 being identity functions. This choice of kernels and
the distance metric leads to the Mutual k-NN metric in our
framework:

DkNN(X
kNN,YkNN)

=
N∑

i,j=1

l
(
XkNN

ij ,YkNN
ij

)

= →

N∑

i,j=1

kkNN
x (xi,xj)k

kNN
y (yi,yj)

= →

N∑

i,j=1

1
↓
Nk

[j ↔ topxk(i)]
1

↓
Nk

[j ↔ topyk(i)]

= →
1

N

N∑

i,j=1

1

k
[j ↔ topxk(i) ↗ j ↔ topyk(i)]

= →
1

N

N∑

i,j=1

1

k
[j ↔ topxk(i) ↑ topyk(i)]

= →
1

N

N∑

i=1

1

k
|j ↔ topxk(i) ↑ topyk(i)|

= →
1

N

N∑

i=1

mkNN(xi,yi).

(20)
CKA. We derive CKA [22, 30] in a similar fashion. For a
kernel function k̂ and kernel matrices X̂ij = k̂(xi,xj) and
Ŷij = k̂(yi,yj), the CKA is defined as

CKA(X̂, Ŷ) =
tr(X̂CŶC)√

tr(X̂CX̂C) tr(ŶCŶC)
, (21)



Models CIFAR-10 (%) CINIC-10 (%)

Mutual k-NN 30.5± 16.7 16.5± 27.6
CKA 42.0± 4.1 40.0± 0.0
GW distance 72.0 ± 17.7 77.0 ± 7.3

Table 3. Gromov-Wasserstein distance is the best measure
for matching: We show the accuracy for CIFAR-10 [23] and
CINIC-10 [9] using DINOv2 [36] and all-mpnet-base-v2 [43] us-
ing Mutual k-nearest neighbor (Mutual k-NN) [17], centered ker-
nel alignment (CKA) [22], and the Gromov-Wasserstein (GW)
distance [33] as a metric. The GW distance leads to the best
matching accuracy for both datasets.

where C = I → 1
N

T . Similar to previous work [30], we
use the linear kernel in this work. Our kernel matrices are

XCKA =
X̂C√

tr(X̂CX̂C)
and

YCKA =
CT ŶT

√
tr(ŶCŶC)

.

(22)

Using the negative inner product as the distance metric leads
to the negative CKA:
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GW distance [33]. For the GW distance, we can choose
the L2-norm as the kernel and the squared distance as the
distortion metric:

kGWx (xi,xj) = ↘xi → xj↘2,

kGWy (yi,yj) = ↘yi → yj↘2,

lGW(A,B) = (A→B)2.

(24)

Then, the GW distance is given by

DGW(XGW ,YGW) =
N∑

i,j=1

(↘xi → xj↘2 → ↘yi → yj↘2)
2 .

(25)

The objective function after finding the optimal permutation
matrix similar to Eq. (6) is then equivalent to the original
GW distance comparing two metric-measure spaces [38].

Tab. 3 empirically compares these formulations in a
small-scale data regime, using CIFAR-10 [23] and CINIC-
10 [9] datasets introduced in the main text. We find that de-
spite the wider adoption of Mutual k-NN and CKA metrics
in previous work, the Gromov-Wasserstein distance leads to
a higher matching accuracy on both datasets.

C. Shuffled vision-language alignment
In this section, we elaborate on the setup for the shuffling
experiment from Sec. 3. As we claimed in the main text (cf .
Sec. 3), the observations are consistent accross all tested
datasets and models, which we also report here.
Setup. Given aligned image and language representations,
(xi,yi), and a shuffling level ω ↔ [0, 1], we randomly
choose ≃ωN⇐ elements that are randomly permuted. Every
other element is kept in place. Afterwards, the distortion of
this permutation is computed with Eq. (3) or Eq. (4) after
the permutation. Note that we use the image embeddings
here instead of the averaged object embeddings. For clas-
sification datasets, we take the same language embedding
for all elements of that class. However, we have seen in
preliminary experiments that the curve looks similar when
considering the averaged object representations instead of
the image representations. We plot 21 equidistant shuffling
levels at ω ↔ {0, 0.05, . . . , 1}. Each level is based on 100
random seeds to sample the subset and permutation.
Shuffling with other kernels, datasets, and models. In
addition to Fig. 2, which uses the CocoCaptions dataset [6],
and Mutual k-NN as the distortion metric, we show more
combinations in Fig. 7. In this setting, Mutual k-NN is only
meaningful for paired datasets because the k-nearest neigh-
bors are ambiguous when language features are replicated.
For the GW distance, the pairwise distances are also depen-
dent on the dimensionality of the embedding spaces. There-
fore, we standardize the distance to be in the range between
zero and one for this shuffling experiment. We observe that
the similarity (/ distortion) decreases (/ increases) strongly
monotonically with more shuffling. This behavior is consis-
tent for all considered datasets and metrics. This observa-
tion suggests that the pairwise relations are more similar be-
tween the semantically corresponding vision and language
representations than between the non-semantic ones.
A note on randomly initialized networks. In Fig. 8, we
present a plot of the experiment in Fig. 2 with the addition
of randomly initialized ViT-H/14 [11] models, which were
initiated with 20 distinct random seeds. Additionally, we
demonstrate the distortion of a representation based on the
stacked pixel values, i.e., without any neural network. Fur-
thermore, we show a zoomed-in version on the left-hand
side to illustrate the behavior on a finer scale.
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Figure 7. Shuffling degrades vision-language alignment: We report CKA similarity and the Gromov-Wasserstein distance on three
datasets and based on five encoding methods, including pre-trained and randomly initialized networks, and raw pixel values. Similar to
our observation with Mutual k-NN, the CKA and Gromov-Wasserstein distance correlate strongly w.r.t. the amount of shuffling, which
suggests that these metrics are also suitable measures for blind vision-language matching.

