
OFER: Occluded Face Expression Reconstruction

Supplementary Material

A. Preliminaries
Denoising Diffusion Probabilistic Model (DDPM). The
underlying mechanism of DDPM is the transformation of
an unknown data distribution, p(X) → Rd into a simple
known distribution. Here, X represents the data from the
underlying distribution. This transformation is achieved by
iteratively applying a transition kernel q via a Markov chain
process with infinitesimal time steps, ensuring a stationary
distribution at each time step t i.e xt ↑ q(xt|xt→1), ↓t > 0
where x → X . DDPM models these transformations by pa-
rameterizing a neural network to capture complex depen-
dencies in the data by modeling the sequential evolution
of the data distribution. In the work of Sohl et al. [51],
the known distribution is set as Gaussian with a decay-
ing variance schedule ωt → R such that q(xt|xt→1 =
N (xt;

↔
1↗ ωtxt→1,ωtI); q(xT ) = N (xT ; 0, I) due to its

simplicity and traceability. Denoising in DDPM involves
reversing this process by starting with unit Gaussian noise
to model the underlying data distribution p↑(X), which
models the training process.
Learning-based Ranking. Ranking is an important tech-
nique used in the information retrieval domain to retrieve
relevant documents given a query. There are three primary
learning-based ranking techniques [35]: pointwise, pair-
wise, and listwise. The pointwise model takes in a single
query(q)-document(di) pair and gives the relevance score
(si) of each in isolation, which requires the ground-truth
score: r̄(q, di) = si. Pairwise ranking methods compare
two documents against each other based on importance and
relevance to the query: r̄(q, di, dj) = P (di ε dj). Finally,
listwise ranking [43] generates an optimal order of a list
of documents by calculating the importance score of each:
r̄(q, di, . . . , dn) = (r1, . . . , rn), which is the method we
adopt in our network.

B. Ablation Study
We conducted several ablation studies on the choice of con-
ditioning signal, embedding, and loss functions to optimize
our model networks, which are detailed in the following
sections.

B.1. Identity Generative Network (IdGen)
Choice of image embedding. The representation used for
the conditioning image provided to the diffusion network
plays an important role in the reconstruction task. In Tab. 6
we show ablation results for the embedding used in IdGen.
The results indicate that using only the ArcFace [9] embed-
ding improves the error metric of this network, compared

Embedding
Occluded subset Unoccluded subset

Med → Mean → std → Med → Mean → std →
ArcFace [9] 1.03 1.26 1.06 1.01 1.22 1.01
ArcFace [9] + FaRL [59] 1.05 1.30 1.09 1.03 1.28 1.06
FaRL [59] 1.15 1.40 1.12 1.07 1.30 1.06

Table 6. Ablation on image embeddings for the IdGen network.
MSE error on the NoW validation dataset, using ArcFace [9] em-
bedding, FaRL [59] embedding, or a combination of both.

to employing FaRL [59] or a combination of both as con-
ditions. This may be because ArcFace [9] is used to dis-
tinguish identity-defining features, while FaRL [59] is de-
signed for downstream facial analysis tasks that require cap-
turing facial subtleties. In addition, we compare the perfor-
mance of ArcFace with state-of-the-art image embeddings,
DINOv2 [37] and CLIP [42]. The results are presented
in Tab. 7. The reason we hypothesize for the lower per-
formance of CLIP and DINOv2 is that they are trained on
multi-domain models and not specifically trained on faces
like ArcFace.

B.2. Identity Ranking Network (IdRank)
Ranking selects low-error samples. We showcase the abil-
ity of the ranking network to identify subtle differences to
select top-ranked samples with lower MSE error than the
lower-ranked samples in Fig. 10.
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Figure 10. Ranking on NoW validation images. For the im-
age in column (a), we generate 100 shape coefficients with IdGen
and rank them using IdRank. Column (b) shows the top-ranked
sample, (c) a mid-ranked sample (50th), and (d) the worst-ranked
sample. Columns (b)-(d) show viewpoints highlighting the sample
errors, with its median MSE shown underneath each sample.

