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Supplementary Material

In this supplementary material, we first provide addi-
tional details of our proposed BiM-VFI. Especially, the de-
tailed network structure of CAUN and SN, loss functions,
implementation details, and the proof of how BiM can de-
scribe bidirectional motion distinctly are explained in Ap-
pendix A. Subsequently, in Appendix B, we provided addi-
tional experimental results that could not be included in the
main paper due to the page limitation. In Appendix B.1,
pixel-centric metrics (PSNR and SSIM) in SNU-FILM-
arb [6], Vimeo90K-triplet [41], SNU-FILM [3], and XTest-
single [35], and ×8 interpolation on XTest dataset are pro-
vided. Also, in Appendix B.4, we provided the results of the
user study we conducted for interpolated videos from var-
ious VFI methods. Lastly, in Appendix B.5, we provided
additional qualitative comparisons on SNU-FILM-arb [6]
datasets.

A. Additional Details
A.1. Structure of Content-Aware Upsampling Net-

work (CAUN)
Fig. 7 depicts the detailed architecture of our proposed
Content-Aware Upsampling Network, CAUN (Sec. 3.3).
CAUN is designed to construct adaptive upsampling ker-
nels that upsample flows while preserving high-frequency
details, especially sharp boundaries and small objects.
For this, CAUN effectively utilizes and integrates multi-
scale features. Context features F l,c

0 and F l,c
1 are con-

sists of multi-scale features (F l,c,0
0 , F l,c,1

0 , F l,c,2
0 ) and

(F l,c,0
1 , F l,c,1

1 , F l,c,2
1 ), respectively, where F l,c,j

i is H/2j ×
W/2j-sized context feature map of I li for i ∈ {0, 1} and
j ∈ {0, 1, 2}. Note that F l,c,2

0 and F l,c,2
1 are of the same

spatial sizes as Ṽ
l

t→0 and Ṽ
l

t→1. So, the context features
F l,c,2
0 and F l,c,2

1 can be directly aligned to target time t

by warping via Ṽ
l

t→0 and Ṽ
l

t→1, respectively. However,
to warp F l,c,1

0 and F l,c,1
1 , the two flows Ṽ

l

t→0 and Ṽ
l

t→1

must be bilinearly upsampled by a factor of 2 and their
magnitudes are scaled by a factor of 2 to match with the
spatial size of the features F l,c,1

0 and F l,c,1
1 . In this sense,

Ṽ
l

t→0 and Ṽ
l

t→1 are further upsampled by a factor of 4, and
their magnitudes are scaled by a factor of 4 to warp the
features F l,c,0

0 and F l,c,0
1 . Then, the warped features are

concatenated and further passed through several convolu-
tion layers and PixelShuffle layers to integrate multi-scale
features. Finally, adaptive kernels Kl,×2

t→0 , Kl,×2
t→1 , Kl,×4

t→0 ,
and Kl,×4

t→0 are obtained for input with the integrated multi-

scale features, where Kl,×2
t→0 ,K

l,×2
t→1 ∈ RH

4 ×W
4 ×9×4 and

Kl,×4
t→0 ,K

l,×4
t→1 ∈ RH

4 ×W
4 ×9×16. Kl,×2

t→0 and Kl,×2
t→1 are pixel-

wise convolved with 3× 3 neighboring pixels of Ṽ
l

t→0 and
Ṽ

l

t→1, respectively, to adaptively upsample Ṽ
l

t→0 and Ṽ
l

t→1

by a factor of 2, thus yielding Vl,×0.5
t→0 and Vl,×0.5

t→1 . Simi-
larly, Kl,×4

t→0 and Kl,×4
t→0 are pixel-wise convolved with 3× 3

neighboring pixels of Ṽ
l

t→0 and Ṽ
l

t→1, then yielding Vl
t→0

and Vl
t→1, respectively, where Vl

t→0 and Vl
t→1 are of the

same sizes as those of the source images at l-th level, I l0
and I l1. Vl,×0.5

t→0 , Vl,×0.5
t→1 , Vl

t→0, and Vl
t→1 are further uti-

lized in Synthesis Network (SN) to warp the source images
and their context features with more precise flows.

A.2. Structure of Synthesis Network (SN)
We employed a simple U-Net [33] for our Synthe-
sis Network (SN) as depicted in Fig. 8. The multi-
scale flows from CAUN, which include (Ṽ

l

t→0, Ṽ
l

t→1),
(V0,×0.5

t→1 ,Vl,×0.5
t→1 ) and (Vl

t→0,Vl
t→1), are used to warp the

multi-scale context features (F l,c,2
0 , F l,c,2

1 ), (F l,c,1
0 , F l,c,1

1 ),
and (F l,c,0

0 , F l,c,0
1 ). As depicted in Fig. 8, the warped multi-

scale context features are passed through the U-Net, finally
yielding a blending mask Ol and a residual image Î l,res

t at
l-th level. The resulting Î l,res

t and Ol from the U-Net are
employed to construct final interpolation result at l-th level,
Î lt , as follow:

Î lt = bw(I l0,Vl
t→0) ∗ σ(Ol)+

bw(I l1,Vl
t→1) ∗ (1− σ(Ol)) + Î l,res

t ,
(6)

where bw(·, ·) is a backward warping function and σ(·) is a
sigmoid function.