We observe that the alignment of randomly initialized
networks exhibits the same monotonically decreasing be-
havior with increased amount of shuffling, as for pre-
trained networks (despite the absolute alignment value be-
ing smaller). For images, this can be explained by the simi-
larity of the pixel distribution within each semantic category
(e.g., a green landscape for animal stock). These similarities
appear more frequently for semantically affiliated classes
and can dominate the pairwise distance encoding. To un-
derstand the behavior for randomly initialized networks, we
plot the distribution of the Empirical Lipschitz constant in
Fig. 9, defined by

KLipschitz(x,y) =
↘f(x)→ f(y)↘2

↘x→ y↘2
, (26)

for samples x, y and function f . Intuitively, it measures the
degree of distance distortion in the output space w.r.t. the in-
put space for each sample pair in the dataset. Here, we use
CocoCaptions and the same language model as in Fig. 8.

We observe that most values are close to one. This implies
that the distance after encoding remains approximately pre-
served. Nevertheless, the distances are slightly distorted,
which explains why the absolute similarity in Fig. 8 is lower
for random ViTs than for the pixel values. In summary,
shuffling reduces alignment even for the distance in terms
of pixel values. This then transfers to random ViTs because
these distances are approximately preserved.

D. On the factorized Hahn-Grant solver

In Sec. 4, we recap the Hahn-Grant solver [13] and intro-
duce our factorized Hahn-Grant solver. Here, we provide
more details on the implementation of the algorithms and
show that both algorithms result in the same lower bounds.
We also include an empirical study supporting the design
choices behind our factorized Hahn-Grant solver: the fac-
torization, faster LAP solvers, and finding primal solutions.
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Figure 8. Randomly initialized networks behave similarly to the pre-trained ones: Zooming in (right) on the randomly initialized
ViT, we observe a strikingly similar qualitative behavior – the similarity decreases monotonically with the increased degree of shuffling.
This observation also holds for the curve resulting from raw pixel values. This surprising phenomenon presumably originates from the
properties of the natural image manifold and the Lipschitz-continuity of neural networks.
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Figure 9. Random networks roughly preserve distances: Ob-
serve that the mode of the empirical Lipschitz constant is close to
1, which suggests that network encoding approximately preserves
the distances in the input domain.

D.1. Proof of equivalence to Hahn-Grant solver
The main idea of the proof is that the lower bound, the
leader, and all LAPs are the same for both algorithms.
The main difference is that the dual vectors are stored in the
tensors U and V instead of updating C in-place.

First, we assume that Cijkl = C(1)
ik C(2)

jl with C(1)

and C(2) being non-negative and symmetric. Given this
assumption, we will show that Algorithm 1 and Algo-
rithm 2 are equivalent without our adaptions (Lines 4, 7, and
14) and using the Hungarian matching as the LAP solver.
We will show that both algorithms have the same lower
bound l, the leader, and the sum of complementary costs
Cijkl + Cklij . In particular, denoting the variables from
Algorithm 2 with a bar, we have

l = l, leader = leader, and (27)

Cijkl +Cklij = 2C
(1)
ik C

(2)
jl →Uijk →Vijl →Ukli →Vklj .

for all i ⇒= k, j ⇒= l ↔ [N ]. Starting with the first iteration
until after Algorithm 1, Line 5 and Algorithm 2, Line 5, we
have that the lower bound l = l = 0 and

leader = Cijij = C(1)
ii C(2)

jj = leader (28)

are initialized the same. Furthermore, because U = V = 0,
we have that

Cijkl = C(1)
ik C(2)

jl →Uijk →Vijl. (29)

