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A. Related Work

The landscape of diffusion models [32, 71–73] has rapidly
evolved in the last few years, with modern models trained
on web-scale datasets [4, 17, 60, 61]. In contrast to training
in pixel space [48, 61], the majority of large-scale diffu-
sion models are trained in a compressed latent space, thus
referred to as latent diffusion models [60]. Similar to auto-
regressive models, transformer architectures [83] have also
been recently adopted for diffusion-based image synthesis.
While earlier models commonly adopted a fully convolu-
tional or hybrid UNet network architecture [14, 48, 60, 61],
recent works have demonstrated that diffusion transform-
ers [52] achieve better performance [4, 8, 17]. Thus, we
also use diffusion transformers for modeling latent diffu-
sion models.

Since the image captions in web-scale datasets are often
noisy and of poor quality [6, 64], recent works have started
to recaption them using vision-language models [42, 44,
84]. Using synthetic captions leads to significant improve-
ments in the diffusion models’ image generation capabil-
ities [4, 8, 17, 24]. While text-to-image generation mod-
els are the most common application of diffusion models,
they can also support a wide range of other conditioning
mechanisms, such as segmentation maps, sketches, or even
audio descriptions [86, 89]. Sampling from diffusion mod-
els is also an active area of research, with multiple novel
solvers for ODE/SDE sampling formulations to reduce the
number of iterations required in sampling without degrad-
ing performance [35, 37, 45, 72]. Furthermore, the lat-
est approaches enable single-step sampling from diffusion
models using distillation-based training strategies [63, 75].
The sampling process in diffusion models also employs
an additional guidance signal to improve prompt align-
ment, either based on an external classifier [14, 48, 65] or
self-guidance [31, 38]. The latter classifier-free guidance
approach is widely adopted in large-scale diffusion mod-
els and has been further extended to large-language mod-
els [62, 90].

Since the training cost of early large-scale diffusion
models was noticeably high [47, 58, 60], multiple previ-
ous works focused on bringing down this cost. Gokaslan
et al. [24] showed that using common tricks from effi-
cient deep learning can bring the cost of stable-diffusion-2
models under $50K. Chen et al. [8] also reduced this cost
by training a diffusion transformer model on a mixture of
openly accessible and proprietary image datasets. Cascaded
training of diffusion models is also used by some previous
works [25, 53, 61], where multiple diffusion models are em-

ployed to sequentially upsample the low-resolution genera-
tions from the base diffusion model. A key limitation of cas-
caded training is the strong influence of the low-resolution
base model on overall image fidelity and prompt alignment.
Most recently, Pernias et al. [53] adopted the cascaded train-
ing approach (Würstchen) while training the base model in a
42× compressed latent space. Though Würstchen achieves
low training cost due to extreme image compression, it also
achieves significantly lower image generation performance
on the FID evaluation metric. Alternatively, patch masking
has been recently adopted as a means to reduce the compu-
tational cost of training diffusion transformers [22, 91], tak-
ing inspiration from the success of patch masking in con-
trastive models [26]. Patch masking is straightforward to
implement in transformers, and the diffusion transformer
successfully generalizes to unmasked images in inference,
even when patches for each image were masked randomly
during training.

B. Additional Details on Experimental Setup

We use DiT-Tiny/2 and DiT-Xl/2 diffusion trans-
former architectures [52] for small and large scale training
setups, respectively. We use four and six transformer blocks
in the patch-mixer for the DiT-Tiny/2 and DiT-Xl/2
architectures, respectively. The patch-mixer comprises ap-
proximately 13% of the parameters in the backbone diffu-
sion transformer. We use half-precision layernorm normal-
ization and SwiGLU activation in the feedforward layers for
all transformers. Initially, half-precision layernorm led to
training instabilities after 100K steps of training. Thus, we
further apply layer normalization to query and key embed-
dings in the attention layers [11], which stabilizes the train-
ing. We reduce the learning rate for expert layers by half,
as each expert now processes a fraction of all patches. We
provide an exhaustive list of our training hyperparameters
in Table 3. We use the default configuration for EDM [37]
diffusion framework (σmax = 80, σmin = 0.002, Smax =
∞, Snoise = 1, Smin = 0, Schurn = 0), except that we in-
crease σdata to match the standard deviation of our image
datasets in latent space. We generate images using deter-
ministic sampling from Heun’s 2nd order method [20, 37]
with 30 sampling steps. Unless specified, we use classifier-
free guidance of 3 and sample 30K images in quantita-
tive evaluation on the cifar-captions dataset. We reduce
the guidance scale to 1.5 for large-scale models. We find
that these guidance values achieve the best FID score under
the trade-off of FID and Clip-score. In qualitative genera-
tions, we recommend using a guidance scale of 5 for better



photorealism and prompt adherence. By default, we use
512 × 512 pixel resolution when generating synthetic im-
ages from large-scale models and 256 × 256 pixel resolu-
tion with small-scale models trained on the cifar-captions
dataset.

We consider the computation of text embeddings for
captions and latent compression of images as a one-time
cost that amortizes over multiple training runs of a diffu-
sion model. Thus, we compute them offline and do not ac-
count for these costs in our estimation of training costs. We
use a four-channel variational autoencoder (VAE) from the
Stable-Diffusion-XL [54] model to extract image latents.
We also consider the latest 16-channel VAEs to test their
performance in large-scale micro-budget training [17]. We
use the EDM framework from Karras et al. [37] as a unified
training setup for all diffusion models.

We conduct all experiments on an 8×H100 GPU node.
We train and evaluate all models using bfloat16 mixed-
precision mode. We did not observe a significant speedup
when using FP8 precision with the Transformer Engine
library2. We use PyTorch 2.3.0 [51] with PyTorch na-
tive flash-attention-2 implementation. We use the Deep-
Speed [59] flops profiler to estimate total FLOPs in training.
We also use just-in-time compilation (torch.compile)
to achieve a 10-15% speedup in training time. We use
StreamingDataset [79] to enable fast data loading.

Table 2. Comparing the computational cost and storage over-
head of CLIP [18, 55] and T5 [56, 77] text encoders. We use the
state-of-the-art CLIP model from Fang et al. [18]. We report the
compute and storage cost for one million image captions. Even
though T5 embeddings achieve better generation quality, espe-
cially for text generation, computing them is an order of magni-
tude slower than CLIP embeddings and even precomputing them
for our dataset (37M images) poses high storage overheads (36.4
TB). In this table, we use one H100 GPU to estimate the time to
process 1M image captions. We save the embeddings in float16
precision.

Text encoder Sequence length Embedding size Time (min:sec) Storage (GB)

CLIP (ViT-H-14) 77 1024 3:20 157
T5 (T5-xxl) 120 4096 33:04 983

Choice of text encoder. To convert discrete token se-
quences in captions to high-dimensional feature embed-
dings, two common choices of text encoders are CLIP [33,
55] and T5 [56], with T5-xxl3 embeddings narrowly out-
performing equivalent CLIP model embeddings [61]. How-
ever, T5-xxl embeddings pose both compute and storage
challenges: 1) Computing T5-xxl embeddings costs an or-
der of magnitude more time than a CLIP ViT-H/14 model
while also requiring 6× more disk space for pre-computed
embeddings. Overall, using T5-xxl embeddings is more de-

2https://github.com/NVIDIA/TransformerEngine
3https://huggingface.co/DeepFloyd/t5-v1_1-xxl

manding (Table 2). Following the observation that large
text encoders trained on higher quality data tend to perform
better [61], we use state-of-the-art CLIP models as text en-
coders [18]4.
Training process. We use a DiT-Xl/2 transformer with
eight experts in alternate transformer blocks for our large-
scale training setup. We provide details on training hyper-
parameters in Table 3. We conduct the training in following
two phases. We refer to any diffusion transformer trained
using our micro-budget training as MicroDiT.