A.3. Loss Functions
Our training objectives consist of student loss LPS , and
teacher loss LPT . The teacher loss will be discussed first,
and followed by the student loss. To supervise photomet-
ric reconstruction of the teacher process, the charbonnier
loss [1] Lchar and the census loss [24] Lcss are used as fol-
low:

Ll
char,PT

= λchar,PT Lchar(Î
l,PT , I l),

Ll
css,PT

= λcss,PT Lcss(Î
l,PT , I l),

Ll
pho,PT

= Ll
char,PT

+ Ll
css,PT

,

(7)

where l is the current pyramid level, λchar,PT and λcss,PT

are weights for each loss. Furthermore, the first-order edge-
aware smoothness loss [14] Ls1 is used to ensure smooth
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Figure 7. Detailed architecture of our Content-Aware Upsampling Network (CAUN).
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Figure 8. Detailed architecture of our Synthesis Network (SN).

teacher flows excluding object boundaries, and the regular-
ization loss Lreg is utilized to force V l,PT

t→t|0t and V l,PT
t→t|t1 to

be uniform vector fields of all zeros, where the input BiM
of teacher process (Eq. (4), Eq. (5)) is used to guide the two
flows to be zero flows:

Ll
s1 = λs1(Ls1(V

l,PT
t→0 ) + Ls1(V

l,PT
t→1 )),

Ll
reg = λreg(L2(V

l,PT
t→t|0t) + L2(V

l,PT
t→t|t1)),

Ll
flo,PT

= Ll
s1 + Ll

reg,

(8)

where λs1 and λreg are weights for each loss.
The photometric loss for the student process is con-

structed in the same manner as the teacher process, which
is given by:

Ll
char,PS

= λchar,PSLchar(Î
l,PS , I l),

Ll
css,PS

= λcss,PSLcss(Î
l,PS , I l),

Ll
pho,PS

= Ll
char,PS

+ Ll
css,PS

,

(9)

where λchar,PS and λcss,PS are the weights for their respec-
tive losses. The flows of the student process will be super-
vised by a flow distillation loss that enforces the flows of the
student process to get closer to those of the teacher process,
which is given by:

Ll
flo,PS

= λdistill(L2(V
l,PS
t→0 − sg(V l,PT

t→0 ))

+L2(V
l,PS
t→1 − sg(V PT

t→1))),
(10)

where λdistill is a weighting factor, and sg(·) is a stop gra-
dient function that is used to force the gradients to be only



Methods
SNU-FILM-arb XTest

medium hard extreme ×8
psnr ssim psnr ssim psnr ssim psnr ssim lpips stlpips niqe

RIFE [9] 36.31 0.981 31.86 0.952 27.20 0.895 30.58 0.904 0.153 0.114 7.393
IFRNet [16] 34.82 0.976 31.11 0.947 26.29 0.882 26.36 0.826 0.198 0.147 5.842
M2M-PWC [7] 36.54 0.982 31.92 0.951 27.13 0.892 30.81 0.912 0.080 0.047 6.521
AMT-S [18] 34.42 0.974 30.98 0.947 26.42 0.887 28.16 0.873 0.187 0.134 7.082
UPRNet [13] 36.70 0.982 31.9 0.951 27.08 0.893 30.50 0.905 0.093 0.058 6.148
EMA-VFI [45] 36.85 0.982 32.7 0.957 28.15 0.906 31.36 0.914 0.165 0.130 7.77
RIFE[D,R] [44] 36.17 0.981 31.59 0.949 27.05 0.891 26.93 0.839 0.232 0.169 6.477
IFRNet[D,R] [44] 35.92 0.981 31.18 0.947 26.54 0.886 28.76 0.891 0.147 0.096 7.054
AMT-S[D,R] [44] 34.78 0.978 30.48 0.944 26.15 0.886 29.27 0.886 0.098 0.055 6.409
EMA-VFI[D,R] [44] 35.75 0.980 31.02 0.946 26.37 0.885 25.75 0.833 0.258 0.192 6.928
ours 36.57 0.982 31.92 0.949 27.22 0.891 30.80 0.914 0.068 0.045 6.449

Table 4. Additional quantitative comparisons on arbitrary time interpolation datasets.

activated for the student process. The overall loss for our
BiM-VFI with KDVCF is defined as:

L =

L−1∑
l=0

γl
pho(Ll

pho,PT
+ Lpho,PS )+

γl
flo(Lflo,PT + Lflo,PS ),

(11)

where L is the total number of pyramid levels used in train-
ing, and γpho, and γflo are exponential weights for the photo-
metric loss and the flow-centric loss, respectively, which are
employed to weigh more supervision on larger-sized image
resolutions.