Sampling Quantity for Input. Naturally, increasing the
number of generated samples results in a more thorough
coverage of the data distribution. As the sample set size
increases and leads to denser mode coverage, we expect the



Method ArcFace CLIP DINOv2
Median 1.01 1.65 1.68
Mean 1.24 2.07 2.08

Table 7. Ablation study for IdGen embedding. on NoW valida-
tion benchmark. ArcFace trained for identity clustering performs
better in comparison to other image embedding for identity recog-
nition reconstruction tasks.

#samples Ideal lowest error sample
Med → Mean → std →

FLAME [33] (Baseline) 1.02 1.30 1.11
10 0.89 1.13 0.97
50 0.83 1.07 0.94
100 0.81 1.05 0.92
500 0.78 1.02 0.90

Table 8. Ablation on the effect of sampling quantity as input to
IdRank. To evaluate the tradeoff between the number of generated
samples by IdGen and the “ideal” lowest error sample in the set.
The values are the lowest median error sample evaluated against
the NoW validation benchmark.

average error to get closer to the ground truth. However,
for the ranking network to identify that optimal element, it
must be trained on a sufficiently large number of samples
to effectively rank them and select the best one. This re-
quirement comes with a significant computational cost, es-
pecially due to the slower inference time of diffusion mod-
els. Thus, finding the right balance in the number of sam-
ples used for training is important. We conducted an abla-
tion study on different sample sizes generated by IdGen and
assessed the median error of the optimal sample from each
set to determine the ideal number of samples for training
IdRank. The results are presented in Tab. 8.
Face vertices as Input. Selecting the most accurate sample
requires a network design that excludes irrelevant informa-
tion (See Sec. 3.3 for more details). To validate this claim,
we conducted an ablation study comparing three inputs: (a)
shape coefficients, which are a PCA model representing the
entire head shape; (b) all landmark vertices of the recon-
structed head shape; and (c) front-face vertices from the re-
constructed head shape. The results of this comparison are
presented in Tab. 9. The high errors associated with the co-
efficients and vertex-based reconstructions likely stem from
the inclusion of irrelevant information.
Loss function. The challenge in selecting the best repre-
sentative shape from the samples generated by the IdGen
is that, even with mild occlusions where most of the facial
structure is preserved, variability can still occur. This means
we need an appropriate loss function that mitigates the se-
lection of sub-optimal samples. We considered two loss
functions for this network: binary cross-entropy and soft-

Input to rank network precision ↘ IoU ↘ error (GT/Pred) (ideal = 1)
1 % 10 % 20 % 10 % 20 % small30 % avg1 avg5 avg10

(a) Ŝ 3.3 21.3 33.2 26.7 40.0 53.3 0.54 0.57 0.64
(b) M frontal 3.3 11.3 24.8 13.3 30.0 53.3 0.49 0.58 0.61
(c) X (µM,M→) 3.3 44.5 64.7 33.3 80.0 93.3 0.68 0.78 0.83

Table 9. Ablation for input to ranking network. Ŝ is the 300-
dimensional shape coefficients generated from IdGen; M frontal is
the front face vertices of FLAME mesh M reconstructed from (Ŝ
; X=(µM ,M →) is the mean, residual pair defined in Sec. 3.3

Loss precision ↘ IoU ↘ error (GT/Pred)≃
1 % 10 % 20 % 10 % 20 % 30 % avg1 avg5 avg10

BCE loss 0.0 3.0 20.8 0.0 0.0 16.7 0.56/0.86 0.60/0.88 0.63/0.85
Softmax loss 0.0 30.0 51.7 50.0 66.7 66.7 0.58/0.76 0.62/0.77 0.65/0.79

Table 10. Ablation for loss function for IdRank. We trained the
network with Binary Cross Entropy (BCE) loss and Cross Entropy
on Softmax (Softmax) loss using 100 Stirling(HQ) [22] frontal
face images. For validation, we used 20 Florence [2] dataset
frontal face images. IoU represents the Intersection over Union
of predicted ranking order and ground truth ranking order for the
first 10, 20, and 30 sorted rank index. error(GT/Pred) shows the
average error for the first 1, 5, and 10 ground truth rank samples
and that of predicted rank samples.

max loss, which approximates the ground truth error distri-
bution considering all samples. To assess the performance
of both, we conducted an ablation study, the results of which
are presented in Tab. 10. Since more than one sample can
be optimal, ranking and selection using softmax loss yields
better precision with a set of higher-ranked samples.