• Phase-1: In this phase, we pretrain the model on 256×
256 resolution images. We train for 250K optimization
steps with 75% patch masking and finetune for another
30K steps without any patch masking.
• Phase-2: In this phase, we finetune the Phase-1 model
on 512 × 512 resolution images. We first finetune the
model for 50K steps with 75% patch masking followed
by another 5K optimization steps with no patch masking.

Cost analysis. We translate the wall-clock time of training
to financial cost using a $30/hour budget for an 8×H100
GPU cluster. Since the cost of H100 fluctuates signifi-
cantly across vendors, we base our estimate on the com-
monly used cost estimates for A100 GPUs [8], in particu-
lar $1.5/A100/hour5. We observe a 2.5x reduction in wall-
clock time on H100 GPUs, thus assume a $3.75/H100/hour
cost. We also report the wall-clock time to benchmark the
training cost independent of the fluctuating GPU costs in
the AI economy.
Datasets. We use the following five datasets, comprising a
total of 37 million images, to train our large-scale models.
• Conceptual Captions (real). This dataset was released by

Google and includes 12M pairs of image URLs and cap-
tions [7]. Our downloaded version of the dataset includes
10.9M image-caption pairs.

• Segment Anything-1B (real). Segment Anything com-
prises 11.1M high-resolution images originally released
by Meta for segmentation tasks [40]. Since the images
do not have corresponding real captions, we use synthetic
captions generated by the LLaVA model [8, 44].

• TextCaps (real). This dataset comprises 28K images with
natural text in the images [68]. Each image has five as-
sociated descriptions. We combine them into single cap-
tions using the Phi-3 language model [1].

• JourneyDB (synthetic). JourneyDB is a synthetic im-
age dataset comprising 4.4M high-resolution Midjourney
image-caption pairs [76]. We use the train subset (4.2M
samples) of this dataset.

• DiffusionDB (synthetic). DiffusionDB is a collection of
14M synthetic images generated primarily by Stable Dif-
fusion models [85]. We filter out poor quality images

4We use the DFN-5B text encoder: https://huggingface.co/
apple/DFN5B-CLIP-ViT-H-14-378

5https://cloud-gpus.com/



Table 3. Training hyperparameters. Hyperparameters across both phases of our large-scale training setup.

Resolution 256× 256 (Phase-I) 512× 512 (Phase-II)

Masking ratio 0.75 0 0.75 0
Training steps 250000 30000 50000 5000

Batch size 2048 2048 2048 2048
Learning rate 2.4× 10−4 8× 10−5 8× 10−5 8× 10−5

Weight decay 0.1 0.1 0.1 0.1
Optimizer AdamW AdamW AdamW AdamW

Momentum β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999
Optimizer epsilon 1× 10−8 1× 10−8 1× 10−8 1× 10−8

Lr scheduler Cosine Constant Constant Constant
Warmup steps 2500 0 500 0

Gradient clip norm 0.25 0.25 0.5 0.5
EMA no ema no ema 0.99975 0.9975
Hflip False False False False

Precision bf16 bf16 bf16 bf16
Layernorm precision bf16 bf16 bf16 bf16

QK-normalization True True True True
(Pmean, Pstd) (−0.6, 1.2) (−0.6, 1.2) (0, 0.6) (0, 0.6)

from this dataset, resulting in 10.7M samples, and use
this dataset only in the first phase of training.

CIFAR-Captions. We construct a text-to-image dataset,
named cifar-captions, that closely resembles the existing
web-curated datasets and serves as a drop-in replacement
of existing datasets in our setup. Cifar-captions is closed-
domain and only includes images of ten classes (airplanes,
cars, birds, cats, deer, dogs, frogs, horses, ships, and
trucks), imitating the widely used CIFAR-10 classification
dataset [41]. In contrast to other small-scale text-to-image
datasets that are open-world, such as subsets of conceptual
captions [7], we observe fast convergence of diffusion mod-
els on this dataset. We create this dataset by first down-
loading 120M images from the coyo-700M [6] dataset. We
observe a success rate of approximately 60% at the time
of downloading the dataset. Next, we use a ViT-H-14 [18]
to measure CLIP score by averaging it over the eighteen
prompt templates (such as ‘a photo of a {}.’) used in the
original CLIP model [55]. We select images with CLIP
scores higher than 0.25 ( 1.25% acceptance rate) that re-
sults in a total of 1.3M images. As the real captions are
highly noisy and uninformative, we replace them with syn-
thetic captions generated with an LLaVA-1.5 model [44].
Billion-image synthetic dataset. To capture the asymptotic
performance of training solely on synthetic images, we also
consider a dataset comprising 1B images generated from
diffusion models6. It mainly includes generations from var-
ious versions of stable diffusion models and their adapta-
tions.
Evaluation metrics. We use the following evaluation met-
rics to assess the quality of synthetic images generated by
the text-to-image models.
• FID. Fréchet Inception Distance (FID) measures the 2-

6https://huggingface.co/datasets/bigdata- pw/
Diffusion1B

Wasserstein distance between real and synthetic data dis-
tributions in the feature space of a pretrained vision
model. We use the clean-fid7 [50] implementation for a
robust evaluation of the FID score.

• Clip-FID. Unlike FID that uses an Inception-v3 [78]
model trained on ImageNet [12], Clip-FID uses a
CLIP [55] model, trained on a much larger dataset than
ImageNet, as an image feature extractor. We use the de-
fault ViT-B/32 CLIP model from the clean-fid library to
measure Clip-FID.

• Clip-score. It measures the similarity between a caption
and the generated image corresponding to the caption. In
particular, it measures the cosine similarity between nor-
malized caption and image embeddings calculated using
a CLIP text and image encoder, respectively.

Human preference based evaluation. We ask each indi-
vidual to choose one of the two given images based on the
following criteria: 1) choose based on image quality in the
absence of the prompt, and 2) choose based on the align-
ment between the prompt and the generated images. We use
the identical prompt to sample from both models. We re-
port the win rate based on the percentage of comparisons in
which the image from the winning model is preferred over
the other model. We further follow the evaluation pipeline
of Betker et al. [4] and use DrawBench extended prompts
to generate samples. We slightly compress these prompts
to accommodate the 77-token context window of CLIP text
encoders. We list these prompts at the end of the paper.

