Attention IoU: Examining Biases in CelebA using Attention Maps

Supplementary Material

A. Gradients for GradCAM

In Sec. 3.1, to compute GradCAM for image features that
contribute positively, we describe taking the gradient of the
absolute value of the class output |y,| for binary cross-
entropy loss, while taking gradient of class output ¥, di-
rectly for categorical cross-entropy loss.

When using a model that is trained using binary cross-
entropy loss, computing the gradient w.r.t. the absolute
value of the logit (before the sigmoid) is equivalent to com-
puting the gradient w.r.t. to the predicted class for categori-
cal cross-entropy loss with two heads (one each for the posi-
tive and negative class). Concretely, let s be the value of the
logit; the probability that this model assigns to the positive
class is o(s) = and the probablhty assigned to the
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negative class is 1 — o(s) = ﬁ = o(—s). The model
prediction is argmax(o(s),o(—s)) = argmax(s,—s).

Thus, taking the gradient with respect to the absolute value
of the logits allows us to find positive contributions to the
predicted binary class.

B. Proofs of Invariants

In Sec. 3.2, we introduce the Attention-IoU metric, Ba.jou,
which is invariant to scale and size for pixel maps.

First, we confirm that if the two input maps are identical,
M; = My, = M € R"*% the Attention-IoU metric is 1:
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We next prove that Ba oy is scale invariant. Given two
maps M, My € R"*™_ suppose the maps are multiplied
by the scalars a1, as € Ry respectively. Then their L; nor-
malized maps are
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For the proof of size invariance, we assume for simplicity
that the maps are resized by a positive integer scalar o € N
using nearest neighbor interpolation. Again, consider two
maps M, My € RPX%. Let M§, Mg € R"Xa% be the
rescaling of the two maps by the constant . For example,

with @ = 2, a 5 x 5 box in the center of the map will be
resized to be a 10 x 10 box, with the same spacial location
within the map. Note that the L; normalized maps are
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as each pixel in the original map appears o times in the
resized map. Furthermore, the Frobenius inner product of
the two resized maps is
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Thus, combining the two parts together,
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Although in the proof M and MY are larger matrices than
M; and M, the same argument applies if M; and M5 are
zero-padded to have same dimensions as the resized maps.

C. Subsampling Training Details

Here we provide experimental details for varying training
set correlations in Sec. 5.2. Given a target Matthews corre-
lation coefficient between the specified attribute and Male,
we find subgroup sizes that achieve the target MCC (as
MCC is dependent entirely on the sizes of the 4 subgroups)
using SciPy’s optimize.minimize with the trust re-
gion method” (Fig. 10). We bound the sizes of the subsam-
pled subgroups to the size of the original groups, and aim to
minimize the distance to the original group sizes by the Lo
norm. To reduce fluctuations between the subsampled sizes,
we initialize the optimizer with the adjacent subgroup sizes,
with the original subgroups sizes in the training set as the
starting point. Lastly, after running the optimization once
for all MCCs, we rerun the optimization process with the
additional bound of the smallest subsampled training set, so
that all the subsampled training sets are of the same size. As
the subsampling was an ablation study, the heatmap scores
reported in Fig. 9 were run on the validation set.

D. Additional CelebA Results

Model Evaluation. The average precision weighted for
all 40 attributes in CelebA, averaged across the 20 trained
models with the experimental setup detailed in Sec. 5.1, is
0.902 + 0.025. For reference, the normalized average pre-
cision (APy) [25] for the Male attribute is 0.994 £ 0.003,
the second highest after Eyeglasses (0.998 & 0.001). In
Fig. 11 we show average heatmaps for select attributes.

Zhttps://docs . scipy .org/doc/scipy/ reference/
optimize.minimize-trustconstr.html
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Figure 10. Training set subgroup sizes under subsampling.
Here we report subgroup sizes of the training set of varying MCCs
for Blond-Hair and Wavy_Hair with Male, under our opti-
mization scheme, to compute the results in Sec. 5.2 and Fig. 9.
Subgroup sizes are bounded to the smallest subsampled training
set size. The legend shows the four different subgroups groups,
with the first value indicating the target label and the second Male.
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Figure 11. Average heatmaps for CelebA attributes. We visu-
alize average heatmaps for the selected attributes investigated in
Sec. 5.2.
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Figure 12. Evaluation of mask score using GradCAM on
CelebA test set with attribute-specific feature masks, com-
pared to average precision. To compare per-attribute AP between
attributes, we adopt Hoiem et al.’s normalized average precision
(APx) metric [25].

CelebA Normalized Average Precision. As a comparison
to Fig. 5, which shows CelebA mask score against worst
group accuracy, in Fig. 12 we show the mask score of the
same 17 attributes to their normalized average precision
(APy). Compared with worst group accuracy, there is a no
correlation for normalized average precision with respect to
the mask score. Unlike worst group accuracy, to calculate
normalized average precision one does not need to assume
the correlated attribute.

E. Evaluating with EfficientNet

To demonstrate the effectiveness of Attention-IoU on ar-
chitectures other than ResNet, we also evaluated the met-
ric using the EfficientNetV2-S architecture [69] on both the
Waterbirds and CelebA datasets. Aside from the change in
architecture, and averaging over 10 trained models instead
of 20, the experimental setup remained the same.

For Waterbirds, the EfficientNet models show a very
similar pattern to ResNet in attending less to the bird and
more to the background as dataset bias increases (Fig. 14).
The EfficientNet heatmap scores for CelebA also show a
strong positive trend with MCC like ResNet (Fig. 13). The 5
highlighted attributes maintain their relative positions, with
some changes owing to different architectures and pretrain-
ing weights.
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Figure 13. EfficientNetV2 mask score on Waterbirds. The
top bars indicate Attention-loU mask scores for EfficientNetV2-S
models, while the bottom bars are corresponding ResNet-50 scores
from Fig. 3. WGA is for the EfficientNet model. As with ResNet,
the EfficientNet models attend less to the bird and more to the
background, mirroring the decrease in WGA.
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Figure 14. EfficientNetV2 heatmap scores on CelebA at-

tributes. Orange/circle indicates results with EfficientNetV2-S
models, and light blue/triangle are ResNet-50 results from Fig. 5.
We observe a very similar trend in EfficientNetV2 to that of
ResNet-50. Highlighted attributes maintain their relative position,
with some movement owing to different architectures and pretrain-
ing weights.
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