A.4. Implementation details
We trained our BiM-VFI with a training split of Vimeo90k
septuplet datasets [41]. We randomly crop the images to
a resolution of 256 × 256, flip horizontally and vertically,
rotate, reverse temporally, and permute the color channels
to augment the training data. We set the batch size to 32,
and train the model for 400 epochs with an initial learning
rate of 1 ×10−4. We gradually decay the initial learning
rate using a Cosine annealing scheduler [21] and optimize
our model using the AdamW optimizer [20]. Also, because
the architecture of our BiM-VFI is based on a recurrent
pyramid architecture, we employed resolution-aware adap-
tation for the pyramid hierarchy depth proposed by Jin et
al. [13]. For training on Vimeo90K, we used 3 pyramid lev-
els, while 5 pyramid levels are used for SNU-FILM [3] and
SNU-FILM-arb [6], and 7 pyramid levels for Xtest [35]. As
mentioned, our proposed KDVCF computes the BiM dur-
ing training, and for inference time, the BiM is represented
according to Eq. (2) corresponding to a uniform motion sce-
nario.

A.5. Distinct Description of BiM
As discussed in Sec. 3.1 of the main paper, we proposed
BiM as a distinct motion descriptor for non-uniform mo-



(a) Unique intersection of loci in case of k = 1



(b) Unique intersection of loci in case of k ̸= 1

Figure 9. Visualization of intersection by two loci.

tions, including accelerations, decelerations, and changing
directions. To ensure the distinct descriptive power of BiM,
we provide a mathematical analysis of how our BiM can
explain the position of the intermediate pixel between given
two corresponding pixels.

Theorem 1. Let A and B be two fixed points, and let k be
a positive real number. The point X such that the distance
ratio AX

BX
= k and the angle ∠AXB = θ is unique.

Proof. We start by describing the locus of points X ′ where

∠AX ′B = θ. This locus forms an arc
⌢

AB where any point

X ′ on the arc
⌢

AB satisfying ∠AX ′B = θ.
The locus of points X ′′ where AX′′

BX′′ = k varies inshape
depending on the value of k.

I) If k = 1 (Fig. 9a), this locus forms a perpendicular

bisector of AB. In this case, the intersection of the arc
⌢

AB
and the perpendicular bisector of AB is unique, thus the



Methods
Vimeo 90K-triplet

SNU-FILM XTest Complexity
easy medium hard extreme single FLOPs Params

psnr ssim psnr ssim psnr ssim psnr ssim psnr ssim psnr ssim (T) (M)
AMT-G [18] 36.53 0.982 39.88 0.991 36.12 0.981 30.78 0.981 25.43 0.865 30.34 0.904 2.07 30.6
M2M-PWC [7] 35.49 0.978 39.66 0.991 35.74 0.980 30.32 0.980 25.07 0.863 30.81 0.900 0.26 7.6
UPRNet [13] 36.42 0.982 40.44 0.991 36.29 0.980 30.86 0.938 25.63 0.864 30.27 0.897 1.59 6.6
RIFE [9] 35.61 0.978 40.02 0.990 35.72 0.979 30.08 0.933 24.84 0.853 23.57 0.778 0.20 9.8
XVFI [35] 33.99 0.968 38.37 0.987 34.42 0.973 29.52 0.928 24.88 0.854 28.96 0.887 0.21 5.7
IFRNet [16] 36.16 0.980 40.10 0.991 36.12 0.978 30.63 0.936 25.27 0.861 27.53 0.847 0.79 19.7
EMA-VFI [45] 36.64 0.982 39.98 0.991 36.09 0.980 30.94 0.939 25.69 0.866 29.89 0.896 0.91 66.0
Ours 35.01 0.977 40.09 0.990 35.89 0.979 30.54 0.935 25.33 0.860 29.90 0.901 0.91 6.0

Table 5. Additional quantitative comparisons on fixed time interpolation datasets and the complexity of SOTA models.

point satisfying the distance ratio AX
BX

= k and the angle
∠AXB = θ is unique.