C. Background on Layer-wise Scaling and
Mixture-of-experts

Layer-wise scaling. In contrast to using identical trans-
former blocks throughout the network, layer-wise scaling

7https://github.com/GaParmar/clean-fid
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Figure 6. Overall architecture of our diffusion transformer. We
prepend the backbone transformer model with a lightweight patch-
mixer that operates on all patches in the input image before they
are masked. Following contemporary works [4, 17], we process
the caption embeddings using an attention layer before using them
for conditioning. We use sinusoidal embeddings for timesteps.
Our model only denoises unmasked patches, thus the diffusion loss
(Eq. 3) is calculated only on these patches. We modify the back-
bone transformer using layer-wise scaling on individual layers and
use mixture-of-expert layers in alternate transformer blocks.

dynamically increases the transformer block size with the
depth of the network. In a text-to-image transformer, each
block consists of a self-attention layer, a cross-attention
layer, and a feedforward layer. Layer-wise scaling increases
the hidden dimension of feedforward layers by a factor
mf , thus linearly increasing the number of parameters and
FLOPs of the feedforward block. Similarly, layer-wise scal-
ing dynamically increases the number of heads in the at-
tention layers by scaling the embedding size by a factor
of ma. By default, ma = 1.0 and mf = 4.0 lead to a
canonical transformer network. We use ma ∈ [0.5, 1.0] and
mf ∈ [0.5, 4.0] to reduce the size of transformer blocks.
Note that we do not apply any scaling to cross-attention lay-
ers (ma = 1.0, mf = 4.0) to avoid degrading the control-
lability of captions on image generation.
Mixture-of-experts. Mixture-of-experts enable the con-
struction of much larger transformers, referred to as sparse
transformers, with minimal impact on the training and infer-
ence cost, thus making them highly applicable for micro-
budget training. A sparse model modifies the transformer
block to include replicas of the feedforward layer, referred
to as experts. The input patch embeddings to the feedfor-
ward layers are first fed into a router that determines the

configuration of patches processed by each expert. We use
the expert-choice (EC) routing mechanism [92] where each
expert selects the top-k patches using the importance score
determined by the routing network for each expert (Fig-
ure 7). We favor EC routing over conventional routing due
to its simplicity, as it does not require any auxiliary loss to
balance the load across experts [67, 93]. We use a linear
layer as a router and it is trained jointly with the rest of the
network.

p1 p2 pn

Expert-1 Expert-2

Top-k patches

Router Router

Figure 7. Mixture-of-experts (MoE). Expert-choice routing
based mixture-of-experts [92]. Each patch is passed to a patch
router that determines the top-k patches routed to each expert.

D. Additional Results on Effectiveness of De-
ferred Masking

In this section, we supplement the results and discussion
from the main paper on evaluating the effectiveness of de-
ferred masking. We use the DiT-Tiny/2 model and the
cifar-captions dataset (256 × 256 image resolution) for all
experiments in this section. We train each model for 60K
optimization steps using the AdamW optimizer and expo-
nential moving average with a 0.995 smoothing coefficient
enabled for the last 10K steps.

D.1. Out-of-the-box performance: Making high
masking ratios feasible with deferred mask-
ing

In this section, we provide further details on the out-of-the-
box performance of deferred masking. We evaluate its out-
of-the-box performance with common training parameters
for up to 87.5% masking ratios. As a baseline, we train
a network with no patch-mixer, i.e., naive masking (Fig-
ure 2c) for each masking ratio.

We use commonly used default hyperparameters to sim-
ulate the out-of-the-box performance for both our approach
and the baseline. We train both models with the AdamW
optimizer with an identical learning rate of 1.6 × 10−4,
0.01 weight decay, and a cosine learning rate schedule.
We set (Pmean, Pstd) to (−1.2, 1.2) following the original
work [37]. We provide the results in Figure 8.
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Figure 8. Out-of-the-box performance of deferred masking. Without any hyperparameter optimization, we compare the performance
of our deferred masking with a naive masking strategy. We find that deferred masking, i.e., using a patch-mixer before naive masking,
tremendously improves image generation performance, particularly at high masking ratios.

(a) Ablating the choice of β2 in AdamW optimizer. Unlike the LLM training
where β2 if often set to 0.95 [5, 81], we find that image generation quality
consistently degrades as we reduce β2.

β2 FID (↓) Clip-FID (↓) Clip-score (↑)

0.999 8.53 4.85 26.88
0.99 8.63 4.94 26.75
0.95 8.71 5.02 26.71
0.9 8.81 5.13 26.61

(b) Ablating the choice of weight-decay in AdamW optimizer. In resonance
with transformer training in LLMs, we observe improvement in perfor-
mance with increase in weight decay regularization.

wd FID (↓) Clip-FID (↓) Clip-score (↑)

0.00 8.77 5.03 26.82
0.01 8.73 5.03 26.82
0.03 8.53 4.85 26.88
0.10 8.38 4.90 27.00

(c) Ablating the parameters of noise distribution. We used patch-mixer
with 0.999 β2 and 0.1 weight decay. We observe a tradeoff between FID
and Clip-score in first two choices and set (m, s) to (−0.6, 1.2) in all
followup experiments.

(m, s) FID (↓) Clip-FID (↓) Clip-score (↑)

(−1.2, 1.2) 8.38 4.90 27.00
(−0.6, 1.2) 8.49 4.93 27.47
(−0.6, 0.6) 9.05 6.72 26.95
(−0.25, 0.6) 10.44 7.51 27.46
(0.0, 0.6) 12.76 9.00 27.40

(d) Ablating the block-size in block sampling. We observe consistent per-
formance degradation with block masking (at 75% masking ratio). At block
size of 8 (latent image with 16× 16 = 256 patches), block sampling sam-
pling collapse to sampling a quadrant, thus we sample a single continuous
square patch for it.

Block − size FID (↓) Clip-FID (↓) Clip-score (↑)

1 8.49 4.93 27.47
2 8.89 4.64 27.42
4 9.80 5.09 26.91

square 12.71 7.11 26.14

(e) Ablating the size of patch-mixer. We increase the width of path em-
beddings, while also varying the multipliers for attention layers (ma) and
feedforward layers (mf ). We also report the total wall-clock time (in
hours:minutes) for training.

(w,ma,mb) Time FID (↓) Clip-FID (↓) Clip-score (↑)

(384, 0.5, 0.5) 3:19 8.49 4.93 27.47
(384, 1.0, 4.0) 3:20 7.72 4.80 27.72
(512, 1.0, 4.0) 3:24 7.40 4.57 27.79
(768, 1.0, 4.0) 3:39 7.09 4.39 27.76

(f) Ablating the choice of feedforward layers: GELU vs SwiGLU activation.
We find that replacing GELU activation with a SwiGLU based activation in
feedforward layer improves all three performance metrics. SwiGLU activa-
tion is also commonly used in transformers for large language models [81].

Block − size FID (↓) Clip-FID (↓) Clip-score (↑)

GELU 7.82 4.61 27.33
SwiGLU 7.40 4.57 27.79

(g) Testing the cyclic learning rate scheduler. We consider the cosine learn-
ing rate with warm restarts, while varying the duration of the base cycle (t)
and the multiplier (mt), where the duration of each subsequent cycle in-
creases by the multiplier factor.

lr schedule FID (↓) Clip-FID (↓) Clip-score (↑)

1-cycle (t = 60,000,mt = 1) 7.40 4.57 27.79
3-cycles (t = 20,000,mt = 1) 7.64 4.52 27.75
4-cycles (t = 4,000,mt = 2) 7.49 4.43 27.81

(h) Using higher learning rate for each batch for better performance. We
observe training instabilities after 2K steps for learning rates higher than
3.2× 10−4 in mixed-precision training.

lr FID (↓) Clip-FID (↓) Clip-score (↑)

1.6× 10−4 7.40 4.57 27.79
3.2× 10−4 7.09 4.10 28.24

Figure 9. Ablating individual components in our training pipeline. In each subsequent ablation, we use the overall best performing
model from previous ablation. In each ablation, we train a DiT-Tiny/2 model for 60K training steps using 75% masking ratio.