(a) Front frame : Fexp (b) Rasterized FLAME 

mesh vertices : Vfront

(c) Occluded frame: Foccexp
(d) Unoccluded FLAME 

mesh vertices : Vunocc

Figure 11. CO-545. Column (a) the expressive frames with
a frontal view, Fexp; Column (b) the rasterized mesh ver-
tices Vfront; Column (c) the occluded frames with synthetic
objects,Foccexp; Column (d) the unoccluded vertices which be-
long to unoccluded pixels, Vunocc. The pairs (Foccexp, Vunocc)
make CO-545 dataset.
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Figure 12. 1D U-Net Transformer Hybrid architecture. of
IdGen and ExpGen. Each block of the U-Net is comprised of
two ResNet blocks, followed by a self-attention module and a
downsampling/upsampling module for the encoder and decoder
respectively. Each ResNet block consists of two 1D ConvNet fol-
lowed by SiLU activation and residual connection. For IdGen,
the conditional embedding (R512) is passed to every layer of the
U-Net. The training input to IdGen is FLAME [33] shape coef-
ficient, S ↑ R300 which gets downsampled to 50 and 10 at the
bottleneck. For ExpGen, the conditional embedding is (R1024)
and the input is FLAME expression (including 3 jaw coefficients)
E ↑ R53 which is downsampled to 25 and 10 at the bottleneck.

C. Design Choices
C.1. Ranking by distribution matching
The objective of the ranking model is to sort the output
from the network and optimize a loss based on ranking
order. We choose a list-wise ranking method due to its
demonstrated effectiveness [5]. Since sorting and ranking
are non-differentiable operations, we reformulate the sort-
rank problem into a probability distribution alignment prob-
lem aiming to minimize the softmax loss LR between the
ground truth distribution g and the predicted distribution h.

C.2. Exclusion of Ranking in ExpGen
Our ranking network is trained to rank only neutral shapes
and not expressions. This is because shape geometry re-
mains consistent despite occlusions or variations in expres-
sions in the input image. However, ranking the expres-
sion hypotheses is harder since multiple hypotheses can be
equally valid for occluded regions.

D. Architecture
The detailed overview of the 1D U-Net-transformer hybrid
architecture of our IdGen and ExpGen networks is shown
in Fig. 12. Both share similar architecture, differing in the
embeddings and the inputs. The conditional embedding of
IdGen obtained from ArcFace [9] is R512, and the embed-
ding of ExpGen obtained by concatenating ArcFace [9] and
FaRL [59] embeddings is R1024.

Dataset
Num

Subjects
Num

Images
with
exp

Stirling [22] 133 1322 ✁
Florence [2] 53 1239 ✁
FaceWarehouse [6] 150 3000 ✁
LYHM [7] 1211 7118 ✁

FaMoS [4] 95 1.5M ✂

Table 11. Datasets used for training Networks. FaMoS expres-
sion coefficients are used to train ExpGen. The shape coefficients
from the remaining four datasets were used to train IdGen and
IdRank

E. Datasets

E.1. Training Dataset

In Tab. 11, we list the datasets used to train the networks
in our framework. FaMoS [4] dataset comprises 3D regis-
tered FLAME meshes. We utilized only a subset of them
such that it covered all the expression variations in the en-
tire dataset. Please note that our network trains in para-
metric space rather than on meshes. Therefore, we ob-
tained the corresponding parameters for this subset directly
from the authors of FaMoS. We used the expression coeffi-
cients from this subset to train the ExpGen. The remaining
four datasets listed in the table (Stirling [22], Florence [2],
FaceWarehouse [6], LYHM [7]) were used to train IdGen
and IdRank.