Thus, both algorithms have an equivalent starting condition.
Next, given that Eq. (27) holds, we show that both values

are changed in an equivalent way. Given the same leader
matrix, Line 6-8 from Algorithm 1 change l and leader
in the same way as Lines 6-9 from Algorithm 2. Moreover,
after Algorithm 1, Line 9 and Algorithm 2, Line 10, Cijkl

and Uijk are changed in the same way. Therefore, the sum
is also preserved:

Cijkl +Cklij

=Cprev
ijkl +Cprev

klij +
leaderij

N → 1
+
leaderkl

N → 1

=2C
(1)
ik C

(2)
jl →U

prev
ijk +

leaderij

N → 1
→Vijl

→U
prev
kli +

leaderkl

N → 1
→Vklj

=2C
(1)
ik C

(2)
jl →Uijk →Vijl →Ukli →Vklj ,

(30)

where the superscipt (prev) denotes the value before execut-
ing the line.

In Line 11 and Line 12 of Algorithm 1, the values from
the complementary positions are redistributed to the current
submatrix. Line 12 from Algorithm 2 also aggregates the
sum of the complementary elements, albeit not by chang-
ing the cost matrices. Therefore, the sum of both elements



Algorithm 1 Hahn-Grant solver [13]

1: Input: C → IRN↓N↓N↓N
↔0 cost tensor

2: Output: l ↑ argminP↗PN

∑N
i,j,k,l=1 CijklPijPkl

3: l ↓ 0

4: while not converged do
5: leaderij ↓ Cijij for i, j → [N ]

6: u,v, ↓ hungarian matching(leader)

7: l ↓ l +
∑

i ui +
∑

j vj

8: leaderij ↓ leaderij ↔ ui ↔ vj for i, j → [N ]

9: Cijkl ↓ Cijkl +
leaderij

N→1 for i ↗= k, j ↗= l → [N ]

10: for i, j → [N ] do
11: Cijkl ↓ Cijkl +Cklij for i ↗= k, j ↗= l → [N ]

12: Cklij ↓ 0 for i ↗= k, j ↗= l → [N ]

13: u,v, ↓ hungarian matching(Ci,j,[N ]\{i},[N ]\{j})

14: Cijij ↓
∑

k uk +
∑

l vl

15: Cijkl ↓ Cijkl ↔ uk ↔ vl for i ↗= k, j ↗= l → [N ]

Algorithm 2 Factorized Hahn-Grant solver (Ours)

1: Input: C(1),C(2) → IRN↓N
↔0 symmetric cost tensors

2: Output: l ↑ argminP↗PN

∑N
i,j,k,l=1 C

(1)
ik C(2)

jl PijPkl,
P↘ → PN permutation matrix

3: l ↓ 0; U,V ↓ 0N↓N↓N→1; leaderij ↓ C(1)
ii C(2)

jj

4: P↘ ↓ primal heuristic(C(1),C(2))
5: while not converged do
6: u,v,P ↓ lap solver(leader)
7: P↘ ↓ better(P↘,P)
8: l ↓ l +

∑
i ui +

∑
j vj

9: leaderij ↓ leaderij ↔ ui ↔ vj for i, j → [N ]

10: Uijk ↓ Uijk ↔ leaderij
N→1 for k ↗= i, j → [N ]

11: for i, j → [N ] do
12: Ctmp

kl ↓ 2C(1)
ik C(2)

jl ↔Uijk ↔Vijl ↔Ukli ↔Vklj

for i ↗= k, j ↗= l → [N ]
13: u,v,P ↓ lap solver(Ctmp)
14: P↘ ↓ better(P↘,P)
15: leaderij ↓

∑
k uk +

∑
l vl

16: Uijk ↓ Uijk + uk for i ↗= k → [N ]
17: Vijl ↓ Vijl + vl for j ↗= l → [N ]

Figure 10. The Hahn-Grant solver (left) and the factorized Hahn-Grant solver (ours, right): The Hahn-Grant solver [13] iteratively
improves the dual bound of the QAP by solving linear assignment problems (LAPs). Our solver improves the memory requirements of the
Hahn-Grant solver for factorized cost matrices, introduces a primal heuristic that reuses the assignment from the LAPs, and uses a faster
solver for the LAPs.

remains the same. By definition of Ctmp, it follows, that
Cijkl = Ctmp

kl and the Hungarian matching produces the
same values for both algorithms. As the next step, the ob-
jective value is added to the leader in Algorithm 1 by
first adding it to Cijij in Line 14 and then to leaderij

in Line 5 in the next iteration. In Algorithm 2, this value
is directly added to leaderij . Finally, the dual variables
are subtracted from the cost in Line 15 of Algorithm 1 and
Line 16 and Line 17 of Algorithm 2. This preserves the
sum:

Cijkl +Cklij =

= Cprev
ijkl → uk → vl +Cprev

klij → ui → vj

= 2C
(1)
ik C

(2)
jl →U

prev
ijk → uk →V

prev
ijl → vl

→U
prev
kli → ui →V

prev
klj → vj

= 2C
(1)
ik C

(2)
jl →Uijk →Vijl →Ukli →Vklj .