D.2. Ablation study of our training pipeline
In this section, we further discuss the improvements over
out-of-the-box performance (Figure 9). When ablating
the learning rate, we observe better performance with
higher learning rates. However, we run into training in-
stabilities after approximately 2K steps, despite using qk-
normalization [11], with mixed precision training. Overall,
we recommend ablating the choice of learning rate for each
network and using the maximum attainable value without
causing training instability. We also consider a fast train-
ing strategy using cyclic learning schedules [69]. Cyclic
learning has been previously observed to improve the con-
vergence rate for image classifiers [69, 70]. We consider
a cyclic cosine schedule with base cycle time t and each
subsequent cycle duration multiplied by a multiplier (mt).
We only observe a marginal benefit of cyclic schedules (Ta-
ble 9g). In favor of simplicity, we continue to use a single
cycle schedule.

Comparison with training hyperparameters of LLMs.
Since the diffusion transformer architectures are very simi-
lar to transformers used in large language models (LLMs),
we compare the hyperparameter choices across the two
tasks. Similar to common LLM training setups [9, 34, 81],
we find that SwiGLU activation [66] in the feedforward
layer outperforms the GELU [27] activation function. Sim-
ilarly, higher weight decay leads to better image gener-
ation performance. However, we observe better perfor-
mance when using a higher running average coefficient for
the AdamW second moment (β2), in contrast to large-scale
LLMs where β2 ≈ 0.95 is preferred. As we use a small
number of training steps, we find that increasing the learn-
ing rate to the maximum possible value until training insta-
bilities also significantly improves image generation perfor-
mance.
Design choices in masking and patch-mixer. We observe a
consistent improvement in performance with a larger patch
mixer. However, despite the better performance of larger
patch-mixers, we choose to use a small patch mixer to
lower the computational budget spent by the patch mixer
in processing the unmasked input. We also update the
noise distribution (Pmean, Pstd) to (−0.6, 1.2) as it improves
the alignment between captions and generated images. In
ablating the choice of masking, we shift from masking
patches randomly to retaining a continuous region of image
patches with block masking 3b. We perform this ablation on
256×256 image resolution with a corresponding latent res-
olution of 32×32 and 256 patches with a patch size of two in
the DiT-Tiny/2 model. Note that at a block size of 8 and
a 75% masking ratio, block sampling collapses to masking
quadrants of image patches. Thus, for this configuration,
we resort to sampling a single continuous square patch of
non-masked patches. Overall, we find that any amount of
block masking degrades performance compared to random

Table 4. Using layer-wise scaling. Layer-wise scaling of trans-
former architecture is a better fit for masked training in diffusion
transformers. We validate its effectiveness in the canonical naive
masking with 75% masking ratio.

Arch FID (↓) Clip-FID (↓) Clip-score (↑)

Constant width 19.6 9.9 26.7
Layer-wise scaling 15.9 7.4 27.1

masking of each patch. It is likely because despite latent
compression and patching, there exists some redundancy
in visual information between neighboring patches, and the
diffusion transformer model receives more global semantic
information about the image with random masking.

D.3. Validating improvements in diffusion trans-
former architecture

Layer-wise scaling. We investigate the impact of this design
choice in a standalone experiment where we train two vari-
ants of a DiT-Tiny architecture, one with a constant width
transformer and the other with layer-wise scaling of each
transformer block. We use naive masking for both meth-
ods. We select the width of the constant-width transformer
such that its computational footprint is identical to layer-
wise scaling. We train both models for an identical num-
ber of training steps and wall-clock time. We find that the
layer-wise scaling approach outperforms the baseline con-
stant width approach across all three performance metrics
(Table 4), demonstrating a better fit of the layer-wise scal-
ing approach in masked training of diffusion transformers.
Mixture-of-experts layers. We train a DiT-Tiny/2 trans-
former with expert-choice routing based mixture-of-experts
(MoE) layers in each alternate transformer block. On the
small-scale setup, it achieves similar performance to base-
line model trained without MoE blocks. While it slightly
improves Clip-score from 28.11 to 28.66, it degrades FID
score from 6.92 to 6.98. We hypothesize that the lack of
improvement is due to the small number of training steps
(60K), as using multiple experts effectively reduces the
number of samples observed by each router. In top-2 rout-
ing for 8-experts, each expert is trained effectively for one
fourth number of epochs over the dataset.

D.4. Deferred masking as pretraining + unmasked
finetuning.

We find that deferred masking also acts as a strong pre-
training objective, and using it with an unmasked finetuning
schedule achieves better performance than training an un-
masked network under an identical computational budget.
We first train a network without any masking and another
identical network with 75% deferred masking. We fine-
tune the latter with no masking and measure performance
as we increase the number of finetuning steps. We mark the
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Figure 10. Deferred masking in pretraining. We test the advantage of using deferred masking with finetuning over training a model
with no masking for a given computational budget. After pretraining with 75% deferred masking, we increase the number of unmasked
finetuning steps and compare its performance with another model trained completely without masking. The shaded region represents steps
after the isoflops threshold, where deferred masking pretraining and finetuning have higher computation cost. At the isoflops threshold, the
finetuned model achieves better performance than training the diffusion model without any masking.

Masking ratio Masking ratio FID Clip-FID Clip-score

Downscaled network - 6.60 3.85 28.49
Deferred masking 0.5 6.74 3.45 28.86

Downscaled network - 7.09 4.56 27.68
Deferred masking 0.75 6.96 4.17 28.16

Downscaled network - 7.52 5.03 26.98
Deferred masking 0.875 8.35 5.26 27.00

Table 5. IsoFLOPs training. Both patch masking and model
downscaling, i.e., reducing the size of the model, reduce the com-
putational cost in training and can be complementary to each other.
However, it is natural to ask how the two paradigms compare
to each other in training diffusion transformers. Under identical
training setup and wall-clock time, we compare the effectiveness
of model downscaling and our deferred masking approaches. We
find that except at extremely high masking ratios, deferred mask-
ing achieves better performance across at least two performance
metrics. Based on this finding, we do not use a masking ratio
higher than 75% in our models.

isoflops threshold when the combined cost of masked pre-
training and unmasked finetuning is identical to the model
trained with no masking. We find that at the isoflops thresh-
old, the finetuned model achieves superior performance
across all three performance metrics. The performance of
the model also continues to improve with unmasked fine-
tuning steps beyond the isoflops threshold.

E. Additional Results on Micro-budget Train-
ing of Large-scale Models

Training MicroDiT in higher dimensional latent space.
We replace the default four-channel autoencoder with one
that has sixteen channels, resulting in a 4× higher dimen-
sional latent space. Recent large-scale models have adopted
high dimensional latent space as it provides significant im-

provements in image generation abilities [10, 17]. Note that
the autoencoder with higher channels itself has superior im-
age reconstruction capabilities, which further contributes to
overall success. Intriguingly, we find that using a higher di-
mensional latent space in micro-budget training hurts per-
formance. For two MicroDiT models trained with iden-
tical computational budgets and training hyperparameters,
we find that the model trained in four-channel latent space
achieves better FID, Clip-score, and GenEval scores (Ta-
ble 7). We hypothesize that even though an increase in la-
tent dimensionality allows better modeling of data distri-
bution, it also simultaneously increases the training budget
required to train higher-quality models.

E.1. Challenge with canonical evaluation metrics in
determining effect of synthetic data.

To determine the effect of synthetic data, we train two mod-
els under identical training setup and cost: 1) model trained
only on real images (total 22M images) 2) model trained on
the combined real and synthetic images (total 37M images).

Under canonical performance metrics, both models ap-
parently achieve similar performance. For example, the
model trained on real-only data achieved an FID score of
12.72 and a CLIP score of 26.67, while the model trained
on both real and synthetic data achieved an FID score of
12.66 and a CLIP score of 28.14. Even on GenEval [23],
a benchmark that evaluates the ability to generate multi-
ple objects and modelling object dynamics in images, both
models achieved an identical score of 0.46. These results
seemingly suggest that incorporating a large amount of syn-
thetic samples didn’t yield any meaningful improvement in
image generation capabilities.