E.2. CO-545 Evaluation Dataset

We introduce a new dataset named CO-545 to quantita-
tively evaluate occluded expressions. First, we select the
middle frame of each sequence in the CoMA dataset, Fexp,
which exhibits frontal views with expressive features while
excluding neutral expressions. Subsequently, we raster-
ize the FLAME mesh for each frame to eliminate natu-
rally occluded vertices from the camera’s perspective, se-
lecting only facial vertices and excluding those from the
back of the head, eyeballs, neck, and ears. This subset of
vertices is denoted as Vfront. Occlusion masks [54] are
then applied to the selected frames Foccexp, removing ad-
ditional vertices from Vfront that fall within the masked
pixel areas of the image. We thus obtain the set of unoc-
cluded vertices, denoted as Vunocc, for each masked image.
The (Foccexp, Vunocc) pairs form the dataset, allowing us to
evaluate occluded samples only within the visible regions.
This procedure enables the inclusion of additional evalua-
tion data in the dataset. A few samples from this dataset are
shown in Fig. 11.



Method
Median ≃

(mm)
Mean ≃
(mm)

Std ≃
(mm)

TokenFace [58] 0.97 1.24 1.07
MICA (8DS) [61] 1.08 1.37 1.17
3DDFA V2 1.53 2.06 1.95
DECA [21] 1.35 1.80 1.64
Dib et al. [14] 1.59 2.12 1.93
Dense landmarks [55] 1.36 1.73 1.47
FOCUS-MP [32] 1.41 1.85 1.70
Deng et al. [11] 1.62 2.21 2.08
RingNet [49] 1.50 1.98 1.77
OFER (4DS) (sample selected by ranking) 1.27 1.64 1.29

Table 12. Neutral face 3D Metrical reconstruction error on
the NoW test benchmark. The results show a comparison of the
accuracy of single-view reconstruction methods based on the NoW
challenge.

F. Additional Results
F.1. Quantitative Results
Neutral face reconstruction. We provide a comprehen-
sive comparison of neutral face reconstruction, including
additional methods specifically focused on this task, along-
side the occlusion-based reconstruction methods discussed
in the main paper. Tab. 2 presents the evaluation results for
non-metrical reconstruction error on the NoW [49] valida-
tion benchmark, while Tab. 12 presents metrical reconstruc-
tion error on the NoW test benchmark. Our method does not
outperform TokenFace [58], which is explicitly trained with
both 2D and 3D supervision–a limitation acknowledged and
addressed as future work in the main paper. However, in
the case of MICA, which when trained only on the four
datasets, the results in Tab. 2 show that its performance is
similar to our method. In addition, OFER demonstrates im-
proved results when ranking is incorporated.

F.2. Qualitative Results
We show additional expression variations from the final re-
construction of our method in Fig. 13 and Fig. 14. For
identity reconstruction, Fig. 15 presents more results from
the ranking of samples evaluated on the NoW validation
dataset. While most of the reconstructions appear visually
similar, the variations are subtle (see the forehead patterns
of rows (b) and (c)). In row (c), the chin area of the least
ranked sample shows a high error compared to rank-1 and
rank-5 samples. Since these subtle differences are hard to
differentiate visually, ranking provides a way to automati-
cally select high-quality samples without manual interven-
tion.
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Figure 13. Comparison of expression sampling on hard occlusions. We compare against EMOCA [8] (pink), three samplings from
Diverse3D [12] (blue) and 16 samples from our method (green).



Figure 14. Comparison of expression reconstruction for in-the-wild occluded images. We compare against EMOCA [8] (showing front
and side view, pink), two reconstructions from Diverse3D [12] (blue), and six samples (front and side view) from our method (green).
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Figure 15. Ranking on NoW validation. Column 1 shows the
optimal sample selected by IdRank, column 2 displays the sample
ranked 5th, and the last column shows the lowest-ranked sample.
Although error differences are subtle, variations can be observed
between the higher-ranked samples (rank 1 and 5) and the lower
ranked-sample (rank 100) in the nose and lip regions of image
(a), the eye region of image (b), and the lip and chin region of im-
age(c). This demonstrated the effectiveness of ranking in selecting
higher-quality samples.