(31)

Therefore, each iteration in both algorithms changes the
costs in an equivalent way. As a result, the final bound l
and each solution to the LAPs are the same. ↭

In practice, we can also remove the non-negativity con-
straint because adding a constant to C(1) or C(2) leads to
an equivalent optimization problem with an additional con-

stant term, i.e.

N∑

i,j,k,l=1

(C(1)
ik + c)C(2)

jl PijPkl = (32)

=
N∑

i,j,k,l=1

C(1)
ik C(2)

jl PijPkl + c
N∑

j,l=1

C(2)
jl .

Therefore, we can subtract the minimal element from both
matrices, apply the algorithm to the resulting non-negative
matrices, and subtract the constant from Eq. (32) to the final
objective value to retrieve the optimal objective value of the
original problem.

D.2. Implementation details
We implement both Algorithm 2 and Algorithm 1 in Python
using PyTorch [55]. The main computational bottleneck is
the LAP solver. Therefore, we use a custom C++ algorithm
for the forward-reverse auction [56] algorithm and for the
Jonker-Volgenant algorithm [19, 31]. We stop the algorithm
if the relative or absolute improvement of the dual bound l
is smaller than ε = 1e→ 6 or the primal objective is within
ε of the dual bound. Finally, for the auction algorithm, a
larger relaxation εauc usually leads to a faster runtime with
the drawback of worse objectives and dual vectors. The
Hahn-Grant algorithm also works for suboptimal dual vec-
tors, but we observe that towards the end of the algorithm,



Solver Cost Bound

Hahn-Grant -1.979877 –
+ factorized -1.979875 → 2.0e→6 -2.089994 →
+ auction -1.979871 → 4.3e→6 -1.981942 → 1.1e→1

+ Jonker-Volgenant -1.979878 ↑ ↓7.3e→6 -1.980387 → 1.6e→3

+ LAP solutions -1.979914 ↑ ↓3.5e→5 -1.980387 =

+ primal heuristic -1.980015 ↑ ↓1.0e→4 -1.980387 =

Table 4. Cost and bounds for our Hahn-Grant adaptation
(N = 100): The factorization and the auction algorithm slightly
increase the cost of the solution, while leading to a small bound.
The Jonker-Volgenant and especially the LAP solutions and pri-
mal heuristics also lead to better primal solutions.

better solutions in the LAPs are required. Therefore, we
initialize εauc = 0.1 relatively high in the beginning and
multiply it with a factor of 0.9 in every iteration.

D.3. Ablations
Setup. We compare the original Hahn-Grant solver with
our adaptation from Sec. 4: the factorization into matrices
C(1) and C(2), using the auction algorithm or the Jonker-
Volgenant as faster LAP solvers (Line 6 and Line 13), eval-
uating the individual LAP primal solutions (Line 7 and
Line 14), and using primal heuristics (Line 4). For these
experiments, we generate two sets with 100 vectors of di-
mensionality 1024 each, drawn element-wise from a stan-
dard normal distribution. These vectors are normalized,
and the pairwise inner product is computed to produce two
100⇑100 similarity matrices. We apply all variations of the
algorithms with a time limit of two hours to these cost ma-
trices and evaluate the quality of the primal solutions and of
the bound. We repeat the experiment with 5 random seeds
and average the results. We also repeat the experiment with
a set of 40 random vectors and a time limit of one hour.
Results. Tab. 4 shows the result for each adaptation for
size 100 and Tab. 5 for size 40. We observe that the original
Hahn-Grant solver reaches a non-trivial primal-dual bound
for size 40 but does not finish the first iteration within the
two hour time limit for size 100. Even though factorization
was introduced for improved memory, it also slightly speeds
up the computation, leading to a smaller bound for both
sizes. The small increase in the objective for size 100 can
be explained by the fact that the returned primal estimate
is only the primal solution of the LAP for the leader.
Therefore, the quality of this estimate can vary with ev-
ery iteration. The auction and Jonker-Volgenant algorithms
were introduced to improve the speed of the algorithm and,
therefore, lead to smaller bounds. However, the Jonker-
Volgenant algorithm leads to the tightest bounds empirically
for large problems while the auction algorithm is slightly
better on the size 40 problem. The LAP solutions do not
change the dual estimate but improve the primal solution by

Solver Cost Bound

Hahn-Grant -1.950160 -2.245823
+ factorized -1.950166 ↑ ↓6.0e→6 -1.951418 → 2.9e→1