However, we argue that this observation is heavily influ-
enced by the limitations of our existing evaluation metrics.
In a qualitative evaluation, we found that the model trained



Table 6. Breakdown of computational cost. Computational cost of the two-stage training of our large-scale model. Our total computa-
tional cost is 3.45× 1020 FLOPs, amounting to a total cost of $1,890 and 2.6 training days on an 8×H100 GPU machine.

Resolution Masking ratio Training steps Total FLOPs 8×A100 days 8×H100 days Cost ($)

256× 256
0.75 250000 1.47× 1020 2.77 1.11 800
0.00 30000 4.53× 1019 0.94 0.38 271

512× 512
0.75 50000 1.18× 1020 2.18 0.88 630
0.00 5000 3.48× 1019 0.65 0.26 189

(a) Measuring fidelity and prompt alignment of generated images on
COCO dataset.

Channels FID-30K (↓) Clip-FID-30K (↓) Clip-score (↑)

4 12.65 5.96 28.14
16 13.04 6.84 25.63

(b) Measuring performance on the GenEval benchmark.

Objects

Channels Overall Single Two Counting Colors Position
Color

attribution

4 0.46 0.97 0.47 0.33 0.78 0.09 0.20
16 0.40 0.96 0.36 0.27 0.72 0.07 0.09

Table 7. Why prefer 4-channel image encoders over 16-channel image encoders in micro-budget training? We ablate the dimension
of latent space by training our MicroDiT models in four and sixteen channel latent space, respectively. Even though training in higher
dimensional latent space is being adopted across large-scale models [10, 17] we find that it underperforms when training on a micro-budget.

Table 8. Zero-shot FID on COCO2014 validation split. We report total training time in terms of number of days required to train the
model on a machine with eight A100 GPUs. We observe a 2.5× reduction in training time when using H100 GPUs. Our micro-budget
training takes 14.2× less training time than state-of-the-art low-cost training approach while simultaneously achieving competitive FID
compared to some open-source models.

Model Params (↓)
Sampling
steps (↓) Open-source Training

images(↓)
8×A100

GPU days (↓) FID-30K (↓)

CogView2 [15] 6.00B − − − − 24.0
Dall-E [57] 12.0B 256 − − − 17.89
Glide [48] 3.50B 250 − − − 12.24

Parti-750M [87] 0.75B 1024 − 3690M − 10.71
Dall-E.2 [58] 6.50B − − 650M 5208.3 10.39

Make-a-Scene [21] 4.00B 1024 − − − 11.84
GigaGAN [36] 1.01B 1 − 980M 597.8 9.09
ImageN [61] 3.00B − − 860M 891.5 7.27

Parti-20B [87] 20.0B 1024 − 3690M − 7.23
eDiff-I [2] 9.10B 25 − 11470M − 6.95

Stable-Diffusion-2.1a[60] 0.86B 50 ✓ 3900M 1041.6 9.12
Stable-Diffusion-1.5 [60] 0.86B 50 ✓ 4800M 781.2 11.18

Würstchen [53] 0.99B 60 ✓ 1420M 128.1 23.60
PixArt-α [8] 0.61B 20 ✓ 25Mb 94.1c 7.32

MicroDiT (our work) 1.16B 30 ✓ 37M 6.6 12.66

a As the FID scores for the stable diffusion models are not officially reported [60], we calculate them using
the official release of each model. We achieve slightly better FID scores compared to the scores reported in
Würstchen [53]. We use our FID scores to represent the best performance of these models.

b Includes 10M proprietary high-quality images.
c PixArt-α training takes 85 days on an 8×A100 machine when only training till 512× 512 resolution.

on the combined dataset achieved much better image quality
(Figure 13). The real data model often fails to adhere to the
prompt, frequently hallucinating key details and often fail-
ing to synthesize the correct object. Metrics, such as FID,
fail to capture this difference because they predominantly
measure distribution similarity [53]. Thus, we focus on us-

ing human visual preference as an evaluation metric. To
automate the process, we use GPT-4o [49], a state-of-the-
art multimodal model, as a proxy for human preference. We
supply the following prompt to the model: Given the prompt
‘{prompt}’, which image do you prefer, Image A or Image
B, considering factors like image details, quality, realism,



Table 9. Comparing performance on compositional image generation using GenEval [23] benchmark. Table adopted from Esser et al. [17].
Higher performance is better.

Objects

Model Open-source Overall Single Two Counting Colors Position
Color

attribution

DaLL-E.2 [58] − 0.52 0.94 0.66 0.49 0.77 0.10 0.19
DaLL-E.3 [4] − 0.67 0.96 0.87 0.47 0.83 0.43 0.45

minDALL-E [39] ✓ 0.23 0.73 0.11 0.12 0.37 0.02 0.01
Stable-Diffusion-1.5 [60] ✓ 0.43 0.97 0.38 0.35 0.76 0.04 0.06
PixArt-α [8] ✓ 0.48 0.98 0.50 0.44 0.80 0.08 0.07
Stable-Diffusion-2.1 [60] ✓ 0.50 0.98 0.51 0.44 0.85 0.07 0.17
Stable-Diffusion-XL [54] ✓ 0.55 0.98 0.74 0.39 0.85 0.15 0.23
Stable-Diffusion-XL-Turbo [63] ✓ 0.55 1.00 0.72 0.49 0.80 0.10 0.18
IF-XL ✓ 0.61 0.97 0.74 0.66 0.81 0.13 0.35
Stable-Diffusion-3 [17] ✓ 0.68 0.98 0.84 0.66 0.74 0.40 0.43
MicroDiT (our work) ✓ 0.46 0.97 0.47 0.33 0.78 0.09 0.20

Table 10. Scaling synthetic dataset to half billion images. Comparing performance on compositional image generation using
GenEval [23] benchmark for MicroDiT models trained with different configuration of training dataset.

Objects

Model (training dataset) Overall Single Two Counting Colors Position
Color

attribution

MicroDiT (37M - combined real and synthetic images) 0.46 0.97 0.47 0.33 0.78 0.09 0.20
MicroDiT (490M - only synthetic images) 0.52 0.98 0.61 0.31 0.89 0.11 0.17
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(b) PartiPrompts

Figure 12. Assessing image quality with GPT-4o. We supply the following prompt to the GPT-4o model: Given the prompt ‘{prompt}’,
which image do you prefer, Image A or Image B, considering factors like image details, quality, realism, and aesthetics? Respond with ’A’
or ’B’ or ’none’ if neither is preferred. For each comparison, we also shuffle the order of images to remove any ordering bias. We evaluate
the performance on two prompt databases: DrawBench [61] and PartiPrompts [87]. The y-axis in the bar plots indicates the percentage of
comparisons in which image from a model is preferred. We breakdown the comparison across individual image category in each prompt
database.

and aesthetics? Respond with ’A’ or ’B’ or ’none’ if nei-
ther is preferred. For each comparison, we also shuffle the
order of images to remove any ordering bias. We generate
samples using DrawBench [61] and PartiPrompts (P2) [87],
two commonly used prompt databases (Figure 12). On the
P2 dataset, images from the combined data model are pre-
ferred in 63% of comparisons while images from the real
data model are only preferred 21% of the time (16% of
comparisons resulted in no preference). For the DrawBench

dataset, the combined data model is preferred in 40% of
comparisons while the real data model is only preferred in
21% of comparisons. Overall, using a human preference-
centric metric clearly demonstrates the benefit of additional
synthetic data in improving overall image quality.