II) If k ̸= 1 (Fig. 9b), this locus forms an Apollonian
circle [25]. In this case, if k > 1, point A is outside the
circle, and point B is inside the circle. Conversely, if k < 1,
point B is outside the circle, and point A is inside the circle.
In any case, the resulting circle has only one intersection

with the arc
⌢

AB, thus the point satisfying the distance ratio
AX
BX

= k and the angle ∠AXB = θ is unique.
By I) and II), for given two fixed points A and B, a pos-

itive real number k, it is concluded that the point X satisfy-
ing the distance ratio AX

BX
= k and the angle ∠AXB = θ is

unique.

B. Additional Experimental Results
B.1. Quantitative Results
We provided pixel-centric metrics (PSNR and SSIM) mea-
sured on SNU-FILM-arb [6] datasets and additional arbi-
trary time interpolation on XTest [35] to interpolate ×8
frames, which are tabulated in Tab. 4. As discussed in
Sec. 4.3 of the main paper, while our BiM-VFI underper-
forms in pixel-centric metrics, it consistently outperforms
the other SOTA methods on XTest [35] ×8 interpolation in
terms of perceptual metrics, such as LPIPS and STLPIPS.

In Tab. 5, we also provided pixel-centric metrics mea-
sured on fixed-time datasets (Vimeo 90K-triplet [41], SNU-
FILM [3], and XTest [35] single) and complexity compar-
isons between other SOTA methods.

B.2. Computational complexity
We additionally provide below #’s of parameters and
FLOPs on each component for 256×256-sized images.

MFE CFE BiMFN CAUN SN Total
#Params(M) 0.58 0.58 3.41 0.61 1.7 6.88
FLOPs(G) 12.02 12.02 18.81 11 24.64 78.49

We measured FLOPs for interpolating 1280×720-sized
source images and the total parameters used in the methods.

As shown in Tab. 5, our BiM-VFI effectively reduced the
number of parameters by employing a recurrent pyramid ar-
chitecture, while having moderate computational complex-
ity among the other SOTA methods in terms of FLOPs.

GIMM-VFI-R EMA-VFI UPR AMT Ours
#Params(M) 19.73 65.66 6.56 30.64 6.88
FLOPs(G) 9187 1714 1228 2395 1177
Runtime(ms) 494 104 53 183 151

B.3. Additional ablation study
We provide below the detection performance of small ob-
jects and object boundaries with and without CAUN mod-
ule. As shown, the CAUN can help capture well small toes
(top) and detect tight boundaries of the windmill blade (bot-
tom), while failing without it.

GT w/ CAUN w/o CAUN

Also, as mentioned in Suppl., while our KDVCF increases
the training time from 2.5 to 4 days using 4 A100 GPUs due
to the PT process, it does not increase the inference time.
We also compared the #’s of parameters, FLOPs, and run-
time (measured on an A100 GPU with 1280×768-sized im-
ages) in the below table. It can be noted that our BiM-VFI
has a low number of parameters, showing moderate run-
time.

B.4. User Study
We conducted a user study to show that our BiM-VFI
with uniform motion BiM perceptually outperforms other
SOTA methods. 21 participants were asked to choose



Figure 10. Preference of interpolated videos between our BiM-
VFI and the other SOTA models measured by user study.

the best-interpolated videos among AMT-S [18], UPR-
Net [13], EMA-VFI [45], [D,R]-AMT-S, and [D,R]-EMA-
VFI, where [D,R] indicates that distance indexing and it-
erative reference-based estimation, proposed by Zhong et
al. [44], are plugged into the method. We used 9 test videos
for blind subjective tests where the six 8×-interpolated
videos for the six VFI methods including our BiM-VFI are
displayed simultaneously on the same screens for each test
video. In order to remove any subjective bias to specific VFI
methods, the six 8×-interpolated videos for each test video
are randomly ordered and presented to the participants in
the blind subjective test.

As shown in Fig. 10, our BiM-VFI dominantly outper-
forms the other SOTA methods in the subjective tests, by
61% preference against the other six VFI methods.

B.5. Qualitative Results
We provided additional qualitative comparisons with the
SOTA methods in SNU-FILM-arb [6] extreme datasets.

C. Limitation
Our KDVCF requires approximately twice the training time
compared to training solely with the student process, as
both the teacher and student processes are trained simulta-
neously. However, the model trained with KDVCF demon-
strated its effectiveness in perceptual metrics compared to
models supervised with pre-trained flow models or without
flow supervision. It is also noteworthy that only the student
process remains during inference, so the inference runtime
is the same as that of models trained without KDVCF.



Figure 11. Additional qualitative comparisons on SNU-FILM-arb [6] extreme datasets.



Figure 12. Additional qualitative comparisons on SNU-FILM-arb [6] extreme datasets.



Figure 13. Additional qualitative comparisons on SNU-FILM-arb [6] extreme datasets.



Figure 14. Additional qualitative comparisons on SNU-FILM-arb [6] extreme datasets.