+ auction -1.950197 ↑ ↓3.2e→5 -1.950586 → 8.3e→4

+ Jonker-Volgenant -1.950197 → 3.9e→7 -1.950623 ↑ ↓3.8e→5

+ LAP solutions -1.950268 ↑ ↓7.0e→5 -1.950623 =

+ primal heuristic -1.950360 ↑ ↓9.2e→5 -1.950623 =

Table 5. Cost and bounds for our Hahn-Grant adaptation
(N = 40): Our adaptations exhibit strong benefits either in terms
of the solution cost or the tightness of the bound, frequently both.
The auction algorithm leads to tighter bounds than the Jonker-
Volgenant algorithm.

a significant margin. Finally, the primal heuristics further
improve the primal solution. Since we are mostly interested
in good primal solutions and measuring the quality of the
solution, we use the algorithm with all the adaptations.

E. Experimental details
In this section, we provide more details supplementing the
experiments in Sec. 5, which were excluded from the main
text due to space constraints.

Our method only assumes pre-computed embeddings
(or already pre-computed similarity matrices). Therefore,
we are not limited to specific architectures or pre-training
strategies. Our goal is to choose a variety of different archi-
tectures, pre-trainings, and model sizes for both modalities.
Vision models. We consider self-supervised, fully-
supervised and vision-language supervised models with
convolutional and vision transformer architectures of dif-
ferent capacities. For self-supervised methods, we
consider different models from DINO [3] trained on
ImageNet-1k [44] and models from DINOv2 [36] trained
on LVD-142M. For supervised models, DeiT [48] and
ConvNeXt [27] pre-trained on ImageNet-1k, ImageNet-
22k [44] and a a combination of both are used. Further-
more, we choose CLIP [42] as our vision-language model
with both ResNet and ViT backbones. We use the code and
models from the official repository except for ConvNeXt,
where we use pre-trained models from the timm library. In
total, we use 32 vision models.
Language models. Similar to the vision models, we con-
sider different pre-trainings and network sizes. In particu-
lar, in addition the the CLIP [42] text models, contrastive
learning, question-answer models, and average word em-
beddings are considered. We use the official CLIP reposi-
tory for all CLIP text models and the SentenceTransform-
ers [43] library for all other models. In total, we use 27
language models.
Datasets. We evaluate our experiments on CIFAR-10 [23],
CINIC-10 [9], CIFAR-100 [23], and ImageNet-100 [44].
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Figure 11. Matching accuracy and Mutual k-NN on CIFAR-10 and CINIC-10: Larger models do not necessarily lead to stronger
alignment with language. Instead, it is the pre-training method that characterizes the vision-language alignment most. Here, DINOv2
yields the highest matching accuracy for both datasets and language models.

For ImageNet-100, we use the validation split and for all
other datasets, we use the test split. We choose the same
class names and prompts as ASIF [35] whenever available,
and follow the same preprocessing as CLIP otherwise. For
ImageNet-100, we observed an improved performance by
encoding each class as “<name>: <definition>“ using the
WordNet definitions and more descriptive class names.

General setup. We implement all experiments in Python
with PyTorch [55]. In general, we pre-compute the embed-
dings for each vision and language model and every dataset
using PyTorch Lightning [57]. We do not use GPUs ex-
cept for precomputing the embeddings. After computing
the image-wise embeddings, we normalize them and aver-
age them for every class, see Eq. (1). The resulting object-
wise embedding is again normalized. To evaluate the im-
pact of small changes in the embeddings (and pairwise sim-
ilarities), we only take a random subset of the image repre-
sentations to compute the average. In particular, we use a
half of the embeddings drawn uniformly for every random
seed. For the language embeddings, we take the average
over the embeddings for all different prompts.

Small-scale matching. We use 20 random seeds and all
models on CIFAR-10 and CINIC-10 for small-scale match-

ing. In each experiment, we enumerate all permutations and
compute all costs explicitly, returning the permutation with
the minimal cost. The comparison of all combinations of
vision and language models is given in Appx. F.1.

Larger-scale matching. For larger-scale matching, we
use different subsets of classes using the optimization prob-
lem introduced in Sec. 4.2 solved with Gurobi [12]. For
each problem size N ↔ {10, 20, . . . , 100}, we use the
10 best subset of classes, each with 3 random seeds for
computing the object-level vision embeddings. We use
our factorized Hahn-Grant solver and a time limit of one
hour for each matching problem. The models are DINOv2
ViT-G/14, CLIP ViT-L/14@336px, and the distilled DeiT-
B/16@384px with all-mpnet-base-v2.