(a)  a photograph of an astronaut riding a horse; An astronaut riding a pig, highly realistic DSLR photo, cinematic shot; Panda mad scientist mixing sparkling chemicals, artstation

Real only (22M) Real (22M) + Synthetic (15M) Synthetic only (490M)

(b) A tiger made of white lego sitting in a realistic, natural field

(c) Portrait of President Obama in style of Vincent Van Gogh starry night; A bird in the style of Claude Monet Lilies painting; A sea otter in the style of girl with pearl earring 
painting by Johannes Vermeer.

(d)  ‘A elephant dressed in a suit posing for a photo in  __ style’.  Styles are Origami, Pixel art, and Line art

(e)  A giant cobra snake made from corn.; A giant cobra snake made from peas.; A giant cobra snake made from sushi.

(f)  four Yellow apples lying on a red table; A sports car painted with vibrant colors; A natural scene with 1000 colors

Figure 13. Comparing generations from our three micro-budget models. We compare synthesized images from our large-scale models
trained with different configurations of the training dataset but with identical computational costs.



(a) a photo of a cow

(b) a photo of a cake and a zebra

(c) a photo of three buses

(d) a photo of a red potted plant

(e) a photo of an elephant below a surfboard

(f) a photo of an orange cow and a purple sandwich

Figure 14. Comparing generations from our first two micro-budget models. Generation from a model trained only on real data (on left)
and combined real and synthetic data (on right) on GenEval benchmark prompts. Both models use identical random seed for generation.



RAPHAEL Stable Diffusion XL DeepFloyd DALL-E-2 ERNIE-ViLG 2.0 PixArt-α Ours

• A parrot with a pearl earring, Vermeer style.
• A car playing soccer, digital art.
• Street shot of a fashionable Chinese lady in Shanghai, wearing black high-waisted trousers.
• Half human, half robot, repaired human, human flesh warrior, mech display, man in mech, cyberpunk.

Figure 15. Comparison with previous works. Figure adapted from Chen et al. [8].



1. A cute little matte low poly isometric cherry blossom forest island, waterfalls, lighting, soft shadows, 

trending on Artstation, 3d render, monument valley, fez video game.

2. A shanty version of Tokyo, new rustic style, bold colors with all colors palette, video game, genshin, 

tribe, fantasy, overwatch.

3. Cartoon characters, mini characters, figures, illustrations, flower fairy, green dress, brown hair, curly 
long hair, elf-like wings, many flowers and leaves, natural scenery, golden eyes, detailed light and 

shadow , a high degree of detail.

4. Cartoon characters, mini characters, hand-made, illustrations, robot kids, color expressions, boy, 

short brown hair, curly hair, blue eyes, technological age, cyberpunk, big eyes, cute, mini, detailed 

light and shadow, high detail.

DALL-E 2

Midjourney

V5.1

Stable 

Diffusion XL

ERNIE 

ViLG 2.0

DeepFloyd

RAPHAEL

PixArt-α

(a) Previous works: RAPHAEL, Stable Diffusion XL, DeepFloyd, DALL-E-
2, ERNIE-ViLG 2.0, PixArt-α

(b) Our work

• A cute little matte low poly isometric cherry blossom forest island, waterfalls, lighting, soft shadows, trending on Artstation, 3d render,
monument valley, fez video game.

• A shanty version of Tokyo, new rustic style, bold colors with all colors palette, video game, genshin, tribe, fantasy, overwatch.
• Cartoon characters, mini characters, figures, illustrations, flower fairy, green dress, brown hair,curly long hair, elf-like wings,many

flowers and leaves, natural scenery, golden eyes, detailed light and shadow , a high degree of detail.
• Cartoon characters, mini characters, hand-made, illustrations, robotkids, color expressions, boy, short brown hair, curly hair,blue eyes,

technological age, cyberpunk, big eyes, cute, mini, detailed light and shadow, high detail.

Figure 16. Comparison with previous works. Figure adapted from Chen et al. [8].



Figure 17. Evaluating on PartiPrompts. Synthesized images by our model using randomly selected prompts from PartiPrompts [87].
Rows correspond to following categories: Abstract, Animals, Artifacts, Arts, Food & Beverage, and Illustrations.



Figure 18. Evaluating on PartiPrompts. Synthesized images by our model using randomly selected prompts from PartiPrompts [87].
Rows correspond to following categories: Indoor scenes, Outdoor scenes, People, Produce & Plants, Vehicles, and World knowledge.



Figure 19. Evaluating on DrawBench. Synthesized images by our model using randomly selected prompts from DrawBench [61].



Figure 20. Evaluating on GenEval. Synthesized images by our model using randomly selected prompts from GenEval [23].



(a) Stable-Diffusion-1.5 (b) Stable-Diffusion-2.1

(c) Stable-Diffusion-XL (d) Ours

Figure 21. Control and diversity in image styles. Evaluating the ability to generate diverse styles. Prompt: A dressed in a suit posing
for a photo in style. Natural lake landscape in background, detailed light and shadow, high detail.



(a) Stable-Diffusion-1.5 (b) Stable-Diffusion-2.1

(c) Stable-Diffusion-XL (d) Ours

Figure 22. Control and diversity in image styles. Evaluating the ability to generate diverse styles. Prompt: A luxurious with a
next-generation modern design illustrated in style.



(a) Stable-Diffusion-1.5 (b) Stable-Diffusion-2.1

(c) Stable-Diffusion-XL (d) Ours

Figure 23. Control and diversity in image styles. Evaluating the ability to generate diverse styles. Prompt: A moonlit night over a ,
mysteriously rendered in style.



(a) Stable-Diffusion-1.5 (b) Stable-Diffusion-2.1

(c) Stable-Diffusion-XL (d) Ours

Figure 24. Control and diversity in image styles. Evaluating the ability to generate diverse styles. Prompt: A lush garden full of ,
vividly illustrated in style.



Figure 25. Evaluating on JourneyDB. Synthesized images by our model using randomly selected prompts from the test set of JourneyDB
dataset [23].



Figure 26. Evaluating on JourneyDB. Synthesized images by our model using randomly selected prompts from the test set of JourneyDB
dataset [23].



Figure 27. Evaluating on JourneyDB. Synthesized images by our model using randomly selected prompts from the test set of JourneyDB
dataset [23].



Figure 28. Evaluating on JourneyDB. Synthesized images by our model using randomly selected prompts from the test set of JourneyDB
dataset [23].



Figure 29. Samples from our cifar-captions dataset. Selected images with corresponding real and synthetic captions from the cifar-
captions dataset. We created the cifar-captions dataset, imitating the widely used CIFAR-10 dataset [41], to enable small scale experimen-
tation on the text-to-image generative models.



List of extended DrawBench [61] prompts used in human-centric evaluation.