Solver comparison. We evaluate the solvers both on
small-scale and larger-scale matching. For small-scale
matching, we use 20 random seeds for DINOv2 ViT-
G/14, CLIP ViT-L/14@336px, and the distilled DeiT-
B/16@384px with all-mpnet-base-v2 and All-Roberta-
large-v1 on CIFAR-10 and CINIC-10. We present the re-
sults for all combinations in F.3. The larger-scale bench-
mark follows the setting of larger-scale matching, but only
considers one out of the ten subsets and one random seed



Solver Accuracy (%) Matching Accuracy (%)

Random 12.1±10.3 12.5±11.6
LocalCKA 9.1±7.0 8.0±7.7
OT 5.4±9.5 4.5±9.4
FAQ 6.5±8.7 6.0±9.9
MPOpt 16.0±21.4 17.0±23.9
Ours 46.7±3.4 51.5±3.7
GT 85.2±0.6 100.0±0.0

Table 6. Solver comparison on unsupervised classification: Us-
ing DeiT and All-Roberta-large-v1, we show the accuracy of the
unsupervised classifier for different solvers. The right column fur-
ther shows how many of the centroids are mapped to the best class
for the given cluster in line with the matching accuracy from the
unsupervised matching experiments. Our QAP solver achieves a
considerably higher matching and classification accuracy than the
other methods.

for CIFAR-100 using CLIP CLIP ViT-L/14@336px and all-
mpnet-base-v2 with a time limit of 1.5 hours.
Unsupervised classifier. For unsupervised classification,
we use K-Means [28] to cluster image embeddings into pro-
totype (object) embeddings. We use K-Means++ [58] from
Scikit-learn [54] with 100 initializations. The cluster cen-
ters are then matched to the language embeddings using
our factorized Hahn-Grant solver. Similar to the previous
experiments, we only use a random 50% subset of the vi-
sion embeddings and evaluate the method for 20 random
seeds. We report the results for DINOv2 ViT-G/14, CLIP
ViT-L/14@336px, and the distilled DeiT-B/16@384px with
all-mpnet-base-v2 and All-Roberta-large-v1 on CIFAR-10.

F. Evaluation results
Following up on Sec. 5, we report the results for all vision
and language models in the small-scale matching setting
(cf . Appx. F.1) and benchmark of the different solvers using
multiple datasets and models (cf . Appx. F.2 and Appx. F.3).

F.1. Comparison of vision and language models
In this section, we report the results on the small-scale
matching, spanning all vision and language models in our
study. The results show, in particular, that DINOv2 outper-
forms the other models on both datasets and that the model
size is less important than the pre-training method.

In Fig. 11, we show the matching accuracy (top) and
Mutual k-NN with k = 5 (bottom) of each vision model
in combination with All-Roberta-large-v1 (left) and all-
mpnet-base-v2 (right) for CIFAR-10 (left) and CINIC-10
(right). The lines show the trend for increasing model sizes
that are fitted to the models of varying capacity for each
model class (different colors). The model size corresponds
to the number of parameters. First, we observe that for both
datasets and language models, DINOv2 yields the highest
matching accuracy. Furthermore, for every model class,

there is no a clear propensity of larger models to perform
better. As this seems to contradict the platonic representa-
tion hypothesis Huh et al. [17], we report the Mutual k-NN
in the bottom plots. We observe that in line with our conclu-
sions, there is still no clear improvement of the Mutual k-
NN metric w.r.t. an increasing model capacity. This implies
that larger models do not necessarily lead to stronger align-
ment with language – at least on CIFAR-10 and CINIC-10.
Considering the observations by Huh et al. [17], this sug-
gests that scaling the models could lead to a better align-
ment on the Wit dataset [59], even though it may not be suf-
ficient to improve the alignment on every other dataset. We
report the individual matching accuracy of each combina-
tion of vision and language model for CIFAR-10 in Fig. 12
and for CINIC-10 in Fig. 13.

F.2. Unsupervised classification: solver comparison
We also compare the solvers on the unsupervised classifi-
cation setting in Tab. 6. In addition to the classification
accuracy, we also report the matching accuracy. Given a
clustering and the ground truth labels, we compute the op-
timal ground truth matching. The matching accuracy evalu-
ates how well our unsupervised matching coincides with the
ground truth matching. Finally, we report the performance
when the ground truth matching is used instead of our unsu-
pervised matching to evaluate the quality of the clustering.

Similar to the unsupervised matching experiments, we
observe that our solver outperforms the other solvers in
terms of both classification accuracy and matching accu-
racy. This means that our solver finds matches that agree
well with the ground truth matches. We also observe that
the k-means clustering is not perfect, and approximately
15% of the images are clustered in the wrong clusters. This
hurts our clustering in two ways. First, since only whole
clusters are assigned to classes, misclassified images will
remain in the respective (wrong) cluster. Second, incorrect
samples distort the centroids, which in turn can further af-
fect the pairwise distances, leading to a worse matching.
However, even with imperfect centroids, our matching finds
non-trivial matches and leads to the first non-trivial unsu-
pervised classification, which was not possible using previ-
ous local solvers.