Sleek red car reflects cityscape, admired by passersby.
Black car cruises rainy streets, reflecting vibrant neon lights.
Glossy pink car cruising a sunny highway, surrounded by lush greenery, chrome gleaming, catching admiring glances.
Majestic black dog stands alert in a meadow, wildflowers sway, sunlight glinting on its sleek coat.
Curly red dog chases a butterfly in a windy, flower-filled meadow, frolicking playfully in the sunshine.
Vibrant blue dog prances in a sunny field, tail wagging, butterflies fluttering nearby.
A green banana contrasts with purple and yellow fruit, sunlight streaming in.
A red banana sits on a wooden table, surrounded by sunlight filtering through the leaves.
A black banana lies on white marble, hinting at overripe mystery beneath its dark peel.
White bread sandwich filled with cream cheese, cucumber, and turkey on a pristine plate, bathed in soft, warm light.
Black sandwich with charcoal bread, lettuce peeking out, set on a white plate beside lemonade.
Orange sandwich of roasted pumpkin and cheddar on whole wheat bread, sitting on a rustic table.
Pink giraffe in a wildflower field, plucking flowers with its long neck, butterflies swirling around.
Bright yellow giraffe nibbles leaves from tall trees under the warm savannah sun.
Brown giraffe strides across a sunlit savannah, its unique pattern glowing in the vibrant landscape.
Red car parked near a white sheep on a peaceful country road, hills rolling in the distance.
Blue bird perched on a brown bear’s shoulder in a wildflower meadow, sharing a serene moment.
Green apple atop a black backpack on a park bench, with trees and children playing in the background.
Green cup of steaming coffee sits beside a blue cell phone on a rustic table in warm sunlight.
Yellow book and red vase filled with flowers sit on a sunlit wooden table, radiating elegance.
White car parked near a red sheep in a lush meadow, under a blue sky.
Brown bird sings from a cherry blossom branch while a blue bear gazes up, surrounded by flowers.
Black apple beside a green backpack on a rustic table, sunlight streaming through a window.
Blue ceramic cup filled with hot coffee sits next to a green cell phone, casting steam into the air.
Red book and yellow vase sit together on an antique table, illuminated by sunlight.
A horse wearing a spacesuit stands triumphantly on an astronaut’s shoulders on a moon-like surface.
Pepperoni pizza bakes in a brick oven, surrounded by dancing flames and delicious aromas.
Cardinal startles a scarecrow in a cornfield, sending straw-filled arms flailing comically.
A blue pizza topped with blueberries, blackberries, and edible flowers sits on a rustic table.
A hovering cow abducts aliens with a tractor beam, while a spaceship glows in the night sky.
Panda making latte art in a cozy café, skillfully shaping a bamboo leaf in a cup of espresso.
A great white shark swims through desert dunes, its fin slicing through the sand like water.
An elephant swims under the sea, wearing a bubble-shaped helmet, surrounded by coral reefs and fish.
Rainbow-colored penguin waddles joyfully across a vibrant arctic landscape, reflecting the sky’s colors.
A large fish leaps from the ocean to devour a startled pelican mid-flight during a storm.
One red sports car parked on a quiet cobblestone street in a picturesque European village.
Two vintage cars, one red and one blue, race down a charming cobblestone street.
Three colorful vintage cars line up along a cobblestone street, bathed in the setting sun’s glow.
Four vintage cars in vibrant colors cruise down a bustling cobblestone street in retro style.
Five unique cars, from vintage to sleek sports models, line a lively city street.
A golden retriever trots along a cobblestone street, wearing a red bandana, as the sun sets.
Two dogs, a retriever and a beagle, walk together in the city, proudly sporting red and green bandanas.
Three dogs—a retriever, terrier, and dalmatian—walk down a lively street, leashes loosely held.
Four dogs—retriever, poodle, dachshund, and bulldog—strut down a bustling street in colorful bandanas.
Five playful dogs of various breeds chase each other on a cobblestone street, wagging tails happily.
A dog and a cat sit together on a grassy hill, gazing at the sunset over a lake.
A cat and two dogs sit peacefully on a grassy patch in a sunlit park, surrounded by flowers.
A regal cat sits with three cheerful dogs in a meadow, wearing a tiny gold crown.
Two cats and a dog relax on the grass as the sunset bathes them in warm colors.
Two cats and two dogs sit on a grassy hill, basking in the sunlight and gentle breeze.
Two cats and three dogs lounge together under a tree, enjoying the sunny meadow.
Three cats and a dog sit peacefully in the grass, enjoying each other’s company.



Three cats and two dogs share a sunlit meadow, lounging gracefully on the soft grass.
Three cats and three dogs form a harmonious group, lounging together on a grassy hill.
Purple triangular flower pot brimming with green plants sits on a sunlit windowsill.
Orange triangular picture frame holds a serene landscape painting, set against a pale blue background.
A bright pink triangular stop sign stands at the edge of a forest road, glowing in the sunlight.
A denim-textured cube sits on a wooden table, surrounded by sewing needles and spools of thread.
A sphere made of kitchen tiles reflects sunlight in a mesmerizing pattern.
A large cube made of red bricks sits in a grassy field, vines creeping up its side.
A collection of nails neatly arranged on a wooden table in a cozy workshop.
A grand brass clock sits on an antique wooden table in a warmly lit room.
Two ornate crystal glasses sit on a polished wooden table, casting gentle shadows.
A red elephant sits atop a small blue mouse in a whimsical, flower-filled field.
A green elephant stands behind a large red mouse in a bright, grassy meadow.
A small blue book sits on top of a large red book in an elegant library.
Three stacked plates—two blue, one green—sit neatly on a rustic wooden table.
Three stacked cubes—two red, one green—rest on a wooden surface in vibrant colors.
A stack of three books—green, red, and blue—sits on a polished table in a sunlit room.
Baby panda emoji in a red hat and green pants grins adorably.
Baby panda wearing a red hat and blue gloves sits happily in its colorful outfit.
A turtle sits in a lush forest, captured through a fisheye lens, with the trees curving around.
A majestic owl perches in a wildflower field, its feathers ruffled by the gentle breeze.
A detailed cross-section of a brain showcases intricate structures and pathways.
A vintage bicycle rests against a brick wall, flowers in its wicker basket.
A modern bus cruises through a vibrant city, picking up passengers.
A small wooden boat glides peacefully across a serene lake, leaving a gentle wake.
A red fire hydrant stands at a busy city intersection as firefighters connect hoses.
A sleek parking meter stands beside a bustling city street, displaying the time left.
A vintage umbrella with lace patterns protects from a gentle rain in a sunlit park.
A vintage wooden chair with intricate carvings sits alone in a softly lit room.
An old-fashioned icebox sits in a cozy rustic kitchen, filled with fresh produce.
A steampunk-inspired clock with exposed gears sits on an ornate table, pendulum swinging.
A pair of ornate scissors rests on a patterned tablecloth, ready to cut delicate fabrics.
A majestic chestnut horse grazes in a sunlit meadow, its mane blowing in the breeze.
A bunch of ripe, yellow bananas hangs from a tree in a vibrant jungle scene.
A sleepy calico cat lounges on a windowsill, bathed in sunlight.
A well-groomed dog with a long snout stands proudly in a sunlit backyard, sniffing the air.
A colorful human brain sits within a transparent skull, pulses of energy flowing through it.
A futuristic office of a multinational tech company buzzing with innovation.
A grand piano with intricate carvings stands in a sunlit room, strings vibrating with music.
A golden coin symbolizes the decentralized nature of cryptocurrency, floating above a computer.
A thick-skinned hippopotamus stands at the edge of a calm river, basking in the sun.
A humanoid robot mimics a scientist’s movements in a futuristic lab filled with machinery.
Customer pays for a tiny pizza with a giant quarter, both grinning in surprise.
An elegant couple in formal wear caught in a downpour, sharing a tender moment.
Pint cartons of milk sit neatly on the top shelf of a grocery store refrigerator.
A man stands in the shadow of a maple tree on a crisp January afternoon in New England.
An elephant hides behind a tree, trunk visible on one side, back legs on the other.
A tomato sits atop a pumpkin on a kitchen stool, a fork stuck in the side.
A pear cut into seven even pieces is arranged in a ring on a rustic table.
A donkey and octopus play tug-of-war while a cat leaps over the rope at sunset.
Supreme Court justices face off against FBI agents in a friendly game of baseball.
Abraham Lincoln touches his toes while George Washington does chin-ups in a meadow.
Tennis racket rests against a wooden bench on a sunlit clay court.