F.3. Comparison of solvers on small-scale problems
Similar to Tab. 1, we benchmark different solvers for all
combinations in Tab. 7. Our factorized Hahn-Grant solver
and Gurobi [12] find the global optimum for all prob-
lems. For most combinations, these solvers are also the
only solvers finding the global optimum. MPOpt [18] also
finds the global optimum for some problems (e.g., CIFAR-
10 with DINOv2) but fails for other problems (e.g., CIFAR-
10 with CLIP). For all but two experiments (CIFAR-10 with
DeiT and all-mpnet-base-v2 and CINIC-10 with DeiT and
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Figure 12. Vision-language alignment accuracy on CIFAR-10: We observe that the pre-training strategy tends to have a more impactful
role on vision-language alignment than the model capacity. Here, DINOv2 and ConvNeXt (e.g. CN-B-1) families exhibits a prominent
degree of image-text alignment.
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Figure 13. Vision-language alignment accuracy on CINIC-10: Here, DINO-based pre-training in conjunction with the CLIP-based text
embedding exhibit a higher degree of conformity.



All-Roberta-large-v1), the global optimum also leads to the
best matching accuracy, which underlines the importance
of the Gromov-Wasserstein distance as a proxy measure for
blind matching. Finally, the matching accuracy is close to
random for most solvers (LocalCKA [30], OT [38], and
FAQ [49]). This shows that a global solver is crucial to
obtain non-trivial results.

G. Optimal transport as QAP solver
We show that optimal transport with uniform source and
target probability distributions is equivalent to relaxing the
QAP with doubly stochastic matrices. In our experiments,
we use this equivalence to compare to the solutions from
optimal transport solvers.

For uniform probability distributions p = q = 1
N , let

T→
↔ argmin

T↑[0,1]N→N

T =p
TT =q

LijklTijTkl (33)

be an optimal transport matrix for the four axes tensor L ↔

IRN↓N↓N↓N . Then, for any other transport matrix T ↔

[0, 1]N↓N with T = p and TT = q, it holds that

LijklTijTkl ⇓ LijklT
→
ijT

→
kl. (34)

Now, we can define our optimal stochastic matrix S→
↔

[0, 1]N↓N by S→ = NT→. This is indeed a stochastic
matrix as NT→

⇓ 0, S→ = NT→ = Np = and
(S→)T = NT→ = Nq = . Moreover, this stochastic
matrix is optimal, because for every other stochastic matrix
S ↔ [0, 1]N↓N ,

LijklSijSkl =N2Lijkl
Sij

N

Skl

N
⇓ (35)

⇓ N2LijklT
→
ijT

→
kl = LijklS

→
ijS

→
kl.

Here, we use the fact that S
N is a valid transport matrix as

S
N = 1

N = p and ST

N = 1
N = q. The other direc-

tion can be derived in a similar way by dividing the doubly
stochastic matrix by N .
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All-Roberta-large-v1 all-mpnet-base-v2
Accuracy (%) Cost Global? (%) Accuracy (%) Cost Global? (%)

C
IF

A
R

-1
0

CLIP Random 8.5±10.4 1.77±0.32 0.0±0.0 8.5±10.4 1.8 ±0.29 0.0±0.0
LocalCKA [30] 9.5±8.87 1.82±0.33 0.0±0.0 12.5±11.64 1.72±0.31 0.0±0.0
OT [38] 11.0±3.08 0.67±0.03 0.0±0.0 0.0±0.0 0.36±0.01 0.0±0.0
FAQ [49] 1.5±3.66 0.78±0.06 0.0±0.0 5.0±8.89 0.36±0.02 20.0±41.04
MPOpt [18] 0.0±0.0 0.51±0.01 0.0±0.0 0.0±0.0 0.6 ±0.01 0.0±0.0
Gurobi [12] 38.0±10.05 0.4 ±0.01 100.0±0.0 22.5±4.44 0.33±0.01 100.0±0.0
Ours 38.0±10.05 0.4 ±0.01 100.0±0.0 22.5±4.44 0.33±0.01 100.0±0.0

DeiT Random 8.5±10.4 1.77±0.29 0.0±0.0 8.5±10.4 1.81±0.27 0.0±0.0
LocalCKA [30] 10.0±9.18 1.85±0.2 0.0±0.0 6.0±6.81 1.77±0.22 0.0±0.0
OT [38] 0.0±0.0 0.84±0.01 0.0±0.0 19.0±3.08 0.28±0.01 30.0±47.02
FAQ [49] 22.5±10.7 0.36±0.13 0.0±0.0 37.0±14.9 0.3 ±0.01 0.0±0.0
MPOpt [18] 0.0±0.0 0.74±0.02 0.0±0.0 0.0±0.0 0.72±0.01 0.0±0.0
Gurobi [12] 57.0±4.7 0.27±0.01 100.0±0.0 26.0±6.81 0.27±0.0 100.0±0.0
Ours 57.0±4.7 0.27±0.01 100.0±0.0 26.0±6.81 0.27±0.0 100.0±0.0

DINOv2 Random 8.5±10.4 1.8 ±0.27 0.0±0.0 8.5±10.4 1.82±0.28 0.0±0.0
LocalCKA [30] 14.0±11.42 1.75±0.31 0.0±0.0 7.5±9.1 1.67±0.24 0.0±0.0
OT [38] 24.5±26.25 0.63±0.44 0.0±0.0 24.0±24.15 1.13±0.54 5.0±22.36
FAQ [49] 34.0±35.3 0.49±0.18 5.0±22.36 39.0±23.82 0.65±0.22 0.0±0.0
MPOpt [18] 100.0±0.0 0.33±0.01 100.0±0.0 72.0±17.65 0.45±0.01 100.0±0.0
Gurobi [12] 100.0±0.0 0.33±0.01 100.0±0.0 72.0±17.65 0.45±0.01 100.0±0.0
Ours 100.0±0.0 0.33±0.01 100.0±0.0 72.0±17.65 0.45±0.01 100.0±0.0

C
IN

IC
-1

0

CLIP Random 8.5±10.4 1.76±0.31 0.0±0.0 8.5±10.4 1.73±0.3 0.0±0.0
LocalCKA [30] 14.5±8.87 1.81±0.25 0.0±0.0 10.0±8.58 1.77±0.27 0.0±0.0
OT [38] 1.5±3.66 1.06±0.13 0.0±0.0 1.5±3.66 0.64±0.11 0.0±0.0
FAQ [49] 27.5±5.5 0.37±0.02 0.0±0.0 1.0±3.08 0.62±0.08 0.0±0.0
MPOpt [18] 39.5±2.24 0.36±0.04 95.0±22.36 49.0±12.1 0.36±0.02 50.0±51.3
Gurobi [12] 40.0±0.0 0.35±0.01 100.0±0.0 60.0±0.0 0.34±0.02 100.0±0.0
Ours 40.0±0.0 0.35±0.01 100.0±0.0 60.0±0.0 0.34±0.02 100.0±0.0

DeiT Random 8.5±10.4 1.73±0.25 0.0±0.0 8.5±10.4 1.74±0.25 0.0±0.0
LocalCKA [30] 9.0±7.88 1.9 ±0.17 0.0±0.0 6.5±8.75 1.66±0.22 0.0±0.0
OT [38] 37.0±6.57 0.38±0.02 0.0±0.0 3.0±4.7 0.51±0.05 0.0±0.0
FAQ [49] 29.5±17.01 0.38±0.07 0.0±0.0 9.0±3.08 0.58±0.04 0.0±0.0
MPOpt [18] 3.5±4.89 0.31±0.01 55.0±51.04 58.0±6.16 0.49±0.01 100.0±0.0
Gurobi [12] 1.0±3.08 0.31±0.01 100.0±0.0 58.0±6.16 0.49±0.01 100.0±0.0
Ours 1.0±3.08 0.31±0.01 100.0±0.0 58.0±6.16 0.49±0.01 100.0±0.0

DINOv2 Random 8.5±10.4 1.79±0.23 0.0±0.0 8.5±10.4 1.76±0.23 0.0±0.0
LocalCKA [30] 10.5±9.45 1.96±0.14 0.0±0.0 13.0±7.33 1.68±0.21 0.0±0.0
OT [38] 50.5±15.72 0.65±0.06 35.0±48.94 14.0±5.03 0.96±0.22 0.0±0.0
FAQ [49] 52.5±13.33 0.65±0.06 0.0±0.0 9.0±10.21 0.91±0.12 0.0±0.0
MPOpt [18] 60.0±0.0 0.6 ±0.02 95.0±22.36 73.0±13.8 0.66±0.03 90.0±30.78
Gurobi [12] 60.0±0.0 0.6 ±0.02 100.0±0.0 77.0±7.33 0.65±0.02 100.0±0.0
Ours 60.0±0.0 0.6 ±0.02 100.0±0.0 77.0±7.33 0.65±0.02 100.0±0.0

Table 7. Vision-language alignment on CIFAR-10 and CINIC-10. Our QAP solver achieves predominantly favourable matching ac-
curacy, cost and optimality guarantees – even in comparison to proprietary solvers (Gurobi). This holds across two datasets and three
pre-trained models: CLIP, DeiT and DINOv2.