A well-worn baseball glove lies on a patch of grass, ready for the next catch.
A retro red refrigerator stands in a cozy kitchen filled with vintage décor.
A polished dining table set with fine china and silverware, beneath a glowing chandelier.
A vintage parking meter stands on a bustling street, surrounded by classic cars.
A small boat propelled by oars floats peacefully on a lake at sunset.
A fluffy cat rests in a cozy living room, intently watching a dangling toy mouse.
A pair of elegant stainless steel scissors with engraved handles rests on a patterned table.
A happy, well-groomed dog stands in a grassy backyard, sniffing the air.
A grand piano with wooden carvings stands in a sunlit room, with strings and hammers visible.
A red steam locomotive rides atop a surfboard, slicing through ocean waves at sunset.
A golden retriever balances a wine glass on its head, sitting proudly by a warm fireplace.
A vintage bicycle rests on top of a small wooden boat floating near the shore.
A delicate umbrella balances on top of a polished silver spoon on a wooden table.
A fluffy teddy bear supports a sleek laptop, its kind eyes peeking over the top.
A curious giraffe stands beneath an oversized microwave hanging from a tree branch.
A pink frosted donut lies beneath a white porcelain toilet in a whimsical bathroom scene.
A hair dryer blows warm air beneath a sheep standing calmly in a grassy field.
A tennis racket rests beneath a traffic light in a bustling city street.
A zebra stands under a gigantic broccoli tree, its stripes contrasting with the green leaves.
A banana rests on a wooden table to the left of a shiny red apple.
A red velvet couch sits beside a vintage leather chair in a sunlit living room.
A red sports car cruises beside a double-decker bus on a busy city street.
A sleek black cat lounges next to a tennis racket on a sunlit tennis court.
A stop sign leans against a refrigerator in a cozy, vintage-inspired kitchen.
A fluffy white sheep stands beside a wine glass filled with red wine in a grassy meadow.
A zebra stands next to a red fire hydrant in a bustling city street.
Acersecomicke, a majestic creature, flies through a vibrant sky, searching for adventure.
A family gathers for a jentacular feast in a warm kitchen, sharing laughter and food.
Matutinal sun rises over a peaceful valley, casting golden light on the dewy grass.
Pigeons socialize on a red-bricked rooftop in a village, creating a peristeronic scene.
The mystical artophagous feasts on colorful paintings, absorbing their creative energy.
An abandoned backlot of a film studio, overgrown and filled with forgotten treasures.
The octothorpe, a massive metallic creature, roams through an abandoned city.
Stained glass windows of a church depict a hamburger and fries, casting colorful rays inside.
Otto von Garfield, Duke of Lauenburg, eats lasagna in an elegant painting.
A baby fennec fox sneezes onto a strawberry, backlit ears glowing in detail.
A confused grizzly bear attends calculus class, staring at the chalkboard in puzzlement.
Egyptian painting shows two figures arguing over who should take out the trash.
A baby sloth in a knitted hat stares at a laptop, trying to figure it out.
A tiger in a lab coat works a science machine in a 1980s Miami-style laboratory.
Animals dressed as humans pose for a 1960s yearbook photo in vintage clothing.
A Lego version of Arnold Schwarzenegger stands confidently, holding a mini gun.
A yellow and black bus cruises through the dense foliage of a rainforest.
Medieval scholars gather around a broken Wi-Fi router, trying to restore the connection.
An IT guy struggles with tangled cables like Laocoön while fixing a PC tower.
A handful of colorful Skittles scattered across a smooth surface.
A gothic-style McDonald’s church with stained glass windows stands proudly in a village.
An athletic cat addresses a scandal at a press conference, surrounded by journalists.
A marble statue shows a man tripping over a surprised cat in a lush garden.
A 1920s airship shaped like a pig floats over a golden wheat field.
A tuxedo cat sings in a barbershop quartet, wearing a straw boater hat and bow tie.
Astronaut couple poses in American Gothic style, holding a flag and a space helmet.
The regal Burger King poses with a Whopper in an opulent oil painting.



A keyboard made of water shimmers as the light is turned off, blending into darkness.
Mona Lisa viewed from behind, her hair cascading down, gazing at a Tuscan landscape.
A hyper-realistic photo of an abandoned industrial site during a storm.
An iOS app screen shows different types of milk available for ordering.
Super Mario leaps through a bustling city in a realistic 8K Ultra HD photograph.
Cats climb the Eiffel Tower in a futuristic cyberpunk coloring page.
A mega Lego space station towers inside a child’s galaxy-themed bedroom.
A spider with a moustache greets a gentlemanly grasshopper as they cross paths.
A framed photo of a photocopy of a painting of a giraffe statue.
Bird’s-eye view of a bridge connecting Europe and North America across the Atlantic Ocean.
A maglev train plunges vertically downward at high speed in New York City.
A magnifying glass reveals a page from a 1950s Batman comic, highlighting a dramatic scene.
A futuristic car plays soccer on a digital field, sending a holographic ball flying.
Darth Vader plays with a raccoon on Mars at sunset, red sky glowing around them.
A 1960s poster warns against climate change with vibrant, psychedelic imagery.
A mouse uses a mushroom as an umbrella during a gentle rain, ripples forming in puddles.
A Pomeranian dressed as a 1980s wrestler strikes a pose in neon wrestling tights.
A pyramid of falafel stands in the desert under a partial solar eclipse.
A storefront displays ”Hello World” in large, welcoming letters across the glass window.
A charming storefront with ”Diffusion” written elegantly across the window.
A storefront with ”Text to Image” written above the door, surrounded by framed pictures.
A sleek storefront with ”NeurIPS” etched on the glass, reflecting the busy street outside.
A quaint storefront with ”Deep Learning” written in gold script on the window.
A modern storefront with ”Google Brain Toronto” etched above the glass doors.
A rustic storefront with ”Google Research Pizza Cafe” warmly inviting passersby inside.
A wooden sign in a meadow says ”Hello World,” surrounded by colorful wildflowers.
A weathered wooden sign reading ”Diffusion” sways gently in the breeze.
A sign in a grassy field says ”Text to Image,” with butterflies fluttering around.
A large conference center sign displays ”NeurIPS” in bold letters, lit by string lights.
A wooden sign engraved with ”Deep Learning” stands in a meadow, glowing in the sunset.
A sleek metal sign says ”Google Brain Toronto,” standing in front of a glass building.
A colorful sign reading ”Google Research Pizza Cafe” hangs outside a charming café.
The New York skyline glows as fireworks spell out ”Hello World” in the evening sky.
Fireworks over the New York skyline spell out ”Diffusion” against the night sky.
The New York skyline at dusk with ”Text to Image” written in dazzling fireworks.
Fireworks over New York spell out ”NeurIPS,” illuminating the cityscape below.
”Deep Learning” is written in fireworks above the New York skyline, reflected in the water.
”Google Brain Toronto” written with fireworks above the New York skyline at night.
The New York skyline shines as fireworks spell ”Google Research Pizza Cafe.”
”Hello World” spelled out in brilliant fireworks over New York’s famous skyline.
”Diffusion” written with fireworks above the New York skyline, creating a dazzling display.
The New York skyline lights up with ”Text to Image” written in vibrant fireworks.


